// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2014 * Heiko Schocher, DENX Software Engineering, hs@denx.de. * * Based on: * Copyright (C) 2012 Freescale Semiconductor, Inc. * * Author: Fabio Estevam */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; enum { BOARD_TYPE_4 = 4, BOARD_TYPE_7 = 7, }; #define ARI_BT_4 "aristainetos2_4@2" #define ARI_BT_7 "aristainetos2_7@1" int board_phy_config(struct phy_device *phydev) { /* control data pad skew - devaddr = 0x02, register = 0x04 */ ksz9031_phy_extended_write(phydev, 0x02, MII_KSZ9031_EXT_RGMII_CTRL_SIG_SKEW, MII_KSZ9031_MOD_DATA_NO_POST_INC, 0x0000); /* rx data pad skew - devaddr = 0x02, register = 0x05 */ ksz9031_phy_extended_write(phydev, 0x02, MII_KSZ9031_EXT_RGMII_RX_DATA_SKEW, MII_KSZ9031_MOD_DATA_NO_POST_INC, 0x0000); /* tx data pad skew - devaddr = 0x02, register = 0x06 */ ksz9031_phy_extended_write(phydev, 0x02, MII_KSZ9031_EXT_RGMII_TX_DATA_SKEW, MII_KSZ9031_MOD_DATA_NO_POST_INC, 0x0000); /* gtx and rx clock pad skew - devaddr = 0x02, register = 0x08 */ ksz9031_phy_extended_write(phydev, 0x02, MII_KSZ9031_EXT_RGMII_CLOCK_SKEW, MII_KSZ9031_MOD_DATA_NO_POST_INC, 0x03FF); if (phydev->drv->config) phydev->drv->config(phydev); return 0; } static int rotate_logo_one(unsigned char *out, unsigned char *in) { int i, j; for (i = 0; i < BMP_LOGO_WIDTH; i++) for (j = 0; j < BMP_LOGO_HEIGHT; j++) out[j * BMP_LOGO_WIDTH + BMP_LOGO_HEIGHT - 1 - i] = in[i * BMP_LOGO_WIDTH + j]; return 0; } /* * Rotate the BMP_LOGO (only) * Will only work, if the logo is square, as * BMP_LOGO_HEIGHT and BMP_LOGO_WIDTH are defines, not variables */ void rotate_logo(int rotations) { unsigned char out_logo[BMP_LOGO_WIDTH * BMP_LOGO_HEIGHT]; struct bmp_header *header; unsigned char *in_logo; int i, j; if (BMP_LOGO_WIDTH != BMP_LOGO_HEIGHT) return; header = (struct bmp_header *)bmp_logo_bitmap; in_logo = bmp_logo_bitmap + header->data_offset; /* one 90 degree rotation */ if (rotations == 1 || rotations == 2 || rotations == 3) rotate_logo_one(out_logo, in_logo); /* second 90 degree rotation */ if (rotations == 2 || rotations == 3) rotate_logo_one(in_logo, out_logo); /* third 90 degree rotation */ if (rotations == 3) rotate_logo_one(out_logo, in_logo); /* copy result back to original array */ if (rotations == 1 || rotations == 3) for (i = 0; i < BMP_LOGO_WIDTH; i++) for (j = 0; j < BMP_LOGO_HEIGHT; j++) in_logo[i * BMP_LOGO_WIDTH + j] = out_logo[i * BMP_LOGO_WIDTH + j]; } static void enable_lvds(struct display_info_t const *dev) { struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; int reg; s32 timeout = 100000; /* set PLL5 clock */ reg = readl(&ccm->analog_pll_video); reg |= BM_ANADIG_PLL_VIDEO_POWERDOWN; writel(reg, &ccm->analog_pll_video); /* set PLL5 to 232720000Hz */ reg &= ~BM_ANADIG_PLL_VIDEO_DIV_SELECT; reg |= BF_ANADIG_PLL_VIDEO_DIV_SELECT(0x26); reg &= ~BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT; reg |= BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0); writel(reg, &ccm->analog_pll_video); writel(BF_ANADIG_PLL_VIDEO_NUM_A(0xC0238), &ccm->analog_pll_video_num); writel(BF_ANADIG_PLL_VIDEO_DENOM_B(0xF4240), &ccm->analog_pll_video_denom); reg &= ~BM_ANADIG_PLL_VIDEO_POWERDOWN; writel(reg, &ccm->analog_pll_video); while (timeout--) if (readl(&ccm->analog_pll_video) & BM_ANADIG_PLL_VIDEO_LOCK) break; if (timeout < 0) printf("Warning: video pll lock timeout!