// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2008-2014 Freescale Semiconductor, Inc. * Copyright 2021 NXP */ #include #ifdef CONFIG_PPC #include #endif #include #include #include #include #include #include #if defined(CONFIG_FSL_LSCH2) || defined(CONFIG_FSL_LSCH3) || \ defined(CONFIG_ARM) #include #endif /* To avoid 64-bit full-divides, we factor this here */ #define ULL_2E12 2000000000000ULL #define UL_5POW12 244140625UL #define UL_2POW13 (1UL << 13) #define ULL_8FS 0xFFFFFFFFULL u32 fsl_ddr_get_version(unsigned int ctrl_num) { struct ccsr_ddr __iomem *ddr; u32 ver_major_minor_errata; switch (ctrl_num) { case 0: ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR; break; #if defined(CONFIG_SYS_FSL_DDR2_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 1) case 1: ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR; break; #endif #if defined(CONFIG_SYS_FSL_DDR3_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 2) case 2: ddr = (void *)CONFIG_SYS_FSL_DDR3_ADDR; break; #endif #if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 3) case 3: ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR; break; #endif default: printf("%s unexpected ctrl_num = %u\n", __func__, ctrl_num); return 0; } ver_major_minor_errata = (ddr_in32(&ddr->ip_rev1) & 0xFFFF) << 8; ver_major_minor_errata |= (ddr_in32(&ddr->ip_rev2) & 0xFF00) >> 8; return ver_major_minor_errata; } /* * Round up mclk_ps to nearest 1 ps in memory controller code * if the error is 0.5ps or more. * * If an imprecise data rate is too high due to rounding error * propagation, compute a suitably rounded mclk_ps to compute * a working memory controller configuration. */ unsigned int get_memory_clk_period_ps(const unsigned int ctrl_num) { unsigned int data_rate = get_ddr_freq(ctrl_num); unsigned int result; /* Round to nearest 10ps, being careful about 64-bit multiply/divide */ unsigned long long rem, mclk_ps = ULL_2E12; if (data_rate) { /* Now perform the big divide, the result fits in 32-bits */ rem = do_div(mclk_ps, data_rate); result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps; } else { result = 0; } return result; } /* Convert picoseconds into DRAM clock cycles (rounding up if needed). */ unsigned int picos_to_mclk(const unsigned int ctrl_num, unsigned int picos) { unsigned long long clks, clks_rem; unsigned long data_rate = get_ddr_freq(ctrl_num); /* Short circuit for zero picos */ if (!picos) return 0; /* First multiply the time by the data rate (32x32 => 64) */ clks = picos * (unsigned long long)data_rate; /* * Now divide by 5^12 and track the 32-bit remainder, then divide * by 2*(2^12) using shifts (and updating the remainder). */ clks_rem = do_div(clks, UL_5POW12); clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12; clks >>= 13; /* If we had a remainder greater than the 1ps error, then round up */ if (clks_rem > data_rate) clks++; /* Clamp to the maximum representable value */ if (clks > ULL_8FS) clks = ULL_8FS; return (unsigned int) clks; } unsigned int mclk_to_picos(const unsigned int ctrl_num, unsigned int mclk) { return get_memory_clk_period_ps(ctrl_num) * mclk; } #ifdef CONFIG_PPC void __fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params, unsigned int law_memctl, unsigned int ctrl_num) { unsigned long long base = memctl_common_params->base_address; unsigned long long size = memctl_common_params->total_mem; /* * If