// SPDX-License-Identifier: GPL-2.0+ /* * NXP FlexSPI(FSPI) controller driver. * * Copyright (c) 2019 Michael Walle <michael@walle.cc> * Copyright (c) 2019 NXP * * This driver was originally ported from the linux kernel v5.4-rc3, which had * the following notes: * * FlexSPI is a flexsible SPI host controller which supports two SPI * channels and up to 4 external devices. Each channel supports * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional * data lines). * * FlexSPI controller is driven by the LUT(Look-up Table) registers * LUT registers are a look-up-table for sequences of instructions. * A valid sequence consists of four LUT registers. * Maximum 32 LUT sequences can be programmed simultaneously. * * LUTs are being created at run-time based on the commands passed * from the spi-mem framework, thus using single LUT index. * * Software triggered Flash read/write access by IP Bus. * * Memory mapped read access by AHB Bus. * * Based on SPI MEM interface and spi-fsl-qspi.c driver. * * Author: * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> * Boris Brezillon <bbrezillon@kernel.org> * Frieder Schrempf <frieder.schrempf@kontron.de> */ #include <common.h> #include <clk.h> #include <dm.h> #include <dm/device_compat.h> #include <malloc.h> #include <spi.h> #include <spi-mem.h> #include <asm/io.h> #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/sizes.h> #include <linux/iopoll.h> #include <linux/bug.h> #include <linux/err.h> /* * The driver only uses one single LUT entry, that is updated on * each call of exec_op(). Index 0 is preset at boot with a basic * read operation, so let's use the last entry (31). */ #define SEQID_LUT 31 /* Registers used by the driver */ #define FSPI_MCR0 0x00 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) #define FSPI_MCR0_LEARN_EN BIT(15) #define FSPI_MCR0_SCRFRUN_EN BIT(14) #define FSPI_MCR0_OCTCOMB_EN BIT(13) #define FSPI_MCR0_DOZE_EN BIT(12) #define FSPI_MCR0_HSEN BIT(11) #define FSPI_MCR0_SERCLKDIV BIT(8) #define FSPI_MCR0_ATDF_EN BIT(7) #define FSPI_MCR0_ARDF_EN BIT(6) #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) #define FSPI_MCR0_END_CFG(x) ((x) << 2) #define FSPI_MCR0_MDIS BIT(1) #define FSPI_MCR0_SWRST BIT(0) #define FSPI_MCR1 0x04 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) #define FSPI_MCR1_AHB_TIMEOUT(x) (x) #define FSPI_MCR2 0x08 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) #define FSPI_MCR2_SAMEDEVICEEN BIT(15) #define FSPI_MCR2_CLRLRPHS BIT(14) #define FSPI_MCR2_ABRDATSZ BIT(8) #define FSPI_MCR2_ABRLEARN BIT(7) #define FSPI_MCR2_ABR_READ BIT(6) #define FSPI_MCR2_ABRWRITE BIT(5) #define FSPI_MCR2_ABRDUMMY BIT(4) #define FSPI_MCR2_ABR_MODE BIT(3) #define FSPI_MCR2_ABRCADDR BIT(2) #define FSPI_MCR2_ABRRADDR BIT(1) #define FSPI_MCR2_ABR_CMD BIT(0) #define FSPI_AHBCR 0x0c #define FSPI_AHBCR_RDADDROPT BIT(6) #define FSPI_AHBCR_PREF_EN BIT(5) #define FSPI_AHBCR_BUFF_EN BIT(4) #define FSPI_AHBCR_CACH_EN BIT(3) #define FSPI_AHBCR_CLRTXBUF BIT(2) #define FSPI_AHBCR_CLRRXBUF BIT(1) #define FSPI_AHBCR_PAR_EN BIT(0) #define FSPI_INTEN 0x10 #define FSPI_INTEN_SCLKSBWR BIT(9) #define FSPI_INTEN_SCLKSBRD BIT(8) #define FSPI_INTEN_DATALRNFL BIT(7) #define FSPI_INTEN_IPTXWE BIT(6) #define FSPI_INTEN_IPRXWA BIT(5) #define FSPI_INTEN_AHBCMDERR BIT(4) #define FSPI_INTEN_IPCMDERR BIT(3) #define FSPI_INTEN_AHBCMDGE BIT(2) #define FSPI_INTEN_IPCMDGE BIT(1) #define FSPI_INTEN_IPCMDDONE BIT(0) #define FSPI_INTR 0x14 #define FSPI_INTR_SCLKSBWR BIT(9) #define FSPI_INTR_SCLKSBRD BIT(8) #define FSPI_INTR_DATALRNFL BIT(7) #define FSPI_INTR_IPTXWE BIT(6) #define FSPI_INTR_IPRXWA BIT(5) #define FSPI_INTR_AHBCMDERR BIT(4) #define FSPI_INTR_IPCMDERR BIT(3) #define FSPI_INTR_AHBCMDGE BIT(2) #define FSPI_INTR_IPCMDGE BIT(1) #define FSPI_INTR_IPCMDDONE BIT(0) #define FSPI_LUTKEY 0x18 #define FSPI_LUTKEY_VALUE 0x5AF05AF0 #define FSPI_LCKCR 0x1C #define FSPI_LCKER_LOCK 0x1 #define FSPI_LCKER_UNLOCK 0x2 #define FSPI_BUFXCR_INVALID_MSTRID 0xE #define FSPI_AHBRX_BUF0CR0 0x20 #define FSPI_AHBRX_BUF1CR0 0x24 #define FSPI_AHBRX_BUF2CR0 