// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Kontron Electronics GmbH */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; enum { BOARD_TYPE_KTN_SL_UL = 1, BOARD_TYPE_KTN_SL_ULL, BOARD_TYPE_MAX }; #define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define USDHC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_22K_UP | PAD_CTL_SPEED_LOW | \ PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define USDHC_CD_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_DOWN | PAD_CTL_SPEED_LOW | \ PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define SPI_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST) #include #include static iomux_v3_cfg_t const usdhc1_pads[] = { MX6_PAD_SD1_CLK__USDHC1_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_CMD__USDHC1_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DATA0__USDHC1_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DATA1__USDHC1_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DATA2__USDHC1_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DATA3__USDHC1_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), /* CD */ MX6_PAD_UART1_RTS_B__GPIO1_IO19 | MUX_PAD_CTRL(USDHC_CD_PAD_CTRL), }; #define USDHC1_CD_GPIO IMX_GPIO_NR(1, 19) static iomux_v3_cfg_t const usdhc2_pads[] = { MX6_PAD_NAND_RE_B__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_NAND_WE_B__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_NAND_DATA00__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_NAND_DATA01__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_NAND_DATA02__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_NAND_DATA03__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), /* RST */ MX6_PAD_NAND_ALE__GPIO4_IO10 | MUX_PAD_CTRL(NO_PAD_CTRL), }; #define USDHC2_PWR_GPIO IMX_GPIO_NR(4, 10) static struct fsl_esdhc_cfg usdhc_cfg[2] = { {USDHC1_BASE_ADDR, 0, 4}, {USDHC2_BASE_ADDR, 0, 4}, }; int board_mmc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv; int ret = 0; switch (cfg->esdhc_base) { case USDHC1_BASE_ADDR: ret = !gpio_get_value(USDHC1_CD_GPIO); break; case USDHC2_BASE_ADDR: // This SDHC interface does not use a CD pin ret = 1; break; } return ret; } int board_mmc_init(struct bd_info *bis) { int i, ret; /* * According to the board_mmc_init() the following map is done: * (U-Boot device node) (Physical Port) * mmc0 USDHC1 * mmc1 USDHC2 */ for (i = 0; i < CFG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: imx_iomux_v3_setup_multiple_pads(usdhc1_pads, ARRAY_SIZE(usdhc1_pads)); gpio_direction_input(USDHC1_CD_GPIO); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK); break; case 1: imx_iomux_v3_setup_multiple_pads(usdhc2_pads, ARRAY_SIZE(usdhc2_pads)); gpio_direction_output(USDHC2_PWR_GPIO, 0); udelay(500); gpio_direction_output(USDHC2_PWR_GPIO, 1); usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK); break; default: printf("Warning: you configured more USDHC controllers (%d) than supported by the board\n", i + 1); return -EINVAL; } ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]); if (ret) { printf("Warning: failed to initialize mmc dev %d\n", i); return ret; } } return 0; } iomux_v3_cfg_t const ecspi2_pads[] = { MX6_PAD_CSI_DATA00__ECSPI2_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6_PAD_CSI_DATA02__ECSPI2_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6_PAD_CSI_DATA03__ECSPI2_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6_PAD_CSI_DATA01__GPIO4_IO22 | MUX_PAD_CTRL(NO_PAD_CTRL), }; int board_spi_cs_gpio(unsigned int bus, unsigned int cs) { return (bus == CONFIG_SF_DEFAULT_BUS && cs == CONFIG_SF_DEFAULT_CS) ? (IMX_GPIO_NR(4, 22)) : -1; } static void setup_spi(void) { gpio_request(IMX_GPIO_NR(4, 22), "spi2_cs0"); gpio_direction_output(IMX_GPIO_NR(4, 22), 1); imx_iomux_v3_setup_multiple_pads(ecspi2_pads, ARRAY_SIZE(ecspi2_pads)); enable_spi_clk(true, 1); } static iomux_v3_cfg_t const uart4_pads[] = { MX6_PAD_UART4_TX_DATA__UART4_DCE_TX | MUX_PAD_CTRL(UART_PAD_CTRL), MX6_PAD_UART4_RX_DATA__UART4_DCE_RX | MUX_PAD_CTRL(UART_PAD_CTRL), }; static void setup_iomux_uart(void) { imx_iomux_v3_setup_multiple_pads(uart4_pads, ARRAY_SIZE(uart4_pads)); } // DDR 256MB (Hynix H5TQ2G63DFR) static struct mx6_ddr3_cfg mem_256M_ddr = { .mem_speed = 800, .density = 2, .width = 16, .banks = 8, .rowaddr = 14, .coladdr = 10, .pagesz = 2, .trcd = 1350, .trcmin = 4950, .trasmin = 3600, }; static struct mx6_mmdc_calibration mx6_mmcd_256M_calib = { .p0_mpwldectrl0 = 0x00000000, .p0_mpdgctrl0 = 0x01340134, .p0_mprddlctl = 0x40405052, .p0_mpwrdlctl = 0x40404E48, }; // DDR 