// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2022 Google LLC * * There are two types of tests in this file: * - normal ones which act on the control FDT (gd->fdt_blob or gd->of_root) * - 'other' ones which act on the 'other' FDT (other.dts) * * The 'other' ones have an _ot suffix. * * The latter are used to check behaviour with multiple device trees, * particularly with flat tree, where a tree ID is included in ofnode as part of * the node offset. These tests are typically just for making sure that the * offset makes it to libfdt correctly and that the resulting return value is * correctly turned into an ofnode. The 'other' tests do not fully check the * behaviour of each ofnode function, since that is done by the normal ones. */ #include #include #include #include #include #include #include #include #include #include #include #include /** * get_other_oftree() - Convert a flat tree into an oftree object * * @uts: Test state * @return: oftree object for the 'other' FDT (see sandbox' other.dts) */ oftree get_other_oftree(struct unit_test_state *uts) { oftree tree; if (of_live_active()) tree = oftree_from_np(uts->of_other); else tree = oftree_from_fdt(uts->other_fdt); /* An invalid tree may cause failure or crashes */ if (!oftree_valid(tree)) ut_reportf("test needs the UT_TESTF_OTHER_FDT flag"); return tree; } /** * get_oftree() - Convert a flat tree into an oftree object * * @uts: Test state * @fdt: Pointer to flat tree * @treep: Returns the tree, on success * Return: 0 if OK, 1 if the tree failed to unflatten, -EOVERFLOW if there are * too many flat trees to allow another one to be registers (see * oftree_ensure()) */ int get_oftree(struct unit_test_state *uts, void *fdt, oftree *treep) { oftree tree; if (of_live_active()) { struct device_node *root; ut_assertok(unflatten_device_tree(fdt, &root)); tree = oftree_from_np(root); } else { tree = oftree_from_fdt(fdt); if (!oftree_valid(tree)) return -EOVERFLOW; } *treep = tree; return 0; } /** * free_oftree() - Free memory used by get_oftree() * * @tree: Tree to free */ void free_oftree(oftree tree) { if (of_live_active()) free(tree.np); } static int dm_test_ofnode_compatible(struct unit_test_state *uts) { ofnode root_node = ofnode_path("/"); ut_assert(ofnode_valid(root_node)); ut_assert(ofnode_device_is_compatible(root_node, "sandbox")); return 0; } DM_TEST(dm_test_ofnode_compatible, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* check ofnode_device_is_compatible() with the 'other' FDT */ static int dm_test_ofnode_compatible_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ofnode oroot = oftree_root(otree); ut_assert(ofnode_valid(oroot)); ut_assert(ofnode_device_is_compatible(oroot, "sandbox-other")); return 0; } DM_TEST(dm_test_ofnode_compatible_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_get_by_phandle(struct unit_test_state *uts) { /* test invalid phandle */ ut_assert(!ofnode_valid(ofnode_get_by_phandle(0))); ut_assert(!ofnode_valid(ofnode_get_by_phandle(-1))); /* test first valid phandle */ ut_assert(ofnode_valid(ofnode_get_by_phandle(1))); /* test unknown phandle */ ut_assert(!ofnode_valid(ofnode_get_by_phandle(0x1000000))); ut_assert(ofnode_valid(oftree_get_by_phandle(oftree_default(), 1))); return 0; } DM_TEST(dm_test_ofnode_get_by_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_get_by_phandle_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ofnode node; ut_assert(ofnode_valid(oftree_get_by_phandle(oftree_default(), 1))); node = oftree_get_by_phandle(otree, 1); ut_assert(ofnode_valid(node)); ut_asserteq_str("target", ofnode_get_name(node)); return 0; } DM_TEST(dm_test_ofnode_get_by_phandle_ot, UT_TESTF_OTHER_FDT); static int check_prop_values(struct unit_test_state *uts, ofnode start, const char *propname, const char *propval, int expect_count) { int proplen = strlen(propval) + 1; const char *str; ofnode node; int count; /* Find first matching node, there should be at least one */ node = ofnode_by_prop_value(start, propname, propval, proplen); ut_assert(ofnode_valid(node)); str = ofnode_read_string(node, propname); ut_assert(str && !strcmp(str, propval)); /* Find the rest of the matching nodes */ count = 1; while (true) { node = ofnode_by_prop_value(node, propname, propval, proplen); if (!ofnode_valid(node)) break; str = ofnode_read_string(node, propname); ut_asserteq_str(propval, str); count++; } ut_asserteq(expect_count, count); return 0; } static int dm_test_ofnode_by_prop_value(struct unit_test_state *uts) { ut_assertok(check_prop_values(uts, ofnode_null(), "compatible", "denx,u-boot-fdt-test", 11)); return 0; } DM_TEST(dm_test_ofnode_by_prop_value, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_by_prop_value_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ut_assertok(check_prop_values(uts, oftree_root(otree), "str-prop", "other", 2)); return 0; } DM_TEST(dm_test_ofnode_by_prop_value_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_fmap(struct unit_test_state *uts) { struct fmap_entry entry; ofnode node; node = ofnode_path("/cros-ec/flash"); ut_assert(ofnode_valid(node)); ut_assertok(ofnode_read_fmap_entry(node, &entry)); ut_asserteq(0x08000000, entry.offset); ut_asserteq(0x20000, entry.length); return 0; } DM_TEST(dm_test_ofnode_fmap, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_read(struct unit_test_state *uts) { const u32 *val; ofnode node; int size; node = ofnode_path("/a-test"); ut_assert(ofnode_valid(node)); val = ofnode_read_prop(node, "int-value", &size); ut_assertnonnull(val); ut_asserteq(4, size); ut_asserteq(1234, fdt32_to_cpu(val[0])); val = ofnode_read_prop(node, "missing", &size); ut_assertnull(val); ut_asserteq(-FDT_ERR_NOTFOUND, size); /* Check it works without a size parameter */ val = ofnode_read_prop(node, "missing", NULL); ut_assertnull(val); return 0; } DM_TEST(dm_test_ofnode_read, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_read_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); const char *val; ofnode node; int size; node = oftree_path(otree, "/node/subnode"); ut_assert(ofnode_valid(node)); val = ofnode_read_prop(node, "str-prop", &size); ut_assertnonnull(val); ut_asserteq_str("other", val); ut_asserteq(6, size); return 0; } DM_TEST(dm_test_ofnode_read_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_phandle(struct unit_test_state *uts) { struct ofnode_phandle_args args; ofnode node; int ret; const char prop[] = "test-gpios"; const char cell[] = "#gpio-cells"; const char prop2[] = "phandle-value"; node = ofnode_path("/a-test"); ut_assert(ofnode_valid(node)); /* Test ofnode_count_phandle_with_args with cell name */ ret = ofnode_count_phandle_with_args(node, "missing", cell, 0); ut_asserteq(-ENOENT, ret); ret = ofnode_count_phandle_with_args(node, prop, "#invalid", 0); ut_asserteq(-EINVAL, ret); ret = ofnode_count_phandle_with_args(node, prop, cell, 0); ut_asserteq(5, ret); /* Test ofnode_parse_phandle_with_args with cell name */ ret = ofnode_parse_phandle_with_args(node, "missing", cell, 0, 0, &args); ut_asserteq(-ENOENT, ret); ret = ofnode_parse_phandle_with_args(node, prop, "#invalid", 0, 0, &args); ut_asserteq(-EINVAL, ret); ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 0, &args); ut_assertok(ret); ut_asserteq(1, args.args_count); ut_asserteq(1, args.args[0]); ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 1, &args); ut_assertok(ret); ut_asserteq(1, args.args_count); ut_asserteq(4, args.args[0]); ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 2, &args); ut_assertok(ret); ut_asserteq(5, args.args_count); ut_asserteq(5, args.args[0]); ut_asserteq(1, args.args[4]); ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 3, &args); ut_asserteq(-ENOENT, ret); ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 4, &args); ut_assertok(ret); ut_asserteq(1, args.args_count); ut_asserteq(12, args.args[0]); ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 5, &args); ut_asserteq(-ENOENT, ret); /* Test ofnode_count_phandle_with_args with cell count */ ret = ofnode_count_phandle_with_args(node, "missing", NULL, 2); ut_asserteq(-ENOENT, ret); ret = ofnode_count_phandle_with_args(node, prop2, NULL, 1); ut_asserteq(3, ret); /* Test ofnode_parse_phandle_with_args with cell count */ ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 0, &args); ut_assertok(ret); ut_asserteq(1, ofnode_valid(args.node)); ut_asserteq(1, args.args_count); ut_asserteq(10, args.args[0]); ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 1, &args); ut_asserteq(-EINVAL, ret); ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 2, &args); ut_assertok(ret); ut_asserteq(1, ofnode_valid(args.node)); ut_asserteq(1, args.args_count); ut_asserteq(30, args.args[0]); ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 3, &args); ut_asserteq(-ENOENT, ret); return 0; } DM_TEST(dm_test_ofnode_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_phandle_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); struct ofnode_phandle_args args; ofnode node; int ret; node = oftree_path(otree, "/node"); /* Test ofnode_count_phandle_with_args with cell name */ ret = ofnode_count_phandle_with_args(node, "missing", "#gpio-cells", 0); ut_asserteq(-ENOENT, ret); ret = ofnode_count_phandle_with_args(node, "target", "#invalid", 0); ut_asserteq(-EINVAL, ret); ret = ofnode_count_phandle_with_args(node, "target", "#gpio-cells", 0); ut_asserteq(1, ret); ret = ofnode_parse_phandle_with_args(node, "target", "#gpio-cells", 0, 0, &args); ut_assertok(ret); ut_asserteq(2, args.args_count); ut_asserteq(3, args.args[0]); ut_asserteq(4, args.args[1]); return 0; } DM_TEST(dm_test_ofnode_phandle_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_read_chosen(struct unit_test_state *uts) { const char *str; const u32 *val; ofnode node; int size; str = ofnode_read_chosen_string("setting"); ut_assertnonnull(str); ut_asserteq_str("sunrise ohoka", str); ut_asserteq_ptr(NULL, ofnode_read_chosen_string("no-setting")); node = ofnode_get_chosen_node("other-node"); ut_assert(ofnode_valid(node)); ut_asserteq_str("c-test@5", ofnode_get_name(node)); node = ofnode_get_chosen_node("setting"); ut_assert(!ofnode_valid(node)); val = ofnode_read_chosen_prop("int-values", &size); ut_assertnonnull(val); ut_asserteq(8, size); ut_asserteq(0x1937, fdt32_to_cpu(val[0])); ut_asserteq(72993, fdt32_to_cpu(val[1])); return 0; } DM_TEST(dm_test_ofnode_read_chosen, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_read_aliases(struct unit_test_state *uts) { const void *val; ofnode node; int size; node = ofnode_get_aliases_node("ethernet3"); ut_assert(ofnode_valid(node)); ut_asserteq_str("sbe5", ofnode_get_name(node)); node = ofnode_get_aliases_node("unknown"); ut_assert(!ofnode_valid(node)); val = ofnode_read_aliases_prop("spi0", &size); ut_assertnonnull(val); ut_asserteq(7, size); ut_asserteq_str("/spi@0", (const char *)val); return 0; } DM_TEST(dm_test_ofnode_read_aliases, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_get_child_count(struct unit_test_state *uts) { ofnode node, child_node; u32 val; node = ofnode_path("/i-test"); ut_assert(ofnode_valid(node)); val = ofnode_get_child_count(node); ut_asserteq(3, val); child_node = ofnode_first_subnode(node); ut_assert(ofnode_valid(child_node)); val = ofnode_get_child_count(child_node); ut_asserteq(0, val); return 0; } DM_TEST(dm_test_ofnode_get_child_count, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_get_child_count_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ofnode node, child_node; u32 val; node = oftree_path(otree, "/node"); ut_assert(ofnode_valid(node)); val = ofnode_get_child_count(node); ut_asserteq(2, val); child_node = ofnode_first_subnode(node); ut_assert(ofnode_valid(child_node)); val = ofnode_get_child_count(child_node); ut_asserteq(0, val); return 0; } DM_TEST(dm_test_ofnode_get_child_count_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_is_enabled(struct unit_test_state *uts) { ofnode root_node = ofnode_path("/"); ofnode node = ofnode_path("/usb@0"); ut_assert(ofnode_is_enabled(root_node)); ut_assert(!ofnode_is_enabled(node)); return 0; } DM_TEST(dm_test_ofnode_is_enabled, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_is_enabled_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ofnode root_node = oftree_root(otree); ofnode node = oftree_path(otree, "/target"); ut_assert(ofnode_is_enabled(root_node)); ut_assert(!ofnode_is_enabled(node)); return 0; } DM_TEST(dm_test_ofnode_is_enabled_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_get_reg(struct unit_test_state *uts) { ofnode node; fdt_addr_t addr; fdt_size_t size; node = ofnode_path("/translation-test@8000"); ut_assert(ofnode_valid(node)); addr = ofnode_get_addr(node); size = ofnode_get_size(node); ut_asserteq(0x8000, addr); ut_asserteq(0x4000, size); node = ofnode_path("/translation-test@8000/dev@1,100"); ut_assert(ofnode_valid(node)); addr = ofnode_get_addr(node); size = ofnode_get_size(node); ut_asserteq(0x9000, addr); ut_asserteq(0x1000, size); node = ofnode_path("/emul-mux-controller"); ut_assert(ofnode_valid(node)); addr = ofnode_get_addr(node); size = ofnode_get_size(node); ut_asserteq_64(FDT_ADDR_T_NONE, addr); ut_asserteq(FDT_SIZE_T_NONE, size); node = ofnode_path("/translation-test@8000/noxlatebus@3,300/dev@42"); ut_assert(ofnode_valid(node)); addr = ofnode_get_addr_size_index_notrans(node, 0, &size); ut_asserteq_64(0x42, addr); return 0; } DM_TEST(dm_test_ofnode_get_reg, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_get_reg_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ofnode node = oftree_path(otree, "/target"); fdt_addr_t addr; addr = ofnode_get_addr(node); ut_asserteq(0x8000, addr); return 0; } DM_TEST(dm_test_ofnode_get_reg_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_get_path(struct unit_test_state *uts) { const char *path = "/translation-test@8000/noxlatebus@3,300/dev@42"; char buf[64]; ofnode node; node = ofnode_path(path); ut_assert(ofnode_valid(node)); ut_assertok(ofnode_get_path(node, buf, sizeof(buf))); ut_asserteq_str(path, buf); ut_asserteq(-ENOSPC, ofnode_get_path(node, buf, 32)); ut_assertok(ofnode_get_path(ofnode_root(), buf, 32)); ut_asserteq_str("/", buf); return 0; } DM_TEST(dm_test_ofnode_get_path, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_get_path_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); const char *path = "/node/subnode"; ofnode node = oftree_path(otree, path); char buf[64]; ut_assert(ofnode_valid(node)); ut_assertok(ofnode_get_path(node, buf, sizeof(buf))); ut_asserteq_str(path, buf); ut_assertok(ofnode_get_path(oftree_root(otree), buf, 32)); ut_asserteq_str("/", buf); return 0; } DM_TEST(dm_test_ofnode_get_path_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_conf(struct unit_test_state *uts) { ut_assert(!ofnode_conf_read_bool("missing")); ut_assert(ofnode_conf_read_bool("testing-bool")); ut_asserteq(123, ofnode_conf_read_int("testing-int", 0)); ut_asserteq(6, ofnode_conf_read_int("missing", 6)); ut_assertnull(ofnode_conf_read_str("missing")); ut_asserteq_str("testing", ofnode_conf_read_str("testing-str")); return 0; } DM_TEST(dm_test_ofnode_conf, 0); static int dm_test_ofnode_options(struct unit_test_state *uts) { u64 bootscr_address, bootscr_offset; u64 bootscr_flash_offset, bootscr_flash_size; ut_assertok(ofnode_read_bootscript_address(&bootscr_address, &bootscr_offset)); ut_asserteq_64(0, bootscr_address); ut_asserteq_64(0x12345678, bootscr_offset); ut_assertok(ofnode_read_bootscript_flash(&bootscr_flash_offset, &bootscr_flash_size)); ut_asserteq_64(0, bootscr_flash_offset); ut_asserteq_64(0x2000, bootscr_flash_size); return 0; } DM_TEST(dm_test_ofnode_options, 0); static int dm_test_ofnode_for_each_compatible_node(struct unit_test_state *uts) { const char compatible[] = "denx,u-boot-fdt-test"; bool found = false; ofnode node; ofnode_for_each_compatible_node(node, compatible) { ut_assert(ofnode_device_is_compatible(node, compatible)); found = true; } /* There should be at least one matching node */ ut_assert(found); return 0; } DM_TEST(dm_test_ofnode_for_each_compatible_node, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_string(struct unit_test_state *uts) { const char **val; const char *out; ofnode node; node = ofnode_path("/a-test"); ut_assert(ofnode_valid(node)); /* single string */ ut_asserteq(1, ofnode_read_string_count(node, "str-value")); ut_assertok(ofnode_read_string_index(node, "str-value", 0, &out)); ut_asserteq_str("test string", out); ut_asserteq(0, ofnode_stringlist_search(node, "str-value", "test string")); ut_asserteq(1, ofnode_read_string_list(node, "str-value", &val)); ut_asserteq_str("test string", val[0]); ut_assertnull(val[1]); free(val); /* list of strings */ ut_asserteq(5, ofnode_read_string_count(node, "mux-control-names")); ut_assertok(ofnode_read_string_index(node, "mux-control-names", 0, &out)); ut_asserteq_str("mux0", out); ut_asserteq(0, ofnode_stringlist_search(node, "mux-control-names", "mux0")); ut_asserteq(5, ofnode_read_string_list(node, "mux-control-names", &val)); ut_asserteq_str("mux0", val[0]); ut_asserteq_str("mux1", val[1]); ut_asserteq_str("mux2", val[2]); ut_asserteq_str("mux3", val[3]); ut_asserteq_str("mux4", val[4]); ut_assertnull(val[5]); free(val); ut_assertok(ofnode_read_string_index(node, "mux-control-names", 