// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017-2019 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CFGWDTH_32 1 #define MIN_BITSTREAM_SIZECHECK 230 #define ENCRYPTION_OFFSET 69 #define COMPRESSION_OFFSET 229 #define FPGA_TIMEOUT_MSEC 1000 /* timeout in ms */ #define FPGA_TIMEOUT_CNT 0x1000000 #define DEFAULT_DDR_LOAD_ADDRESS 0x400 #define DDR_BUFFER_SIZE 0x100000 /* When reading bitstream from a filesystem, the size of the first read is * changed so that the subsequent reads are aligned to this value. This value * was chosen so that in subsequent reads the fat fs driver doesn't have to * allocate a temporary buffer in get_contents (assuming 8KiB clusters). */ #define MAX_FIRST_LOAD_SIZE 0x2000 DECLARE_GLOBAL_DATA_PTR; static const struct socfpga_fpga_manager *fpga_manager_base = (void *)SOCFPGA_FPGAMGRREGS_ADDRESS; static void fpgamgr_set_cd_ratio(unsigned long ratio); static uint32_t fpgamgr_get_msel(void) { u32 reg; reg = readl(&fpga_manager_base->imgcfg_stat); reg = (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL_SET_MSD) >> ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL0_LSB; return reg; } static void fpgamgr_set_cfgwdth(int width) { if (width) setbits_le32(&fpga_manager_base->imgcfg_ctrl_02, ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK); else clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02, ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK); } int is_fpgamgr_user_mode(void) { return (readl(&fpga_manager_base->imgcfg_stat) & ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) != 0; } static int wait_for_user_mode(void) { return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK, 1, FPGA_TIMEOUT_MSEC, false); } static int wait_for_fifo_empty(void) { return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, ALT_FPGAMGR_IMGCFG_STAT_F2S_IMGCFG_FIFOEMPTY_SET_MSK, 1, FPGA_TIMEOUT_MSEC, false); } int is_fpgamgr_early_user_mode(void) { return (readl(&fpga_manager_base->imgcfg_stat) & ALT_FPGAMGR_IMGCFG_STAT_F2S_EARLY_USERMODE_SET_MSK) != 0; } int fpgamgr_wait_early_user_mode(void) { u32 sync_data = 0xffffffff; u32 i = 0; unsigned start = get_timer(0); unsigned long cd_ratio; /* Getting existing CDRATIO */ cd_ratio = (readl(&fpga_manager_base->imgcfg_ctrl_02) & ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK) >> ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB; /* Using CDRATIO_X1 for better compatibility */ fpgamgr_set_cd_ratio(CDRATIO_x1); while (!is_fpgamgr_early_user_mode()) { if (get_timer(start) > FPGA_TIMEOUT_MSEC) return -ETIMEDOUT; fpgamgr_program_write((const long unsigned int *)&sync_data, sizeof(sync_data)); udelay(FPGA_TIMEOUT_MSEC); i++; } debug("FPGA: Additional %i sync word needed\n", i); /* restoring original CDRATIO */ fpgamgr_set_cd_ratio(cd_ratio); return 0; } /* Read f2s_nconfig_pin and f2s_nstatus_pin; loop until de-asserted */ static int wait_for_nconfig_pin_and_nstatus_pin(void) { unsigned long mask = ALT_FPGAMGR_IMGCFG_STAT_F2S_NCONFIG_PIN_SET_MSK | ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK; /* * Poll until f2s_nconfig_pin and f2s_nstatus_pin; loop until * de-asserted, timeout at 1000ms */ return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, mask, true, FPGA_TIMEOUT_MSEC, false); } static int wait_for_f2s_nstatus_pin(unsigned long value) { /* Poll until f2s to specific value, timeout at 1000ms */ return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK, value, FPGA_TIMEOUT_MSEC, false); } /* set CD ratio */ static void fpgamgr_set_cd_ratio(unsigned long ratio) { clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02, ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK); setbits_le32(&fpga_manager_base->imgcfg_ctrl_02, (ratio << ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB) & ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK); } /* get the MSEL value, verify we are set for FPP configuration mode */ static int fpgamgr_verify_msel(void) { u32 