512MB (Hynix H5TQ4G63DFR) static struct mx6_ddr3_cfg mem_512M_ddr = { .mem_speed = 800, .density = 4, .width = 16, .banks = 8, .rowaddr = 15, .coladdr = 10, .pagesz = 2, .trcd = 1350, .trcmin = 4950, .trasmin = 3600, }; static struct mx6_mmdc_calibration mx6_mmcd_512M_calib = { .p0_mpwldectrl0 = 0x00000000, .p0_mpdgctrl0 = 0X01440144, .p0_mprddlctl = 0x40405454, .p0_mpwrdlctl = 0x40404E4C, }; // Common DDR parameters (256MB and 512MB) static struct mx6ul_iomux_grp_regs mx6_grp_ioregs = { .grp_addds = 0x00000028, .grp_ddrmode_ctl = 0x00020000, .grp_b0ds = 0x00000028, .grp_ctlds = 0x00000028, .grp_b1ds = 0x00000028, .grp_ddrpke = 0x00000000, .grp_ddrmode = 0x00020000, .grp_ddr_type = 0x000c0000, }; static struct mx6ul_iomux_ddr_regs mx6_ddr_ioregs = { .dram_dqm0 = 0x00000028, .dram_dqm1 = 0x00000028, .dram_ras = 0x00000028, .dram_cas = 0x00000028, .dram_odt0 = 0x00000028, .dram_odt1 = 0x00000028, .dram_sdba2 = 0x00000000, .dram_sdclk_0 = 0x00000028, .dram_sdqs0 = 0x00000028, .dram_sdqs1 = 0x00000028, .dram_reset = 0x00000028, }; struct mx6_ddr_sysinfo ddr_sysinfo = { .dsize = 0, .cs_density = 20, .ncs = 1, .cs1_mirror = 0, .rtt_wr = 2, .rtt_nom = 1, /* RTT_Nom = RZQ/2 */ .walat = 1, /* Write additional latency */ .ralat = 5, /* Read additional latency */ .mif3_mode = 3, /* Command prediction working mode */ .bi_on = 1, /* Bank interleaving enabled */ .sde_to_rst = 0x10, /* 14 cycles, 200us (JEDEC default) */ .rst_to_cke = 0x23, /* 33 cycles, 500us (JEDEC default) */ .ddr_type = DDR_TYPE_DDR3, .refsel = 0, /* Refresh cycles at 64KHz */ .refr = 1, /* 2 refresh commands per refresh cycle */ }; static void ccgr_init(void) { struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; writel(0xFFFFFFFF, &ccm->CCGR0); writel(0xFFFFFFFF, &ccm->CCGR1); writel(0xFFFFFFFF, &ccm->CCGR2); writel(0xFFFFFFFF, &ccm->CCGR3); writel(0xFFFFFFFF, &ccm->CCGR4); writel(0xFFFFFFFF, &ccm->CCGR5); writel(0xFFFFFFFF, &ccm->CCGR6); writel(0xFFFFFFFF, &ccm->CCGR7); } static void spl_dram_init(void) { unsigned int size; // DDR RAM connection is always 16 bit wide. Init IOs. mx6ul_dram_iocfg(16, &mx6_ddr_ioregs, &mx6_grp_ioregs); // Try to detect the 512MB RAM chip first. mx6_dram_cfg(&ddr_sysinfo, &mx6_mmcd_512M_calib, &mem_512M_ddr); // Get the available RAM size size = get_ram_size((void *)PHYS_SDRAM, SZ_512M); gd->ram_size = size; if (size == SZ_512M) { // 512MB RAM was detected return; } else if (size == SZ_256M) { // 256MB RAM was detected, use correct config and calibration mx6_dram_cfg(&ddr_sysinfo, &mx6_mmcd_256M_calib, &mem_256M_ddr); } else { printf("Invalid DDR RAM size detected: %x\n", size); } } static int do_board_detect(void) { if (is_mx6ul()) gd->board_type = BOARD_TYPE_KTN_SL_UL; else if (is_mx6ull()) gd->board_type = BOARD_TYPE_KTN_SL_ULL; printf("Kontron SL i.MX6UL%s (N6%s1x) module, %lu MB RAM detected\n", is_mx6ull() ? "L" : "", is_mx6ull() ? "4" : "3", gd->ram_size / SZ_1M); return 0; } void board_init_f(ulong dummy) { ccgr_init(); /* setup AIPS and disable watchdog */ arch_cpu_init(); /* iomux and setup of UART and SPI */ board_early_init_f(); /* setup GP timer */ timer_init(); /* UART clocks enabled and gd valid - init serial console */ preloader_console_init(); /* DDR initialization */ spl_dram_init(); /* Clear the BSS. */ memset(__bss_start, 0, __bss_end - __bss_start); /* Detect the board type */ do_board_detect(); /* load/boot image from boot device */ board_init_r(NULL, 0); } void board_boot_order(u32 *spl_boot_list) { u32 bootdev = spl_boot_device(); /* * The default boot fuse settings use the SD card (MMC1) as primary * boot device, but allow SPI NOR as a fallback boot device. There * is no proper way to detect if the fallback was used. Therefore * we read the ECSPI2_CONREG register and see if it differs from the * reset value 0x0. If that's the case we can assume that the BootROM * has successfully probed the SPI NOR. */ switch (bootdev) { case BOOT_DEVICE_MMC1: case BOOT_DEVICE_MMC2: if (sl_mx6ul_is_spi_nor_boot()) { spl_boot_list[0] = BOOT_DEVICE_SPI; return; } break; } spl_boot_list[0] = bootdev; } int board_early_init_f(void) { setup_iomux_uart(); if (sl_mx6ul_is_spi_nor_boot()) setup_spi(); return 0; } int board_fit_config_name_match(const char *name) { if (gd->board_type == BOARD_TYPE_KTN_SL_UL && is_mx6ul() && (!strcmp(name, "imx6ul-kontron-n631x-s") || !strcmp(name, "imx6ul-kontron-bl"))) return 0; if (gd->board_type == BOARD_TYPE_KTN_SL_ULL && is_mx6ull() && (!strcmp(name, "imx6ull-kontron-n641x-s") || !strcmp(name, "imx6ull-kontron-bl"))) return 0; return -1; }