0x28 #define FSPI_AHBRX_BUF3CR0 0x2C #define FSPI_AHBRX_BUF4CR0 0x30 #define FSPI_AHBRX_BUF5CR0 0x34 #define FSPI_AHBRX_BUF6CR0 0x38 #define FSPI_AHBRX_BUF7CR0 0x3C #define FSPI_AHBRXBUF0CR7_PREF BIT(31) #define FSPI_AHBRX_BUF0CR1 0x40 #define FSPI_AHBRX_BUF1CR1 0x44 #define FSPI_AHBRX_BUF2CR1 0x48 #define FSPI_AHBRX_BUF3CR1 0x4C #define FSPI_AHBRX_BUF4CR1 0x50 #define FSPI_AHBRX_BUF5CR1 0x54 #define FSPI_AHBRX_BUF6CR1 0x58 #define FSPI_AHBRX_BUF7CR1 0x5C #define FSPI_FLSHA1CR0 0x60 #define FSPI_FLSHA2CR0 0x64 #define FSPI_FLSHB1CR0 0x68 #define FSPI_FLSHB2CR0 0x6C #define FSPI_FLSHXCR0_SZ_KB 10 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) #define FSPI_FLSHA1CR1 0x70 #define FSPI_FLSHA2CR1 0x74 #define FSPI_FLSHB1CR1 0x78 #define FSPI_FLSHB2CR1 0x7C #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) #define FSPI_FLSHXCR1_WA BIT(10) #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) #define FSPI_FLSHXCR1_TCSS(x) (x) #define FSPI_FLSHA1CR2 0x80 #define FSPI_FLSHA2CR2 0x84 #define FSPI_FLSHB1CR2 0x88 #define FSPI_FLSHB2CR2 0x8C #define FSPI_FLSHXCR2_CLRINSP BIT(24) #define FSPI_FLSHXCR2_AWRWAIT BIT(16) #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 #define FSPI_IPCR0 0xA0 #define FSPI_IPCR1 0xA4 #define FSPI_IPCR1_IPAREN BIT(31) #define FSPI_IPCR1_SEQNUM_SHIFT 24 #define FSPI_IPCR1_SEQID_SHIFT 16 #define FSPI_IPCR1_IDATSZ(x) (x) #define FSPI_IPCMD 0xB0 #define FSPI_IPCMD_TRG BIT(0) #define FSPI_DLPR 0xB4 #define FSPI_IPRXFCR 0xB8 #define FSPI_IPRXFCR_CLR BIT(0) #define FSPI_IPRXFCR_DMA_EN BIT(1) #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) #define FSPI_IPTXFCR 0xBC #define FSPI_IPTXFCR_CLR BIT(0) #define FSPI_IPTXFCR_DMA_EN BIT(1) #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) #define FSPI_DLLACR 0xC0 #define FSPI_DLLACR_OVRDEN BIT(8) #define FSPI_DLLBCR 0xC4 #define FSPI_DLLBCR_OVRDEN BIT(8) #define FSPI_STS0 0xE0 #define FSPI_STS0_DLPHB(x) ((x) << 8) #define FSPI_STS0_DLPHA(x) ((x) << 4) #define FSPI_STS0_CMD_SRC(x) ((x) << 2) #define FSPI_STS0_ARB_IDLE BIT(1) #define FSPI_STS0_SEQ_IDLE BIT(0) #define FSPI_STS1 0xE4 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) #define FSPI_STS1_IP_ERRID(x) ((x) << 16) #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) #define FSPI_STS1_AHB_ERRID(x) (x) #define FSPI_AHBSPNST 0xEC #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) #define FSPI_AHBSPNST_ACTIVE BIT(0) #define FSPI_IPRXFSTS 0xF0 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) #define FSPI_IPRXFSTS_FILL(x) (x) #define FSPI_IPTXFSTS 0xF4 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) #define FSPI_IPTXFSTS_FILL(x) (x) #define FSPI_RFDR 0x100 #define FSPI_TFDR 0x180 #define FSPI_LUT_BASE 0x200 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) #define FSPI_LUT_REG(idx) \ (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) /* register map end */ /* Instruction set for the LUT register. */ #define LUT_STOP 0x00 #define LUT_CMD 0x01 #define LUT_ADDR 0x02 #define LUT_CADDR_SDR 0x03 #define LUT_MODE 0x04 #define LUT_MODE2 0x05 #define LUT_MODE4 0x06 #define LUT_MODE8 0x07 #define LUT_NXP_WRITE 0x08 #define LUT_NXP_READ 0x09 #define LUT_LEARN_SDR 0x0A #define LUT_DATSZ_SDR 0x0B #define LUT_DUMMY 0x0C #define LUT_DUMMY_RWDS_SDR 0x0D #define LUT_JMP_ON_CS 0x1F #define LUT_CMD_DDR 0x21 #define LUT_ADDR_DDR 0x22 #define LUT_CADDR_DDR 0x23 #define LUT_MODE_DDR 0x24 #define LUT_MODE2_DDR 0x25 #define LUT_MODE4_DDR 0x26 #define LUT_MODE8_DDR 0x27 #define LUT_WRITE_DDR 0x28 #define LUT_READ_DDR 0x29 #define LUT_LEARN_DDR 0x2A #define LUT_DATSZ_DDR 0x2B #define LUT_DUMMY_DDR 0x2C #define LUT_DUMMY_RWDS_DDR 0x2D /* * Calculate number of required PAD bits for LUT register. * * The pad stands for the number of IO lines [0:7]. * For example, the octal read needs eight IO lines, * so you should use LUT_PAD(8). This macro * returns 3 i.e. use eight (2^3) IP lines for read. */ #define LUT_PAD(x) (fls(x) - 1) /* * Macro for constructing the LUT entries with the following * register layout: * * --------------------------------------------------- * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | * --------------------------------------------------- */ #define PAD_SHIFT 8 #define INSTR_SHIFT 10 #define OPRND_SHIFT 16 /* Macros for constructing the LUT register. */ #define LUT_DEF(idx, ins, pad, opr) \ ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ (opr)) << (((idx) % 2) * OPRND_SHIFT)) #define POLL_TOUT 5000 #define NXP_FSPI_MAX_CHIPSELECT 4 struct nxp_fspi_devtype_data { unsigned int rxfifo; unsigned int txfifo; unsigned int ahb_buf_size; unsigned int quirks; bool little_endian; }; static const struct nxp_fspi_devtype_data lx2160a_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; static const struct nxp_fspi_devtype_data imx8mm_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; struct nxp_fspi { struct udevice *dev; void __iomem *iobase; void __iomem *ahb_addr; u32 memmap_phy; u32 memmap_phy_size; struct clk clk, clk_en; const struct nxp_fspi_devtype_data *devtype_data; }; /* * R/W functions for big- or little-endian registers: * The FSPI controller's endianness is independent of * the CPU core's endianness. So far, although the CPU * core is little-endian the FSPI controller can use * big-endian or little-endian. */ static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) { if (f->devtype_data->little_endian) out_le32(addr, val); else out_be32(addr, val); } static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) { if (f->devtype_data->little_endian) return in_le32(addr); else return in_be32(addr); } static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) { switch (width) { case 1: case 2: case 4: case 8: return 0; } return -ENOTSUPP; } static bool nxp_fspi_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct nxp_fspi *f; struct udevice *bus; int ret; bus = slave->dev->parent; f = dev_get_priv(bus); ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); if (op->addr.nbytes) ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); if (op->dummy.nbytes) ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); if (op->data.nbytes) ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); if (ret) return false; /* * The number of address bytes should be equal to or less than 4 bytes. */ if (op->addr.nbytes > 4) return false; /* * If requested address value is greater than controller assigned * memory mapped space, return error as it didn't fit in the range * of assigned address space. */ if (op->addr.val >= f->memmap_phy_size) return false; /* Max 64 dummy clock cycles supported */ if (op->dummy.buswidth && (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) return false; /* Max data length, check controller limits and alignment */ if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes > f->devtype_data->ahb_buf_size || (op->data.nbytes > f->devtype_data->rxfifo - 4 && !IS_ALIGNED(op->data.nbytes, 8)))) return false; if (op->data.dir == SPI_MEM_DATA_OUT && op->data.nbytes > f->devtype_data->txfifo) return false; return true; } /* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */ static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, u32 mask, u32 delay_us, u32 timeout_us, bool c) { u32 reg; if (!f->devtype_data->little_endian) mask = (u32)cpu_to_be32(mask); if (c) return readl_poll_sleep_timeout(base, reg, (reg & mask), delay_us, timeout_us); else return readl_poll_sleep_timeout(base, reg, !(reg & mask), delay_us, timeout_us); } /* * If the slave device content being changed by Write/Erase, need to * invalidate the AHB buffer. This can be achieved by doing the reset * of controller after setting MCR0[SWRESET] bit. */ static inline void nxp_fspi_invalid(struct nxp_fspi *f) { u32 reg; int ret; reg = fspi_readl(f, f->iobase + FSPI_MCR0); fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); /* w1c register, wait unit clear */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, FSPI_MCR0_SWRST, 0, POLL_TOUT, false); WARN_ON(ret); } static void nxp_fspi_prepare_lut(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; u32 lutval[4] = {}; int lutidx = 1, i; /* cmd */ lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), op->cmd.opcode); /* addr bytes */ if (op->addr.