msel = fpgamgr_get_msel(); if (msel & ~BIT(0)) { printf("Fail: read msel=%d\n", msel); return -EPERM; } return 0; } /* * Write cdratio and cdwidth based on whether the bitstream is compressed * and/or encoded */ static int fpgamgr_set_cdratio_cdwidth(unsigned int cfg_width, u32 *rbf_data, size_t rbf_size) { unsigned int cd_ratio; bool encrypt, compress; /* * According to the bitstream specification, * both encryption and compression status are * in location before offset 230 of the buffer. */ if (rbf_size < MIN_BITSTREAM_SIZECHECK) return -EINVAL; encrypt = (rbf_data[ENCRYPTION_OFFSET] >> 2) & 3; encrypt = encrypt != 0; compress = (rbf_data[COMPRESSION_OFFSET] >> 1) & 1; compress = !compress; debug("FPGA: Header word %d = %08x.\n", 69, rbf_data[69]); debug("FPGA: Header word %d = %08x.\n", 229, rbf_data[229]); debug("FPGA: Read from rbf header: encrypt=%d compress=%d.\n", encrypt, compress); /* * from the register map description of cdratio in imgcfg_ctrl_02: * Normal Configuration : 32bit Passive Parallel * Partial Reconfiguration : 16bit Passive Parallel */ /* * cd ratio is dependent on cfg width and whether the bitstream * is encrypted and/or compressed. * * | width | encr. | compr. | cd ratio | * | 16 | 0 | 0 | 1 | * | 16 | 0 | 1 | 4 | * | 16 | 1 | 0 | 2 | * | 16 | 1 | 1 | 4 | * | 32 | 0 | 0 | 1 | * | 32 | 0 | 1 | 8 | * | 32 | 1 | 0 | 4 | * | 32 | 1 | 1 | 8 | */ if (!compress && !encrypt) { cd_ratio = CDRATIO_x1; } else { if (compress) cd_ratio = CDRATIO_x4; else cd_ratio = CDRATIO_x2; /* if 32 bit, double the cd ratio (so register field setting is incremented) */ if (cfg_width == CFGWDTH_32) cd_ratio += 1; } fpgamgr_set_cfgwdth(cfg_width); fpgamgr_set_cd_ratio(cd_ratio); return 0; } static int fpgamgr_reset(void) { unsigned long reg; /* S2F_NCONFIG = 0 */ clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00, ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK); /* Wait for f2s_nstatus == 0 */ if (wait_for_f2s_nstatus_pin(0)) return -ETIME; /* S2F_NCONFIG = 1 */ setbits_le32(&fpga_manager_base->imgcfg_ctrl_00, ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK); /* Wait for f2s_nstatus == 1 */ if (wait_for_f2s_nstatus_pin(1)) return -ETIME; /* read and confirm f2s_condone_pin = 0 and f2s_condone_oe = 1 */ reg = readl(&fpga_manager_base->imgcfg_stat); if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) != 0) return -EPERM; if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_OE_SET_MSK) == 0) return -EPERM; return 0; } /* Start the FPGA programming by initialize the FPGA Manager */ int fpgamgr_program_init(u32 * rbf_data, size_t rbf_size) { int ret; /* Step 1 */ if (fpgamgr_verify_msel()) return -EPERM; /* Step 2 */ if (fpgamgr_set_cdratio_cdwidth(CFGWDTH_32, rbf_data, rbf_size)) return -EPERM; /* * Step 3: * Make sure no other external devices are trying to interfere with * programming: */ if (wait_for_nconfig_pin_and_nstatus_pin()) return -ETIME; /* * Step 4: * Deassert the signal drives from HPS * * S2F_NCE = 1 * S2F_PR_REQUEST = 0 * EN_CFG_CTRL = 0 * EN_CFG_DATA = 0 * S2F_NCONFIG = 1 * S2F_NSTATUS_OE = 0 * S2F_CONDONE_OE = 0 */ setbits_le32(&fpga_manager_base->imgcfg_ctrl_01, ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK); clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01, ALT_FPGAMGR_IMGCFG_CTL_01_S2F_PR_REQUEST_SET_MSK); clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02, ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK | ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK); setbits_le32(&fpga_manager_base->imgcfg_ctrl_00, ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK); clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00, ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NSTATUS_OE_SET_MSK | ALT_FPGAMGR_IMGCFG_CTL_00_S2F_CONDONE_OE_SET_MSK); /* * Step 5: * Enable overrides * S2F_NENABLE_CONFIG = 0 * S2F_NENABLE_NCONFIG = 0 */ clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01, ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK); clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00, ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK); /* * Disable driving signals that HPS doesn't need to drive. * S2F_NENABLE_NSTATUS = 1 * S2F_NENABLE_CONDONE = 1 */ setbits_le32(&fpga_manager_base->imgcfg_ctrl_00, ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NSTATUS_SET_MSK | ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_CONDONE_SET_MSK); /* * Step 6: * Drive chip select S2F_NCE = 0 */ clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01, ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK); /* Step 7 */ if (wait_for_nconfig_pin_and_nstatus_pin()) return -ETIME; /* Step 8 */ ret = fpgamgr_reset(); if (ret) return ret; /* * Step 9: * EN_CFG_CTRL and EN_CFG_DATA = 1 */ setbits_le32(&fpga_manager_base->imgcfg_ctrl_02, ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK | ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK); return 0; } /* Ensure the FPGA entering config done */ static int fpgamgr_program_poll_cd(void) { unsigned long reg, i; for (i = 0; i < FPGA_TIMEOUT_CNT; i++) { reg = readl(&fpga_manager_base->imgcfg_stat); if (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) return 0; if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) == 0) { printf("nstatus == 0 while waiting for condone\n"); return -EPERM; } schedule(); } if (i == FPGA_TIMEOUT_CNT) return -ETIME; return 0; } /* Ensure the FPGA entering user mode */ static int fpgamgr_program_poll_usermode(void) { unsigned long reg; int ret = 0; if (fpgamgr_dclkcnt_set(0xf)) return -ETIME; ret = wait_for_user_mode(); if (ret < 0) { printf("%s: Failed to enter user mode with ", __func__); printf("error code %d\n", ret); return ret; } /* * Step 14: * Stop DATA path and Dclk * EN_CFG_CTRL and EN_CFG_DATA = 0 */ clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02, ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK | ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK); /* * Step 15: * Disable overrides * S2F_NENABLE_CONFIG = 1 * S2F_NENABLE_NCONFIG = 1 */ setbits_le32(&fpga_manager_base->imgcfg_ctrl_01, ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK); setbits_le32(&fpga_manager_base->imgcfg_ctrl_00, ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK); /* Disable chip select S2F_NCE = 1 */ setbits_le32(&fpga_manager_base->imgcfg_ctrl_01, ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK); /* * Step 16: * Final check */ reg = readl(&fpga_manager_base->imgcfg_stat); if (((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) != ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) || ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) != ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) || ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) != ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK)) return -EPERM; return 0; } int fpgamgr_program_finish(void) { /* Ensure the FPGA entering config done */ int status = fpgamgr_program_poll_cd(); if (status) { printf("FPGA: Poll CD failed with error code %d\n", status); return -EPERM; } /* Ensure the FPGA entering user mode */ status = fpgamgr_program_poll_usermode(); if (status) { printf("FPGA: Poll usermode failed with error code %d\n", status); return -EPERM; } printf("Full Configuration Succeeded.