no DIMMs on this controller, do not proceed any further. */ if (!memctl_common_params->ndimms_present) { return; } #if !defined(CONFIG_PHYS_64BIT) if (base >= CONFIG_MAX_MEM_MAPPED) return; if ((base + size) >= CONFIG_MAX_MEM_MAPPED) size = CONFIG_MAX_MEM_MAPPED - base; #endif if (set_ddr_laws(base, size, law_memctl) < 0) { printf("%s: ERROR (ctrl #%d, TRGT ID=%x)\n", __func__, ctrl_num, law_memctl); return ; } debug("setup ddr law base = 0x%llx, size 0x%llx, TRGT_ID 0x%x\n", base, size, law_memctl); } __attribute__((weak, alias("__fsl_ddr_set_lawbar"))) void fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params, unsigned int memctl_interleaved, unsigned int ctrl_num); #endif void fsl_ddr_set_intl3r(const unsigned int granule_size) { #ifdef CONFIG_E6500 u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004); *mcintl3r = 0x80000000 | (granule_size & 0x1f); debug("Enable MCINTL3R with granule size 0x%x\n", granule_size); #endif } u32 fsl_ddr_get_intl3r(void) { u32 val = 0; #ifdef CONFIG_E6500 u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004); val = *mcintl3r; #endif return val; } void print_ddr_info(unsigned int start_ctrl) { struct ccsr_ddr __iomem *ddr = (struct ccsr_ddr __iomem *)(CONFIG_SYS_FSL_DDR_ADDR); #if defined(CONFIG_E6500) && (CONFIG_SYS_NUM_DDR_CTLRS == 3) u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004); #endif #if (CONFIG_SYS_NUM_DDR_CTLRS > 1) uint32_t cs0_config = ddr_in32(&ddr->cs0_config); #endif uint32_t sdram_cfg = ddr_in32(&ddr->sdram_cfg); int cas_lat; #if CONFIG_SYS_NUM_DDR_CTLRS >= 2 if ((!(sdram_cfg & SDRAM_CFG_MEM_EN)) || (start_ctrl == 1)) { ddr = (void __iomem *)CONFIG_SYS_FSL_DDR2_ADDR; sdram_cfg = ddr_in32(&ddr->sdram_cfg); } #endif #if CONFIG_SYS_NUM_DDR_CTLRS >= 3 if ((!(sdram_cfg & SDRAM_CFG_MEM_EN)) || (start_ctrl == 2)) { ddr = (void __iomem *)CONFIG_SYS_FSL_DDR3_ADDR; sdram_cfg = ddr_in32(&ddr->sdram_cfg); } #endif if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) { puts(" (DDR not enabled)\n"); return; } puts(" (DDR"); switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >> SDRAM_CFG_SDRAM_TYPE_SHIFT) { case SDRAM_TYPE_DDR1: puts("1"); break; case SDRAM_TYPE_DDR2: puts("2"); break; case SDRAM_TYPE_DDR3: puts("3"); break; case SDRAM_TYPE_DDR4: puts("4"); break; default: puts("?"); break; } if (sdram_cfg & SDRAM_CFG_32_BE) puts(", 32-bit"); else if (sdram_cfg & SDRAM_CFG_16_BE) puts(", 16-bit"); else puts(", 64-bit"); /* Calculate CAS latency based on timing cfg values */ cas_lat = ((ddr_in32(&ddr->timing_cfg_1) >> 16) & 0xf); if (fsl_ddr_get_version(0) <= 0x40400) cas_lat += 1; else cas_lat += 2; cas_lat += ((ddr_in32(&ddr->timing_cfg_3) >> 12) & 3) << 4; printf(", CL=%d", cas_lat >> 1); if (cas_lat & 0x1) puts(".5"); if (sdram_cfg & SDRAM_CFG_ECC_EN) puts(", ECC on)"); else puts(", ECC off)"); #if (CONFIG_SYS_NUM_DDR_CTLRS == 3) #ifdef CONFIG_E6500 if (*mcintl3r & 0x80000000) { puts("\n"); puts(" DDR Controller Interleaving Mode: "); switch (*mcintl3r & 0x1f) { case FSL_DDR_3WAY_1KB_INTERLEAVING: puts("3-way 1KB"); break; case FSL_DDR_3WAY_4KB_INTERLEAVING: puts("3-way 4KB"); break; case FSL_DDR_3WAY_8KB_INTERLEAVING: puts("3-way 8KB"); break; default: puts("3-way UNKNOWN"); break; } } #endif #endif #if (CONFIG_SYS_NUM_DDR_CTLRS >= 2) if ((cs0_config & 0x20000000) && (start_ctrl == 0)) { puts("\n"); puts(" DDR Controller Interleaving