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, LUT_PAD(op->addr.buswidth), op->addr.nbytes * 8); lutidx++; } /* dummy bytes, if needed */ if (op->dummy.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, /* * Due to FlexSPI controller limitation number of PAD for dummy * buswidth needs to be programmed as equal to data buswidth. */ LUT_PAD(op->data.buswidth), op->dummy.nbytes * 8 / op->dummy.buswidth); lutidx++; } /* read/write data bytes */ if (op->data.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, op->data.dir == SPI_MEM_DATA_IN ? LUT_NXP_READ : LUT_NXP_WRITE, LUT_PAD(op->data.buswidth), 0); lutidx++; } /* stop condition. */ lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); /* unlock LUT */ fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); /* fill LUT */ for (i = 0; i < ARRAY_SIZE(lutval); i++) fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); /* lock LUT */ fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); } #if CONFIG_IS_ENABLED(CLK) static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) { int ret; ret = clk_enable(&f->clk_en); if (ret) return ret; ret = clk_enable(&f->clk); if (ret) { clk_disable(&f->clk_en); return ret; } return 0; } static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) { clk_disable(&f->clk); clk_disable(&f->clk_en); } #endif /* * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 * register and start base address of the slave device. * * (Higher address) * -------- <-- FLSHB2CR0 * | B2 | * | | * B2 start address --> -------- <-- FLSHB1CR0 * | B1 | * | | * B1 start address --> -------- <-- FLSHA2CR0 * | A2 | * | | * A2 start address --> -------- <-- FLSHA1CR0 * | A1 | * | | * A1 start address --> -------- (Lower address) * * * Start base address defines the starting address range for given CS and * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. * * But, different targets are having different combinations of number of CS, * some targets only have single CS or two CS covering controller's full * memory mapped space area. * Thus, implementation is being done as independent of the size and number * of the connected slave device. * Assign controller memory mapped space size as the size to the connected * slave device. * Mark FLSHxxCR0 as zero initially and then assign value only to the selected * chip-select Flash configuration register. * * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the * memory mapped size of the controller. * Value for rest of the CS FLSHxxCR0 register would be zero. * */ static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select) { u64 size_kb; /* Reset FLSHxxCR0 registers */ fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); /* Assign controller memory mapped space as size, KBytes, of flash. */ size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 4 * chip_select); dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select); } static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) { u32 len = op->data.nbytes; /* Read out the data directly from the AHB buffer. */ memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); } static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int i, ret; u8 *buf = (u8 *)op->data.buf.out; /* clear the TX FIFO. */ fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); /* * Default value of water mark level is 8 bytes, hence in single * write request controller can write max 8 bytes of data. */ for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { /* Wait for TXFIFO empty */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPTXWE, 0, POLL_TOUT, true); WARN_ON(ret); fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR); fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4); fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } if (i < op->data.nbytes) { u32 data = 0; int j; /* Wait for TXFIFO empty */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPTXWE, 