\n"); reg = readl(&ccm->analog_pll_video); reg |= BM_ANADIG_PLL_VIDEO_ENABLE; reg &= ~BM_ANADIG_PLL_VIDEO_BYPASS; writel(reg, &ccm->analog_pll_video); /* set LDB0, LDB1 clk select to 000/000 (PLL5 clock) */ reg = readl(&ccm->cs2cdr); reg &= ~(MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK | MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK); reg |= (0 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET) | (0 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET); writel(reg, &ccm->cs2cdr); reg = readl(&ccm->cscmr2); reg |= MXC_CCM_CSCMR2_LDB_DI0_IPU_DIV; writel(reg, &ccm->cscmr2); reg = readl(&ccm->chsccdr); reg |= (CHSCCDR_CLK_SEL_LDB_DI0 << MXC_CCM_CHSCCDR_IPU1_DI0_CLK_SEL_OFFSET); writel(reg, &ccm->chsccdr); reg = IOMUXC_GPR2_BGREF_RRMODE_EXTERNAL_RES | IOMUXC_GPR2_DI1_VS_POLARITY_ACTIVE_HIGH | IOMUXC_GPR2_DI0_VS_POLARITY_ACTIVE_HIGH | IOMUXC_GPR2_BIT_MAPPING_CH0_SPWG | IOMUXC_GPR2_DATA_WIDTH_CH0_24BIT | IOMUXC_GPR2_LVDS_CH1_MODE_DISABLED | IOMUXC_GPR2_LVDS_CH0_MODE_ENABLED_DI0; writel(reg, &iomux->gpr[2]); reg = readl(&iomux->gpr[3]); reg = (reg & ~IOMUXC_GPR3_LVDS0_MUX_CTL_MASK) | (IOMUXC_GPR3_MUX_SRC_IPU1_DI0 << IOMUXC_GPR3_LVDS0_MUX_CTL_OFFSET); writel(reg, &iomux->gpr[3]); } static void setup_display(void) { enable_ipu_clock(); } static void set_gpr_register(void) { struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; writel(IOMUXC_GPR1_APP_CLK_REQ_N | IOMUXC_GPR1_PCIE_RDY_L23 | IOMUXC_GPR1_EXC_MON_SLVE | (2 << IOMUXC_GPR1_ADDRS0_OFFSET) | IOMUXC_GPR1_ACT_CS0, &iomuxc_regs->gpr[1]); writel(0x0, &iomuxc_regs->gpr[8]); writel(IOMUXC_GPR12_ARMP_IPG_CLK_EN | IOMUXC_GPR12_ARMP_AHB_CLK_EN | IOMUXC_GPR12_ARMP_ATB_CLK_EN | IOMUXC_GPR12_ARMP_APB_CLK_EN, &iomuxc_regs->gpr[12]); } extern char __bss_start[], __bss_end[]; int board_early_init_f(void) { select_ldb_di_clock_source(MXC_PLL5_CLK); set_gpr_register(); /* * clear bss here, so we can use spi driver * before relocation and read Environment * from spi flash. */ memset(__bss_start, 0x00, __bss_end - __bss_start); return 0; } static void setup_one_led(char *label, int state) { struct udevice *dev; int ret; ret = led_get_by_label(label, &dev); if (ret == 0) led_set_state(dev, state); } static void setup_board_gpio(void) { setup_one_led("led_ena", LEDST_ON); /* switch off Status LEDs */ setup_one_led("led_yellow", LEDST_OFF); setup_one_led("led_red", LEDST_OFF); setup_one_led("led_green", LEDST_OFF); setup_one_led("led_blue", LEDST_OFF); } static void aristainetos_run_rescue_command(int reason) { char rescue_reason_command[20]; sprintf(rescue_reason_command, "setenv rreason %d", reason); run_command(rescue_reason_command, 0); } static int aristainetos_bootmode_settings(void) { struct gpio_desc *desc; struct src *psrc = (struct src *)SRC_BASE_ADDR; unsigned int sbmr1 = readl(&psrc->sbmr1); char *my_bootdelay; char bootmode = 0; int ret; struct udevice *dev; int off; u8 data[0x10]; u8 rescue_reason; /* jumper controlled reset of the environment */ ret = gpio_hog_lookup_name("env_reset", &desc); if (!ret) { if (dm_gpio_get_value(desc)) { printf("\nReset u-boot environment (jumper)\n"); run_command("run default_env; saveenv; saveenv", 0); } } off = fdt_path_offset(gd->fdt_blob, "eeprom0"); if (off < 0) { printf("%s: No eeprom0 path offset\n", __func__); return off; } ret = uclass_get_device_by_of_offset(UCLASS_I2C_EEPROM, off, &dev); if (ret) { printf("%s: Could not find EEPROM\n", __func__); return ret; } ret = i2c_set_chip_offset_len(dev, 2); if (ret) return ret; ret = i2c_eeprom_read(dev, 0x1ff0, (uint8_t *)data, sizeof(data)); if (ret) { printf("%s: Could not read EEPROM\n", __func__); return ret; } /* software controlled reset of the environment (EEPROM magic) */ if (strncmp((char *)data, "DeF", 3) == 0) { memset(data, 0xff, 3); i2c_eeprom_write(dev, 0x1ff0, (uint8_t *)data, 3); printf("\nReset u-boot environment (EEPROM)\n"); run_command("run default_env; saveenv; saveenv", 0); } if (sbmr1 & 0x40) { env_set("bootmode", "1"); printf("SD bootmode jumper set!\n"); } else { env_set("bootmode", "0"); } /* * Check the boot-source. If booting from NOR Flash, * disable bootdelay */ ret = gpio_hog_lookup_name("bootsel0", &desc); if (!ret) bootmode |= (dm_gpio_get_value(desc) ? 1 : 0) << 0; ret = gpio_hog_lookup_name("bootsel1", &desc); if (!ret) bootmode |= (dm_gpio_get_value(desc) ? 