4, &out)); ut_asserteq_str("mux4", out); ut_asserteq(4, ofnode_stringlist_search(node, "mux-control-names", "mux4")); return 0; } DM_TEST(dm_test_ofnode_string, 0); static int dm_test_ofnode_string_err(struct unit_test_state *uts) { const char **val; const char *out; ofnode node; /* * Test error codes only on livetree, as they are different with * flattree */ node = ofnode_path("/a-test"); ut_assert(ofnode_valid(node)); /* non-existent property */ ut_asserteq(-EINVAL, ofnode_read_string_count(node, "missing")); ut_asserteq(-EINVAL, ofnode_read_string_index(node, "missing", 0, &out)); ut_asserteq(-EINVAL, ofnode_read_string_list(node, "missing", &val)); /* empty property */ ut_asserteq(-ENODATA, ofnode_read_string_count(node, "bool-value")); ut_asserteq(-ENODATA, ofnode_read_string_index(node, "bool-value", 0, &out)); ut_asserteq(-ENODATA, ofnode_read_string_list(node, "bool-value", &val)); /* badly formatted string list */ ut_asserteq(-EILSEQ, ofnode_read_string_count(node, "int64-value")); ut_asserteq(-EILSEQ, ofnode_read_string_index(node, "int64-value", 0, &out)); ut_asserteq(-EILSEQ, ofnode_read_string_list(node, "int64-value", &val)); /* out of range / not found */ ut_asserteq(-ENODATA, ofnode_read_string_index(node, "str-value", 1, &out)); ut_asserteq(-ENODATA, ofnode_stringlist_search(node, "str-value", "other")); /* negative value for index is not allowed, so don't test for that */ ut_asserteq(-ENODATA, ofnode_read_string_index(node, "mux-control-names", 5, &out)); return 0; } DM_TEST(dm_test_ofnode_string_err, UT_TESTF_LIVE_TREE); static int dm_test_ofnode_get_phy(struct unit_test_state *uts) { ofnode eth_node, phy_node; phy_interface_t mode; u32 reg; eth_node = ofnode_path("/phy-test-eth"); ut_assert(ofnode_valid(eth_node)); mode = ofnode_read_phy_mode(eth_node); ut_assert(mode == PHY_INTERFACE_MODE_2500BASEX); phy_node = ofnode_get_phy_node(eth_node); ut_assert(ofnode_valid(phy_node)); reg = ofnode_read_u32_default(phy_node, "reg", -1U); ut_asserteq_64(0x1, reg); return 0; } DM_TEST(dm_test_ofnode_get_phy, 0); /** * make_ofnode_fdt() - Create an FDT for testing with ofnode * * The size is set to the minimum needed * * @uts: Test state * @fdt: Place to write FDT * @size: Maximum size of space for fdt * @id: id value to add to the tree ('id' property in root node) */ static int make_ofnode_fdt(struct unit_test_state *uts, void *fdt, int size, int id) { ut_assertok(fdt_create(fdt, size)); ut_assertok(fdt_finish_reservemap(fdt)); ut_assert(fdt_begin_node(fdt, "") >= 0); ut_assertok(fdt_property_u32(fdt, "id", id)); ut_assert(fdt_begin_node(fdt, "aliases") >= 0); ut_assertok(fdt_property_string(fdt, "mmc0", "/new-mmc")); ut_assertok(fdt_end_node(fdt)); ut_assert(fdt_begin_node(fdt, "new-mmc") >= 0); ut_assertok(fdt_end_node(fdt)); ut_assertok(fdt_end_node(fdt)); ut_assertok(fdt_finish(fdt)); return 0; } static int dm_test_ofnode_root(struct unit_test_state *uts) { ofnode node; /* Check that aliases work on the control FDT */ node = ofnode_get_aliases_node("ethernet3"); ut_assert(ofnode_valid(node)); ut_asserteq_str("sbe5", ofnode_get_name(node)); ut_assert(!oftree_valid(oftree_null())); return 0; } DM_TEST(dm_test_ofnode_root, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_root_mult(struct unit_test_state *uts) { char fdt[256]; oftree tree; ofnode node; /* skip this test if multiple FDTs are not supported */ if (!IS_ENABLED(CONFIG_OFNODE_MULTI_TREE)) return -EAGAIN; ut_assertok(make_ofnode_fdt(uts, fdt, sizeof(fdt), 0)); ut_assertok(get_oftree(uts, fdt, &tree)); ut_assert(oftree_valid(tree)); /* Make sure they don't work on this new tree */ node = oftree_path(tree, "mmc0"); ut_assert(!ofnode_valid(node)); /* It should appear in the new tree */ node = oftree_path(tree, "/new-mmc"); ut_assert(ofnode_valid(node)); /* ...and not in the control FDT */ node = oftree_path(oftree_default(), "/new-mmc"); ut_assert(!ofnode_valid(node)); free_oftree(tree); return 0; } DM_TEST(dm_test_ofnode_root_mult, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_livetree_writing(struct unit_test_state *uts) { struct udevice *dev; ofnode node; /* Test enabling devices */ node = ofnode_path("/usb@2"); ut_assert(!ofnode_is_enabled(node)); ut_assertok(ofnode_set_enabled(node, true)); ut_asserteq(true, ofnode_is_enabled(node)); device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node, &dev); ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, &dev)); /* Test string property setting */ ut_assert(device_is_compatible(dev, "sandbox,usb")); ofnode_write_string(node, "compatible", "gdsys,super-usb"); ut_assert(device_is_compatible(dev, "gdsys,super-usb")); ofnode_write_string(node, "compatible", "sandbox,usb"); ut_assert(device_is_compatible(dev, "sandbox,usb")); /* Test setting generic properties */ /* Non-existent in DTB */ ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr(dev)); /* reg = 0x42, size = 0x100 */ ut_assertok(ofnode_write_prop(node, "reg", "\x00\x00\x00\x42\x00\x00\x01\x00", 8, false)); ut_asserteq(0x42, dev_read_addr(dev)); /* Test disabling devices */ device_remove(dev, DM_REMOVE_NORMAL); device_unbind(dev); ut_assert(ofnode_is_enabled(node)); ut_assertok(ofnode_set_enabled(node, false)); ut_assert(!ofnode_is_enabled(node)); return 0; } DM_TEST(dm_test_ofnode_livetree_writing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int check_write_prop(struct unit_test_state *uts, ofnode node) { char prop[] = "middle-name"; char name[10]; int len; strcpy(name, "cecil"); len = strlen(name) + 1; ut_assertok(ofnode_write_prop(node, prop, name, len, false)); ut_asserteq_str(name, ofnode_read_string(node, prop)); /* change the underlying value, this should mess up the live tree */ strcpy(name, "tony"); if (of_live_active()) { ut_asserteq_str(name, ofnode_read_string(node, prop)); } else { ut_asserteq_str("cecil", ofnode_read_string(node, prop)); } /* try again, this time copying the property */ strcpy(name, "mary"); ut_assertok(ofnode_write_prop(node, prop, name, len, true)); ut_asserteq_str(name, ofnode_read_string(node, prop)); strcpy(name, "leah"); /* both flattree and livetree behave the same */ ut_asserteq_str("mary", ofnode_read_string(node, prop)); return 0; } /* writing the tree with and without copying the property */ static int dm_test_ofnode_write_copy(struct unit_test_state *uts) { ofnode node; node = ofnode_path("/a-test"); ut_assertok(check_write_prop(uts, node)); return 0; } DM_TEST(dm_test_ofnode_write_copy, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_write_copy_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ofnode node, check_node; node = oftree_path(otree, "/node"); ut_assertok(check_write_prop(uts, node)); /* make sure the control FDT is not touched */ check_node = ofnode_path("/node"); ut_assertnull(ofnode_read_string(check_node, "middle-name")); return 0; } DM_TEST(dm_test_ofnode_write_copy_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_u32(struct unit_test_state *uts) { ofnode node; u32 val; node = ofnode_path("/lcd"); ut_assert(ofnode_valid(node)); ut_asserteq(1366, ofnode_read_u32_default(node, "xres", 123)); ut_assertok(ofnode_write_u32(node, "xres", 1367)); ut_asserteq(1367, ofnode_read_u32_default(node, "xres", 123)); ut_assertok(ofnode_write_u32(node, "xres", 1366)); node = ofnode_path("/backlight"); ut_assertok(ofnode_read_u32_index(node, "brightness-levels", 0, &val)); ut_asserteq(0, val); ut_assertok(ofnode_read_u32_index(node, "brightness-levels", 1, &val)); ut_asserteq(16, val); ut_assertok(ofnode_read_u32_index(node, "brightness-levels", 8, &val)); ut_asserteq(255, val); ut_asserteq(-EOVERFLOW, ofnode_read_u32_index(node, "brightness-levels", 9, &val)); ut_asserteq(-EINVAL, ofnode_read_u32_index(node, "missing", 0, &val)); return 0; } DM_TEST(dm_test_ofnode_u32, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_u32_array(struct unit_test_state *uts) { ofnode node; u32 val[10]; node = ofnode_path("/a-test"); ut_assert(ofnode_valid(node)); ut_assertok(ofnode_read_u32_array(node, "int-value", val, 1)); ut_asserteq(-EINVAL, ofnode_read_u32_array(node, "missing", val, 1)); ut_asserteq(-EOVERFLOW, ofnode_read_u32_array(node, "bool-value", val, 1)); memset(val, '\0', sizeof(val)); ut_assertok(ofnode_read_u32_array(node, "int-array", val + 1, 3)); ut_asserteq(0, val[0]); ut_asserteq(5678, val[1]); ut_asserteq(9123, val[2]); ut_asserteq(4567, val[3]); ut_asserteq(0, val[4]); ut_asserteq(-EOVERFLOW, ofnode_read_u32_array(node, "int-array", val, 4)); return 0; } DM_TEST(dm_test_ofnode_u32_array, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_u64(struct unit_test_state *uts) { ofnode