// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015-2019 Variscite Ltd. * Copyright (C) 2019 Parthiban Nallathambi * Copyright (C) 2021 Marc Ferland, Amotus Solutions Inc., */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } #ifdef CONFIG_NAND_MXS #define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP) #define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \ PAD_CTL_SRE_FAST) #define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1) static iomux_v3_cfg_t const nand_pads[] = { MX6_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DQS__RAWNAND_DQS | MUX_PAD_CTRL(GPMI_PAD_CTRL2), }; static void setup_gpmi_nand(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /* config gpmi nand iomux */ imx_iomux_v3_setup_multiple_pads(nand_pads, ARRAY_SIZE(nand_pads)); clrbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK); /* * config gpmi and bch clock to 100 MHz * bch/gpmi select PLL2 PFD2 400M * 100M = 400M / 4 */ clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_BCH_CLK_SEL | MXC_CCM_CSCMR1_GPMI_CLK_SEL); clrsetbits_le32(&mxc_ccm->cscdr1, MXC_CCM_CSCDR1_BCH_PODF_MASK | MXC_CCM_CSCDR1_GPMI_PODF_MASK, (3 << MXC_CCM_CSCDR1_BCH_PODF_OFFSET) | (3 << MXC_CCM_CSCDR1_GPMI_PODF_OFFSET)); /* enable gpmi and bch clock gating */ setbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK); /* enable apbh clock gating */ setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK); } #endif #ifdef CONFIG_FEC_MXC static int setup_fec(int fec_id) { struct iomuxc *const iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; int ret; if (fec_id == 0) { /* * Use 50M anatop loopback REF_CLK1 for ENET1, * clear gpr1[13], set gpr1[17]. */ clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC1_MASK, IOMUX_GPR1_FEC1_CLOCK_MUX1_SEL_MASK); } else { /* * Use 50M anatop loopback REF_CLK2 for ENET2, * clear gpr1[14], set gpr1[18]. */ clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC2_MASK, IOMUX_GPR1_FEC2_CLOCK_MUX1_SEL_MASK); } ret = enable_fec_anatop_clock(fec_id, ENET_50MHZ); if (ret) return ret; enable_enet_clk(1); return 0; } int board_phy_config(struct phy_device *phydev) { /* * Defaults + Enable status LEDs (LED1: Activity, LED0: Link) & select * 50 MHz RMII clock mode. */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x8190); if (phydev->drv->config) phydev->drv->config(phydev); return 0; } #endif /* CONFIG_FEC_MXC */ int board_init(void) { /* Address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; #ifdef CONFIG_FEC_MXC setup_fec(CONFIG_FEC_ENET_DEV); #endif #ifdef CONFIG_NAND_MXS setup_gpmi_nand(); #endif return 0; } /* length of strings stored in the eeprom */ #define DART6UL_PN_LEN 16 #define DART6UL_ASSY_LEN 16 #define DART6UL_DATE_LEN 12 /* eeprom content, 512 bytes */ struct dart6ul_info { u32 magic; u8 partnumber[DART6UL_PN_LEN]; u8 assy[DART6UL_ASSY_LEN]; u8 date[DART6UL_DATE_LEN]; u32 custom_addr_val[32]; struct cmd { u8 addr; u8 index; } custom_cmd[150]; u8 res[33]; u8 som_info; u8 ddr_size; u8 crc; } __attribute__ ((__packed__)); #define DART6UL_INFO_STORAGE_GET(n) ((n) & 0x3) #define DART6UL_INFO_WIFI_GET(n) ((n) >> 2 & 0x1) #define DART6UL_INFO_REV_GET(n) ((n) >> 3 & 0x3) #define DART6UL_DDRSIZE_IN_MIB(n) ((n) << 8) #define DART6UL_INFO_MAGIC 0x32524156 static const char *som_info_storage_to_str(u8 som_info) { switch (DART6UL_INFO_STORAGE_GET(som_info)) { case 0x0: return "none (SD only)"; case 0x1: return "NAND"; case 0x2: return "eMMC"; default: return "unknown"; } } static const char *som_info_rev_to_str(u8 som_info) { switch (DART6UL_INFO_REV_GET(som_info)) { case 0x0: return "2.4G"; case 0x1: return "5G"; default: return "unknown"; } } int checkboard(void) { const char *path = "eeprom0"; struct dart6ul_info *info; struct udevice *dev; int ret, off; off = fdt_path_offset(gd->fdt_blob, path); if (off < 0) { printf("%s: fdt_path_offset() failed: %d\n", __func__, off); return off; } ret = uclass_get_device_by_of_offset(UCLASS_I2C_EEPROM, off, &dev); if (ret) { printf("%s: uclass_get_device_by_of_offset() failed: %d\n", __func__, ret); return ret; } info = malloc(sizeof(struct dart6ul_info)); if (!info) return -ENOMEM; ret = i2c_eeprom_read(dev, 0, (uint8_t *)info, sizeof(struct dart6ul_info)); if (ret) { printf("%s: i2c_eeprom_read() failed: %d\n", __func__, ret); free(info); return ret; } if (info->magic != DART6UL_INFO_MAGIC) { printf("Board: Invalid board info magic: 0x%08x, expected 0x%08x\n", info->magic, DART6UL_INFO_MAGIC); /* do not fail if the content is invalid */ free(info); return 0; } /* make sure strings are null terminated */ info->partnumber[DART6UL_PN_LEN - 1] = '\0'; info->assy[DART6UL_ASSY_LEN - 1] = '\0'; info->date[DART6UL_DATE_LEN - 1] = '\0'; printf("Board: PN: %s, Assy: %s, Date: %s\n" " Storage: %s, Wifi: %s, DDR: %d MiB, Rev: %s\n", info->partnumber, info->assy, info->date, som_info_storage_to_str(info->som_info), DART6UL_INFO_WIFI_GET(info->som_info) ? "yes" : "no", DART6UL_DDRSIZE_IN_MIB(info->ddr_size), som_info_rev_to_str(info->som_info)); free(info); return 0; }