\n"); return 0; } ofnode get_fpga_mgr_ofnode(ofnode from) { return ofnode_by_compatible(from, "altr,socfpga-a10-fpga-mgr"); } const char *get_fpga_filename(void) { const char *fpga_filename = NULL; ofnode fpgamgr_node = get_fpga_mgr_ofnode(ofnode_null()); if (ofnode_valid(fpgamgr_node)) fpga_filename = ofnode_read_string(fpgamgr_node, "altr,bitstream"); return fpga_filename; } static void get_rbf_image_info(struct rbf_info *rbf, u16 *buffer) { /* * Magic ID starting at: * -> 1st dword[15:0] in periph.rbf * -> 2nd dword[15:0] in core.rbf * Note: dword == 32 bits */ u32 word_reading_max = 2; u32 i; for (i = 0; i < word_reading_max; i++) { if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) { rbf->security = unencrypted; } else if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_ENCRYPTED) { rbf->security = encrypted; } else if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) { rbf->security = unencrypted; } else if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_ENCRYPTED) { rbf->security = encrypted; } else { rbf->security = invalid; continue; } /* PERIPH RBF(buffer + i + 1), CORE RBF(buffer + i + 2) */ if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_PERIPH) { rbf->section = periph_section; break; } else if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_CORE) { rbf->section = core_section; break; } else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_PERIPH) { rbf->section = periph_section; break; } else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_CORE) { rbf->section = core_section; break; } rbf->section = unknown; break; schedule(); } } #ifdef CONFIG_FS_LOADER static int first_loading_rbf_to_buffer(struct udevice *dev, struct fpga_loadfs_info *fpga_loadfs, u32 *buffer, size_t *buffer_bsize, size_t *buffer_bsize_ori) { u32 *buffer_p = (u32 *)*buffer; u32 *loadable = buffer_p; size_t buffer_size = *buffer_bsize; size_t fit_size; int ret, i, count, confs_noffset, images_noffset, rbf_offset, rbf_size; const char *fpga_node_name = NULL; const char *uname = NULL; /* Load image header into buffer */ ret = request_firmware_into_buf(dev, fpga_loadfs->fpga_fsinfo->filename, buffer_p, sizeof(struct image_header), 0); if (ret < 0) { debug("FPGA: Failed to read image header from flash.\n"); return -ENOENT; } if (image_get_magic((struct image_header *)buffer_p) != FDT_MAGIC) { debug("FPGA: No FDT magic was found.\n"); return -EBADF; } fit_size = fdt_totalsize(buffer_p); if (fit_size > buffer_size) { debug("FPGA: FIT image is larger than available buffer.\n"); debug("Please use FIT external data or increasing buffer.\n"); return -ENOMEM; } /* Load entire FIT into buffer */ ret = request_firmware_into_buf(dev, fpga_loadfs->fpga_fsinfo->filename, buffer_p, fit_size, 0); if (ret < 0) return ret; ret = fit_check_format(buffer_p, IMAGE_SIZE_INVAL); if (ret) { debug("FPGA: No valid FIT image was found.\n"); return ret; } confs_noffset = fdt_path_offset(buffer_p, FIT_CONFS_PATH); images_noffset = fdt_path_offset(buffer_p, FIT_IMAGES_PATH); if (confs_noffset < 0 || images_noffset < 0) { debug("FPGA: No Configurations or images nodes were found.\n"); return -ENOENT; } /* Get default configuration unit name from default property */ confs_noffset = fit_conf_get_node(buffer_p, NULL); if (confs_noffset < 0) { debug("FPGA: No default configuration was found in config.\n"); return -ENOENT; } count = fit_conf_get_prop_node_count(buffer_p, confs_noffset, FIT_FPGA_PROP); if (count < 0) { debug("FPGA: Invalid configuration format for FPGA node.\n"); return count; } debug("FPGA: FPGA node count: %d\n", count); for (i = 0; i < count; i++) { images_noffset = fit_conf_get_prop_node_index(buffer_p, confs_noffset, FIT_FPGA_PROP, i); uname = fit_get_name(buffer_p, images_noffset, NULL); if (uname) { debug("FPGA: %s\n", uname); if (strstr(uname, "fpga-periph") && (!is_fpgamgr_early_user_mode() || is_fpgamgr_user_mode() || is_periph_program_force())) { fpga_node_name = uname; printf("FPGA: Start to program "); printf("peripheral/full bitstream ...\n"); break; } else if (strstr(uname, "fpga-core") && (is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) { fpga_node_name = uname; printf("FPGA: Start to program core "); printf("bitstream ...\n"); break; } } schedule(); } if (!fpga_node_name) { debug("FPGA: No suitable bitstream was found, count: %d.\n", i); return 1; } images_noffset = fit_image_get_node(buffer_p, fpga_node_name); if (images_noffset < 0) { debug("FPGA: No node '%s' was found in FIT.