Mode: "); switch ((cs0_config >> 24) & 0xf) { case FSL_DDR_256B_INTERLEAVING: puts("256B"); break; case FSL_DDR_CACHE_LINE_INTERLEAVING: puts("cache line"); break; case FSL_DDR_PAGE_INTERLEAVING: puts("page"); break; case FSL_DDR_BANK_INTERLEAVING: puts("bank"); break; case FSL_DDR_SUPERBANK_INTERLEAVING: puts("super-bank"); break; default: puts("invalid"); break; } } #endif if ((sdram_cfg >> 8) & 0x7f) { puts("\n"); puts(" DDR Chip-Select Interleaving Mode: "); switch(sdram_cfg >> 8 & 0x7f) { case FSL_DDR_CS0_CS1_CS2_CS3: puts("CS0+CS1+CS2+CS3"); break; case FSL_DDR_CS0_CS1: puts("CS0+CS1"); break; case FSL_DDR_CS2_CS3: puts("CS2+CS3"); break; case FSL_DDR_CS0_CS1_AND_CS2_CS3: puts("CS0+CS1 and CS2+CS3"); break; default: puts("invalid"); break; } } } void __weak detail_board_ddr_info(void) { print_ddr_info(0); } void board_add_ram_info(int use_default) { detail_board_ddr_info(); } #ifdef CONFIG_FSL_DDR_SYNC_REFRESH #define DDRC_DEBUG20_INIT_DONE 0x80000000 #define DDRC_DEBUG2_RF 0x00000040 void fsl_ddr_sync_memctl_refresh(unsigned int first_ctrl, unsigned int last_ctrl) { unsigned int i; u32 ddrc_debug20; u32 ddrc_debug2[CONFIG_SYS_NUM_DDR_CTLRS] = {}; u32 *ddrc_debug2_p[CONFIG_SYS_NUM_DDR_CTLRS] = {}; struct ccsr_ddr __iomem *ddr; for (i = first_ctrl; i <= last_ctrl; i++) { switch (i) { case 0: ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR; break; #if defined(CONFIG_SYS_FSL_DDR2_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 1) case 1: ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR; break; #endif #if defined(CONFIG_SYS_FSL_DDR3_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 2) case 2: ddr = (void *)CONFIG_SYS_FSL_DDR3_ADDR; break; #endif #if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 3) case 3: ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR; break; #endif default: printf("%s unexpected ctrl = %u\n", __func__, i); return; } ddrc_debug20 = ddr_in32(&ddr->debug[19]); ddrc_debug2_p[i] = &ddr->debug[1]; while (!(ddrc_debug20 & DDRC_DEBUG20_INIT_DONE)) { /* keep polling until DDRC init is done */ udelay(100); ddrc_debug20 = ddr_in32(&ddr->debug[19]); } ddrc_debug2[i] = ddr_in32(&ddr->debug[1]) | DDRC_DEBUG2_RF; } /* * Sync refresh * This is put together to make sure the refresh reqeusts are sent * closely to each other. */ for (i = first_ctrl; i <= last_ctrl; i++) ddr_out32(ddrc_debug2_p[i], ddrc_debug2[i]); } #endif /* CONFIG_FSL_DDR_SYNC_REFRESH */ void remove_unused_controllers(fsl_ddr_info_t *info) { #ifdef CONFIG_SYS_FSL_HAS_CCN504 int i; u64 nodeid; void *hnf_sam_ctrl = (void *)(CCI_HN_F_0_BASE + CCN_HN_F_SAM_CTL); bool ddr0_used = false; bool ddr1_used = false; for (i = 0; i < 8; i++) { nodeid = in_le64(hnf_sam_ctrl) & CCN_HN_F_SAM_NODEID_MASK; if (nodeid == CCN_HN_F_SAM_NODEID_DDR0) { ddr0_used = true; } else if (nodeid == CCN_HN_F_SAM_NODEID_DDR1) { ddr1_used = true; } else { printf("Unknown nodeid in HN-F SAM control: 0x%llx\n", nodeid); } hnf_sam_ctrl += (CCI_HN_F_1_BASE - CCI_HN_F_0_BASE); } if (!ddr0_used && !ddr1_used) { printf("Invalid configuration in HN-F SAM control\n"); return; } if (!ddr0_used && info->first_ctrl == 0) { info->first_ctrl = 1; info->num_ctrls = 1; debug("First DDR controller disabled\n"); return; } if (!ddr1_used && info->first_ctrl + info->num_ctrls > 1) { info->num_ctrls = 1; debug("Second DDR controller disabled\n"); } #endif }