// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2014 Samsung Electronics * Przemyslaw Marczak <p.marczak@samsung.com> */ #include <common.h> #include <log.h> #include <asm/arch/pinmux.h> #include <asm/arch/power.h> #include <asm/arch/clock.h> #include <asm/arch/gpio.h> #include <asm/global_data.h> #include <asm/gpio.h> #include <asm/arch/cpu.h> #include <dm.h> #include <env.h> #include <power/pmic.h> #include <power/regulator.h> #include <power/max77686_pmic.h> #include <errno.h> #include <mmc.h> #include <usb.h> #include <usb/dwc2_udc.h> #include <samsung/misc.h> #include "setup.h" DECLARE_GLOBAL_DATA_PTR; #ifdef CONFIG_BOARD_TYPES /* Odroid board types */ enum { ODROID_TYPE_U3, ODROID_TYPE_X2, ODROID_TYPES, }; void set_board_type(void) { /* Set GPA1 pin 1 to HI - enable XCL205 output */ writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON); writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4); writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8); writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc); /* Set GPC1 pin 2 to IN - check XCL205 output state */ writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON); writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8); /* XCL205 - needs some latch time */ sdelay(200000); /* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */ if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN)) gd->board_type = ODROID_TYPE_X2; else gd->board_type = ODROID_TYPE_U3; } void set_board_revision(void) { /* * Revision already set by set_board_type() because it can be * executed early. */ } const char *get_board_type(void) { const char *board_type[] = {"u3", "x2"}; return board_type[gd->board_type]; } #endif #ifdef CONFIG_SET_DFU_ALT_INFO char *get_dfu_alt_system(char *interface, char *devstr) { return env_get("dfu_alt_system"); } char *get_dfu_alt_boot(char *interface, char *devstr) { struct mmc *mmc; char *alt_boot; int dev_num; dev_num = dectoul(devstr, NULL); mmc = find_mmc_device(dev_num); if (!mmc) return NULL; if (mmc_init(mmc)) return NULL; alt_boot = IS_SD(mmc) ? CFG_DFU_ALT_BOOT_SD : CFG_DFU_ALT_BOOT_EMMC; return alt_boot; } #endif static void board_clock_init(void) { unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc; struct exynos4x12_clock *clk = (struct exynos4x12_clock *) samsung_get_base_clock(); /* * CMU_CPU clocks src to MPLL * Bit values: 0 ; 1 * MUX_APLL_SEL: FIN_PLL ; FOUT_APLL * MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL * MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C * MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL */ clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1); set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1); clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set); /* Wait for mux change */ while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING) continue; /* Set APLL to 1000MHz */ clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1); set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1); clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */ while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT)) continue; /* Set CMU_CPU clocks src to APLL */ set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) | MUX_MPLL_USER_SEL_C(1); clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set); /* Wait for mux change */ while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING) continue; set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) | PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) | APLL_RATIO(0) | CORE2_RATIO(0); /* * Set dividers for MOUTcore = 1000 MHz * coreout = MOUT / (ratio + 1) = 1000 MHz (0) * corem0 = armclk / (ratio + 1) = 333 MHz (2) * corem1 = armclk / (ratio + 1) = 166 MHz (5) * periph = armclk / (ratio + 1) = 1000 MHz (0) * atbout = MOUT / (ratio + 1) = 200 MHz (4) * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1) * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0) * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk) */ clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) | PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) | APLL_RATIO(7) | CORE2_RATIO(7); clrsetbits_le32(&clk->div_cpu0, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING) continue; /* * For MOUThpm = 1000 MHz (MOUTapll) * doutcopy = MOUThpm / (ratio + 1) = 200 (4) * sclkhpm = doutcopy / (ratio + 1) = 200 (4) * cores_out = armclk / (ratio + 1) = 200 (4) */ clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7); set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4); clrsetbits_le32(&clk->div_cpu1, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING) continue; /* * Set CMU_DMC clocks src to APLL * Bit values: 0 ; 1 * MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL * MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL * MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL * MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT * MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI) * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL * MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1 */ clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) | MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) | MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1); set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) | MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) | MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1); clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set); /* Wait for mux change */ while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING) continue; /* Set MPLL to 800MHz */ set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1); clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */ while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT)) continue; /* Switch back CMU_DMC mux */ set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) | MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) | MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0); clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set); /* Wait for mux change */ while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING) continue; /* CLK_DIV_DMC0 */ clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) | DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7); /* * For: * MOUTdmc = 800 MHz * MOUTdphy = 800 MHz * * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3) * pclk_acp = aclk_acp / (ratio + 1) = 100 (1) * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1) * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1) * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1) * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1) */ set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) | DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1); clrsetbits_le32(&clk->div_dmc0, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING) continue; /* CLK_DIV_DMC1 */ clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) | C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127); /* * For: * MOUTg2d = 800 MHz * MOUTc2c = 800 Mhz * MOUTpwi = 108 MHz * * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3) * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1) * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1) * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5) */ set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) | C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1); clrsetbits_le32(&clk->div_dmc1, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING) continue; /* CLK_SRC_PERIL0 */ clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) | UART3_SEL(15) | UART4_SEL(15); /* * Set CLK_SRC_PERIL0 clocks src to MPLL * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0); * 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL); * 8(SCLK_VPLL) * * Set all to SCLK_MPLL_USER_T */ set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) | UART4_SEL(6); clrsetbits_le32(&clk->src_peril0, clr, set); /* CLK_DIV_PERIL0 */ clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) | UART3_RATIO(15) | UART4_RATIO(15); /* * For MOUTuart0-4: 800MHz * * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7) */ set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) | UART3_RATIO(7) | UART4_RATIO(7); clrsetbits_le32(&clk->div_peril0, clr, set); while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING) continue; /* CLK_DIV_FSYS1 */ clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) | MMC1_PRE_RATIO(255); /* * For MOUTmmc0-3 = 800 MHz (MPLL) * * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7) * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1) * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7) * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1) */ set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) | MMC1_PRE_RATIO(1); clrsetbits_le32(&clk->div_fsys1, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING) continue; /* CLK_DIV_FSYS2 */ clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) | MMC3_PRE_RATIO(255); /* * For MOUTmmc0-3 = 800 MHz (MPLL) * * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7) * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1) * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7) * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1) */ set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) | MMC3_PRE_RATIO(1); clrsetbits_le32(&clk->div_fsys2, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING) continue; /* CLK_DIV_FSYS3 */ clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255); /* * For MOUTmmc4 = 800 MHz (MPLL) * * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7) * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0) */ set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0); clrsetbits_le32(&clk->div_fsys3, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING) continue; return; } static void board_gpio_init(void) { /* eMMC Reset Pin */ gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset"); gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1)); gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE); gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X); /* Enable FAN (Odroid U3) */ gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control"); gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP); gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X); gpio_direction_output(EXYNOS4X12_GPIO_D00, 1); /* OTG Vbus output (Odroid U3+) */ gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus"); gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE); gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X); gpio_direction_output(EXYNOS4X12_GPIO_L20, 0); /* OTG INT (Odroid U3+) */ gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT"); gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP); gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X); gpio_direction_input(EXYNOS4X12_GPIO_X31); /* Blue LED (Odroid X2/U2/U3) */ gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED"); gpio_direction_output(EXYNOS4X12_GPIO_C10, 0); #ifdef CONFIG_CMD_USB /* USB3503A Reference frequency */ gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq"); /* USB3503A Connect */ gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect"); /* USB3503A Reset */ gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset"); #endif } int exynos_early_init_f(void) { board_clock_init(); return 0; } int exynos_init(void) { board_gpio_init(); return 0; } int exynos_power_init(void) { const char *mmc_regulators[] = { "VDDQ_EMMC_1.8V", "VDDQ_EMMC_2.8V", "TFLASH_2.8V", NULL, }; if (regulator_list_autoset(mmc_regulators, NULL, true)) pr_err("Unable to init all mmc regulators\n"); return 0; } #ifdef CONFIG_USB_GADGET static int s5pc210_phy_control(int on) { struct udevice *dev; int ret; ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev); if (ret) { pr_err("Regulator get error: %d\n", ret); return ret; } if (on) return regulator_set_mode(dev, OPMODE_ON); else return regulator_set_mode(dev, OPMODE_LPM); } struct dwc2_plat_otg_data s5pc210_otg_data = { .phy_control = s5pc210_phy_control, .regs_phy = EXYNOS4X12_USBPHY_BASE, .regs_otg = EXYNOS4X12_USBOTG_BASE, .usb_phy_ctrl = EXYNOS4X12_USBPHY_CONTROL, .usb_flags = PHY0_SLEEP, }; #endif #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB) static void set_usb3503_ref_clk(void) { #ifdef CONFIG_BOARD_TYPES /* * gpx3-0 chooses primary (low) or secondary (high) reference clock * frequencies table. The choice of clock is done through hard-wired * REF_SEL pins. * The Odroid Us have reference clock at 24 MHz (00 entry from secondary * table) and Odroid Xs have it at 26 MHz (01 entry from primary table). */ if (gd->board_type == ODROID_TYPE_U3) gpio_direction_output(EXYNOS4X12_GPIO_X30, 0); else gpio_direction_output(EXYNOS4X12_GPIO_X30, 1); #else /* Choose Odroid Xs frequency without board types */ gpio_direction_output(EXYNOS4X12_GPIO_X30, 1); #endif /* CONFIG_BOARD_TYPES */ } int board_usb_init(int index, enum usb_init_type init) { #ifdef CONFIG_CMD_USB struct udevice *dev; int ret; set_usb3503_ref_clk(); /* Disconnect, Reset, Connect */ gpio_direction_output(EXYNOS4X12_GPIO_X34, 0); gpio_direction_output(EXYNOS4X12_GPIO_X35, 0); gpio_direction_output(EXYNOS4X12_GPIO_X35, 1); gpio_direction_output(EXYNOS4X12_GPIO_X34, 1); /* Power off and on BUCK8 for LAN9730 */ debug("LAN9730 - Turning power buck 8 OFF and ON.\n"); ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev); if (ret) { pr_err("Regulator get error: %d\n", ret); return ret; } ret = regulator_set_enable(dev, true); if (ret) { pr_err("Regulator %s enable setting error: %d\n", dev->name, ret); return ret; } ret = regulator_set_value(dev, 750000); if (ret) { pr_err("Regulator %s value setting error: %d\n", dev->name, ret); return ret; } ret = regulator_set_value(dev, 3300000); if (ret) { pr_err("Regulator %s value setting error: %d\n", dev->name, ret); return ret; } #endif debug("USB_udc_probe\n"); return dwc2_udc_probe(&s5pc210_otg_data); } #endif