1 : 0) << 1; ret = gpio_hog_lookup_name("bootsel2", &desc); if (!ret) bootmode |= (dm_gpio_get_value(desc) ? 1 : 0) << 2; if (bootmode == 7) { my_bootdelay = env_get("nor_bootdelay"); if (my_bootdelay) env_set("bootdelay", my_bootdelay); else env_set("bootdelay", "-2"); } /* jumper controlled boot of the rescue system */ ret = gpio_hog_lookup_name("boot_rescue", &desc); if (!ret) { if (dm_gpio_get_value(desc)) { printf("\nBooting into Rescue System (jumper)\n"); aristainetos_run_rescue_command(16); run_command("run rescue_xload_boot", 0); } } /* software controlled boot of the rescue system (EEPROM magic) */ if (strncmp((char *)&data[3], "ReScUe", 6) == 0) { rescue_reason = *(uint8_t *)&data[9]; memset(&data[3], 0xff, 7); i2c_eeprom_write(dev, 0x1ff0, (uint8_t *)&data[3], 7); printf("\nBooting into Rescue System (EEPROM)\n"); aristainetos_run_rescue_command(rescue_reason); run_command("run rescue_xload_boot", 0); } return 0; } #if defined(CONFIG_DM_PMIC_DA9063) /* * On the aristainetos2c boards the PMIC needs to be initialized, * because the Ethernet PHY uses a different regulator that is not * setup per hardware default. This does not influence the other versions * as this regulator isn't used there at all. * * Unfortunately we have not yet a interface to setup all * values we need. */ static int setup_pmic_voltages(void) { struct udevice *dev; int off; int ret; off = fdt_path_offset(gd->fdt_blob, "pmic0"); if (off < 0) { printf("%s: No pmic path offset\n", __func__); return off; } ret = uclass_get_device_by_of_offset(UCLASS_PMIC, off, &dev); if (ret) { printf("%s: Could not find PMIC\n", __func__); return ret; } pmic_reg_write(dev, DA9063_REG_PAGE_CON, 0x01); pmic_reg_write(dev, DA9063_REG_BPRO_CFG, 0xc1); ret = pmic_reg_read(dev, DA9063_REG_BUCK_ILIM_B); if (ret < 0) { printf("%s: error %d get register\n", __func__, ret); return ret; } ret &= 0xf0; ret |= 0x09; pmic_reg_write(dev, DA9063_REG_BUCK_ILIM_B, ret); pmic_reg_write(dev, DA9063_REG_VBPRO_A, 0x43); pmic_reg_write(dev, DA9063_REG_VBPRO_B, 0xc3); return 0; } #else static int setup_pmic_voltages(void) { return 0; } #endif int board_late_init(void) { int x, y; int ret; splash_get_pos(&x, &y); bmp_display((ulong)&bmp_logo_bitmap[0], x, y); ret = aristainetos_bootmode_settings(); if (ret) return ret; /* set board_type */ if (gd->board_type == BOARD_TYPE_4) env_set("board_type", ARI_BT_4); else env_set("board_type", ARI_BT_7); if (setup_pmic_voltages()) printf("Error setup PMIC\n"); return 0; } int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } struct display_info_t const displays[] = { { .bus = -1, .addr = 0, .pixfmt = IPU_PIX_FMT_RGB24, .detect = NULL, .enable = enable_lvds, .mode = { .name = "lb07wv8", .refresh = 60, .xres = 800, .yres = 480, .pixclock = 30066, .left_margin = 88, .right_margin = 88, .upper_margin = 20, .lower_margin = 20, .hsync_len = 80, .vsync_len = 5, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } } }; size_t display_count = ARRAY_SIZE(displays); int board_init(void) { struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; setup_board_gpio(); setup_display(); /* GPIO_1 for USB_OTG_ID */ clrsetbits_le32(&iomux->gpr[1], IOMUXC_GPR1_USB_OTG_ID_SEL_MASK, 0); return 0; } int board_fit_config_name_match(const char *name) { if (gd->board_type == BOARD_TYPE_4 && strchr(name, 0x34)) return 0; if (gd->board_type == BOARD_TYPE_7 && strchr(name, 0x37)) return 0; return -1; } static void do_board_detect(void) { int ret; char s[30]; /* default use board type 7 */ gd->board_type = BOARD_TYPE_7; if (env_init()) return; ret = env_get_f("panel", s, sizeof(s)); if (ret < 0) return; if (!strncmp("lg4573", s, 6)) gd->board_type = BOARD_TYPE_4; } #ifdef CONFIG_DTB_RESELECT int embedded_dtb_select(void) { int rescan; do_board_detect(); fdtdec_resetup(&rescan); return 0; } #endif