node; u64 val; node = ofnode_path("/a-test"); ut_assert(ofnode_valid(node)); ut_assertok(ofnode_read_u64(node, "int64-value", &val)); ut_asserteq_64(0x1111222233334444, val); ut_asserteq(-EINVAL, ofnode_read_u64(node, "missing", &val)); ut_assertok(ofnode_read_u64_index(node, "int64-array", 0, &val)); ut_asserteq_64(0x1111222233334444, val); ut_assertok(ofnode_read_u64_index(node, "int64-array", 1, &val)); ut_asserteq_64(0x4444333322221111, val); ut_asserteq(-EOVERFLOW, ofnode_read_u64_index(node, "int64-array", 2, &val)); ut_asserteq(-EINVAL, ofnode_read_u64_index(node, "missing", 0, &val)); return 0; } DM_TEST(dm_test_ofnode_u64, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_add_subnode(struct unit_test_state *uts) { ofnode node, check, subnode; char buf[128]; node = ofnode_path("/lcd"); ut_assert(ofnode_valid(node)); ut_assertok(ofnode_add_subnode(node, "edmund", &subnode)); check = ofnode_path("/lcd/edmund"); ut_asserteq(subnode.of_offset, check.of_offset); ut_assertok(ofnode_get_path(subnode, buf, sizeof(buf))); ut_asserteq_str("/lcd/edmund", buf); if (of_live_active()) { struct device_node *child; ut_assertok(of_add_subnode((void *)ofnode_to_np(node), "edmund", 2, &child)); ut_asserteq_str("ed", child->name); ut_asserteq_str("/lcd/ed", child->full_name); check = ofnode_path("/lcd/ed"); ut_asserteq_ptr(child, check.np); ut_assertok(ofnode_get_path(np_to_ofnode(child), buf, sizeof(buf))); ut_asserteq_str("/lcd/ed", buf); } /* An existing node should be returned with -EEXIST */ ut_asserteq(-EEXIST, ofnode_add_subnode(node, "edmund", &check)); ut_asserteq(subnode.of_offset, check.of_offset); /* add a root node */ node = ofnode_path("/"); ut_assert(ofnode_valid(node)); ut_assertok(ofnode_add_subnode(node, "lcd2", &subnode)); check = ofnode_path("/lcd2"); ut_asserteq(subnode.of_offset, check.of_offset); ut_assertok(ofnode_get_path(subnode, buf, sizeof(buf))); ut_asserteq_str("/lcd2", buf); if (of_live_active()) { ulong start; int i; /* * Make sure each of the three malloc()checks in * of_add_subnode() work */ for (i = 0; i < 3; i++) { malloc_enable_testing(i); start = ut_check_free(); ut_asserteq(-ENOMEM, ofnode_add_subnode(node, "anthony", &check)); ut_assertok(ut_check_delta(start)); } /* This should pass since we allow 3 allocations */ malloc_enable_testing(3); ut_assertok(ofnode_add_subnode(node, "anthony", &check)); malloc_disable_testing(); } /* write to the empty node */ ut_assertok(ofnode_write_string(subnode, "example", "text")); return 0; } DM_TEST(dm_test_ofnode_add_subnode, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_ofnode_for_each_prop(struct unit_test_state *uts) { ofnode node, subnode; struct ofprop prop; int count; node = ofnode_path("/ofnode-foreach"); count = 0; /* we expect "compatible" for each node */ ofnode_for_each_prop(prop, node) count++; ut_asserteq(1, count); /* there are two nodes, each with 2 properties */ ofnode_for_each_subnode(subnode, node) ofnode_for_each_prop(prop, subnode) count++; ut_asserteq(5, count); return 0; } DM_TEST(dm_test_ofnode_for_each_prop, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_by_compatible(struct unit_test_state *uts) { const char *compat = "denx,u-boot-fdt-test"; ofnode node; int count; count = 0; for (node = ofnode_null(); node = ofnode_by_compatible(node, compat), ofnode_valid(node);) count++; ut_asserteq(11, count); return 0; } DM_TEST(dm_test_ofnode_by_compatible, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_by_compatible_ot(struct unit_test_state *uts) { const char *compat = "sandbox-other2"; oftree otree = get_other_oftree(uts); ofnode node; int count; count = 0; for (node = oftree_root(otree); node = ofnode_by_compatible(node, compat), ofnode_valid(node);) count++; ut_asserteq(2, count); return 0; } DM_TEST(dm_test_ofnode_by_compatible_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_find_subnode(struct unit_test_state *uts) { ofnode node, subnode; node = ofnode_path("/buttons"); subnode = ofnode_find_subnode(node, "btn1"); ut_assert(ofnode_valid(subnode)); ut_asserteq_str("btn1", ofnode_get_name(subnode)); subnode = ofnode_find_subnode(node, "btn"); ut_assert(!ofnode_valid(subnode)); return 0; } DM_TEST(dm_test_ofnode_find_subnode, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_find_subnode_ot(struct unit_test_state *uts) { oftree otree = get_other_oftree(uts); ofnode node, subnode; node = oftree_path(otree, "/node"); subnode = ofnode_find_subnode(node, "subnode"); ut_assert(ofnode_valid(subnode)); ut_asserteq_str("subnode", ofnode_get_name(subnode)); subnode = ofnode_find_subnode(node, "btn"); ut_assert(!ofnode_valid(subnode)); return 0; } DM_TEST(dm_test_ofnode_find_subnode_ot, UT_TESTF_OTHER_FDT); static int dm_test_ofnode_get_name(struct unit_test_state *uts) { ofnode node; node = ofnode_path("/buttons"); ut_assert(ofnode_valid(node)); ut_asserteq_str("buttons", ofnode_get_name(node)); ut_asserteq_str("", ofnode_get_name(ofnode_root())); return 0; } DM_TEST(dm_test_ofnode_get_name, UT_TESTF_SCAN_FDT); /* try to access more FDTs than is supported */ static int dm_test_ofnode_too_many(struct unit_test_state *uts) { const int max_trees = CONFIG_IS_ENABLED(OFNODE_MULTI_TREE, (CONFIG_OFNODE_MULTI_TREE_MAX), (1)); const int fdt_size = 256; const int num_trees = max_trees + 1; char fdt[num_trees][fdt_size]; int i; for (i = 0; i < num_trees; i++) { oftree tree; int ret; ut_assertok(make_ofnode_fdt(uts, fdt[i], fdt_size, i)); ret = get_oftree(uts, fdt[i], &tree); /* * With flat tree we have the control FDT using one slot. Live * tree has no limit since it uses pointers, not integer tree * IDs */ if (of_live_active() || i < max_trees - 1) { ut_assertok(ret); } else { /* * tree should be invalid when we try to register too * many trees */ ut_asserteq(-EOVERFLOW, ret); } } return 0; } DM_TEST(dm_test_ofnode_too_many, UT_TESTF_SCAN_FDT); static int check_copy_props(struct unit_test_state *uts, ofnode src, ofnode dst) { u32 reg[2], val; ut_assertok(ofnode_copy_props(src, dst)); ut_assertok(ofnode_read_u32(dst, "ping-expect", &val)); ut_asserteq(3, val); ut_asserteq_str("denx,u-boot-fdt-test", ofnode_read_string(dst, "compatible")); /* check that a property with the same name is overwritten */ ut_assertok(ofnode_read_u32_array(dst, "reg", reg, ARRAY_SIZE(reg))); ut_asserteq(3, reg[0]); ut_asserteq(1, reg[1]); /* reset the compatible so the live tree does not change */ ut_assertok(ofnode_write_string(dst, "compatible", "nothing")); return 0; } static int dm_test_ofnode_copy_props(struct unit_test_state *uts) { ofnode src, dst; /* * These nodes are chosen so that the src node is before the destination * node in the tree. This doesn't matter with livetree, but with * flattree any attempt to insert a property earlier in the tree will * mess up the offsets after it. */ src = ofnode_path("/b-test"); dst = ofnode_path("/some-bus"); ut_assertok(check_copy_props(uts, src, dst)); /* check a property that is in the destination already */ ut_asserteq_str("mux0", ofnode_read_string(dst, "mux-control-names")); return 0; } DM_TEST(dm_test_ofnode_copy_props, UT_TESTF_SCAN_FDT); static int dm_test_ofnode_copy_props_ot(struct unit_test_state *uts) { ofnode src, dst; oftree otree = get_other_oftree(uts); src = ofnode_path("/b-test"); dst = oftree_path(otree, "/node/subnode2"); ut_assertok(check_copy_props(uts, src, dst)); return 0; } DM_TEST(dm_test_ofnode_copy_props_ot, UT_TESTF_SCAN_FDT | UT_TESTF_OTHER_FDT); /* check that the livetree is aligned to a structure boundary */ static int dm_test_livetree_align(struct unit_test_state *uts) { const int align = __alignof__(struct unit_test_state); struct device_node *node; u32 *sentinel; ulong start; start = (ulong)gd_of_root(); ut_asserteq(start, ALIGN(start, align)); node = gd_of_root(); sentinel = (void *)node - sizeof(u32); /* * The sentinel should be overwritten with the root node. If it isn't, * then the root node is not at the very start of the livetree memory * area, and free(root) will fail to free the memory used by the * livetree. */ ut_assert(*sentinel != BAD_OF_ROOT); return 0; } DM_TEST(dm_test_livetree_align, UT_TESTF_LIVE_TREE); /* check that it is possible to load an arbitrary livetree */ static int dm_test_livetree_ensure(struct unit_test_state *uts) { oftree tree; ofnode node; /* read from other.dtb */ ut_assertok(test_load_other_fdt(uts)); tree = oftree_from_fdt(uts->other_fdt); ut_assert(oftree_valid(tree)); node = oftree_path(tree, "/node/subnode"); ut_assert(ofnode_valid(node)); ut_asserteq_str("sandbox-other2", ofnode_read_string(node, "compatible")); return 0; } DM_TEST(dm_test_livetree_ensure, 0);