\n", fpga_node_name); return -ENOENT; } if (!fit_image_get_data_position(buffer_p, images_noffset, &rbf_offset)) { debug("FPGA: Data position was found.\n"); } else if (!fit_image_get_data_offset(buffer_p, images_noffset, &rbf_offset)) { /* * For FIT with external data, figure out where * the external images start. This is the base * for the data-offset properties in each image. */ rbf_offset += ((fdt_totalsize(buffer_p) + 3) & ~3); debug("FPGA: Data offset was found.\n"); } else { debug("FPGA: No data position/offset was found.\n"); return -ENOENT; } ret = fit_image_get_data_size(buffer_p, images_noffset, &rbf_size); if (ret < 0) { debug("FPGA: No data size was found (err=%d).\n", ret); return -ENOENT; } if (gd->ram_size < rbf_size) { debug("FPGA: Using default OCRAM buffer and size.\n"); } else { ret = fit_image_get_load(buffer_p, images_noffset, (ulong *)loadable); if (ret < 0) { buffer_p = (u32 *)DEFAULT_DDR_LOAD_ADDRESS; debug("FPGA: No loadable was found.\n"); debug("FPGA: Using default DDR load address: 0x%x .\n", DEFAULT_DDR_LOAD_ADDRESS); } else { buffer_p = (u32 *)*loadable; debug("FPGA: Found loadable address = 0x%x.\n", *loadable); } buffer_size = rbf_size; *buffer_bsize_ori = DDR_BUFFER_SIZE; } debug("FPGA: External data: offset = 0x%x, size = 0x%x.\n", rbf_offset, rbf_size); fpga_loadfs->remaining = rbf_size; /* * Determine buffer size vs bitstream size, and calculating number of * chunk by chunk transfer is required due to smaller buffer size * compare to bitstream */ if (buffer_size > MAX_FIRST_LOAD_SIZE) buffer_size = MAX_FIRST_LOAD_SIZE; if (rbf_size <= buffer_size) { /* Loading whole bitstream into buffer */ buffer_size = rbf_size; fpga_loadfs->remaining = 0; } else { buffer_size -= rbf_offset % buffer_size; fpga_loadfs->remaining -= buffer_size; } fpga_loadfs->offset = rbf_offset; /* Loading bitstream into buffer */ ret = request_firmware_into_buf(dev, fpga_loadfs->fpga_fsinfo->filename, buffer_p, buffer_size, fpga_loadfs->offset); if (ret < 0) { debug("FPGA: Failed to read bitstream from flash.\n"); return -ENOENT; } /* Getting info about bitstream types */ get_rbf_image_info(&fpga_loadfs->rbfinfo, (u16 *)buffer_p); /* Update next reading bitstream offset */ fpga_loadfs->offset += buffer_size; /* Update the final addr for bitstream */ *buffer = (u32)buffer_p; /* Update the size of bitstream to be programmed into FPGA */ *buffer_bsize = buffer_size; return 0; } static int subsequent_loading_rbf_to_buffer(struct udevice *dev, struct fpga_loadfs_info *fpga_loadfs, u32 *buffer, size_t *buffer_bsize) { int ret = 0; u32 *buffer_p = (u32 *)*buffer; /* Read the bitstream chunk by chunk. */ if (fpga_loadfs->remaining > *buffer_bsize) { fpga_loadfs->remaining -= *buffer_bsize; } else { *buffer_bsize = fpga_loadfs->remaining; fpga_loadfs->remaining = 0; } ret = request_firmware_into_buf(dev, fpga_loadfs->fpga_fsinfo->filename, buffer_p, *buffer_bsize, fpga_loadfs->offset); if (ret < 0) { debug("FPGA: Failed to read bitstream from flash.\n"); return -ENOENT; } /* Update next reading bitstream offset */ fpga_loadfs->offset += *buffer_bsize; return 0; } int socfpga_loadfs(fpga_fs_info *fpga_fsinfo, const void *buf, size_t bsize, u32 offset) { struct fpga_loadfs_info fpga_loadfs; struct udevice *dev; int status, ret, size; u32 buffer = (uintptr_t)buf; size_t buffer_sizebytes = bsize; size_t buffer_sizebytes_ori = bsize; size_t total_sizeof_image = 0; ofnode node; const fdt32_t *phandle_p; u32 phandle; node = get_fpga_mgr_ofnode(ofnode_null()); if (ofnode_valid(node)) { phandle_p = ofnode_get_property(node, "firmware-loader", &size); if (!phandle_p) { node = ofnode_path("/chosen"); if (!ofnode_valid(node)) { debug("FPGA: /chosen node was not found.\n"); return -ENOENT; } phandle_p = ofnode_get_property(node, "firmware-loader", &size); if (!phandle_p) { debug("FPGA: firmware-loader property was not"); debug(" found.\n"); return -ENOENT; } } } else { debug("FPGA: FPGA manager node was not found.\n"); return -ENOENT; } phandle = fdt32_to_cpu(*phandle_p); ret = uclass_get_device_by_phandle_id(UCLASS_FS_FIRMWARE_LOADER, phandle, &dev); if (ret) return ret; memset(&fpga_loadfs, 0, sizeof(fpga_loadfs)); fpga_loadfs.fpga_fsinfo = fpga_fsinfo; fpga_loadfs.offset = offset; printf("FPGA: Checking FPGA configuration setting ...\n"); /* * Note: Both buffer and buffer_sizebytes values can be altered by * function below. */ ret = first_loading_rbf_to_buffer(dev, &fpga_loadfs, &buffer, &buffer_sizebytes, &buffer_sizebytes_ori); if (ret == 1) { printf("FPGA: Skipping configuration ...\n"); return 0; } else if (ret) { return ret; } if (fpga_loadfs.rbfinfo.section == core_section && !(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) { debug("FPGA : Must be in Early Release mode to program "); debug("core bitstream.\n"); return -EPERM; } /* Disable all signals from HPS peripheral controller to FPGA */ writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL); /* Disable all axi bridges (hps2fpga, lwhps2fpga & fpga2hps) */ socfpga_bridges_reset(); if (fpga_loadfs.rbfinfo.section == periph_section) { /* Initialize the FPGA Manager */ status = fpgamgr_program_init((u32 *)buffer, buffer_sizebytes); if (status) { debug("FPGA: Init with peripheral bitstream failed.\n"); return -EPERM; } } /* Transfer bitstream to FPGA Manager */ fpgamgr_program_write((void *)buffer, buffer_sizebytes); total_sizeof_image += buffer_sizebytes; while (fpga_loadfs.remaining) { ret = subsequent_loading_rbf_to_buffer(dev, &fpga_loadfs, &buffer, &buffer_sizebytes_ori); if (ret) return ret; /* Transfer data to FPGA Manager */ fpgamgr_program_write((void *)buffer, buffer_sizebytes_ori); total_sizeof_image += buffer_sizebytes_ori; schedule(); } wait_for_fifo_empty(); if (fpga_loadfs.rbfinfo.section == periph_section) { if (fpgamgr_wait_early_user_mode() != -ETIMEDOUT) { config_pins(gd->fdt_blob, "shared"); puts("FPGA: Early Release Succeeded.\n"); } else { debug("FPGA: Failed to see Early Release.\n"); return -EIO; } /* For monolithic bitstream */ if (is_fpgamgr_user_mode()) { /* Ensure the FPGA entering config done */ status = fpgamgr_program_finish(); if (status) return status; config_pins(gd->fdt_blob, "fpga"); puts("FPGA: Enter user mode.\n"); } } else if (fpga_loadfs.rbfinfo.section == core_section) { /* Ensure the FPGA entering config done */ status = fpgamgr_program_finish(); if (status) return status; config_pins(gd->fdt_blob, "fpga"); puts("FPGA: Enter user mode.\n"); } else { debug("FPGA: Config Error: Unsupported bitstream type.\n"); return -ENOEXEC; } return (int)total_sizeof_image; } void fpgamgr_program(const void *buf, size_t bsize, u32 offset) { fpga_fs_info fpga_fsinfo; fpga_fsinfo.filename = get_fpga_filename(); if (fpga_fsinfo.filename) socfpga_loadfs(&fpga_fsinfo, buf, bsize, offset); } #endif /* This function is used to load the core bitstream from the OCRAM. */ int socfpga_load(Altera_desc *desc, const void *rbf_data, size_t rbf_size) { unsigned long status; struct rbf_info rbfinfo; memset(&rbfinfo, 0, sizeof(rbfinfo)); /* Disable all signals from hps peripheral controller to fpga */ writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL); /* Disable all axi bridge (hps2fpga, lwhps2fpga & fpga2hps) */ socfpga_bridges_reset(); /* Getting info about bitstream types */ get_rbf_image_info(&rbfinfo, (u16 *)rbf_data); if (rbfinfo.section == periph_section) { /* Initialize the FPGA Manager */ status = fpgamgr_program_init((u32 *)rbf_data, rbf_size); if (status) return status; } if (rbfinfo.section == core_section && !(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) { debug("FPGA : Must be in early release mode to program "); debug("core bitstream.\n"); return -EPERM; } /* Write the bitstream to FPGA Manager */ fpgamgr_program_write(rbf_data, rbf_size); status = fpgamgr_program_finish(); if (status) return status; config_pins(gd->fdt_blob, "fpga"); puts("FPGA: Enter user mode.\n"); return status; }