0, POLL_TOUT, true); WARN_ON(ret); for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { memcpy(&data, buf + i + j, 4); fspi_writel(f, data, base + FSPI_TFDR + j); } fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } } static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int i, ret; int len = op->data.nbytes; u8 *buf = (u8 *)op->data.buf.in; /* * Default value of water mark level is 8 bytes, hence in single * read request controller can read max 8 bytes of data. */ for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { /* Wait for RXFIFO available */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPRXWA, 0, POLL_TOUT, true); WARN_ON(ret); *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); /* move the FIFO pointer */ fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); } if (i < len) { u32 tmp; int size, j; buf = op->data.buf.in + i; /* Wait for RXFIFO available */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPRXWA, 0, POLL_TOUT, true); WARN_ON(ret); len = op->data.nbytes - i; for (j = 0; j < op->data.nbytes - i; j += 4) { tmp = fspi_readl(f, base + FSPI_RFDR + j); size = min(len, 4); memcpy(buf + j, &tmp, size); len -= size; } } /* invalid the RXFIFO */ fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); /* move the FIFO pointer */ fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); } static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int seqnum = 0; int err = 0; u32 reg; reg = fspi_readl(f, base + FSPI_IPRXFCR); /* invalid RXFIFO first */ reg &= ~FSPI_IPRXFCR_DMA_EN; reg = reg | FSPI_IPRXFCR_CLR; fspi_writel(f, reg, base + FSPI_IPRXFCR); fspi_writel(f, op->addr.val, base + FSPI_IPCR0); /* * Always start the sequence at the same index since we update * the LUT at each exec_op() call. And also specify the DATA * length, since it's has not been specified in the LUT. */ fspi_writel(f, op->data.nbytes | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), base + FSPI_IPCR1); /* Trigger the LUT now. */ fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); /* Wait for the completion. */ err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true); /* Invoke IP data read, if request is of data read. */ if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) nxp_fspi_read_rxfifo(f, op); return err; } static int nxp_fspi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct nxp_fspi *f; struct udevice *bus; int err = 0; bus = slave->dev->parent; f = dev_get_priv(bus); /* Wait for controller being ready. */ err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); WARN_ON(err); nxp_fspi_prepare_lut(f, op); /* * If we have large chunks of data, we read them through the AHB bus * by accessing the mapped memory. In all other cases we use * IP commands to access the flash. */ if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && op->data.dir == SPI_MEM_DATA_IN) { nxp_fspi_read_ahb(f, op); } else { if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) nxp_fspi_fill_txfifo(f, op); err = nxp_fspi_do_op(f, op); } /* Invalidate the data in the AHB buffer. */ nxp_fspi_invalid(f); return err; } static int nxp_fspi_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) { struct nxp_fspi *f; struct udevice *bus; bus = slave->dev->parent; f = dev_get_priv(bus); if (op->data.dir == SPI_MEM_DATA_OUT) { if (op->data.nbytes > f->devtype_data->txfifo) op->data.nbytes = f->devtype_data->txfifo; } else { if (op->data.nbytes > f->devtype_data->ahb_buf_size) op->data.nbytes = f->devtype_data->ahb_buf_size; else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); } return 0; } static int nxp_fspi_default_setup(struct nxp_fspi *f) { void __iomem *base = f->iobase; int ret, i; u32 reg; #if CONFIG_IS_ENABLED(CLK) /* disable and unprepare clock to avoid glitch pass to controller */ nxp_fspi_clk_disable_unprep(f); /* the default frequency, we will change it later if necessary. */ ret = clk_set_rate(&f->clk, 20000000); if (ret < 0) return ret; ret = nxp_fspi_clk_prep_enable(f); if (ret) return ret; #endif /* Reset the module */ /* w1c register, wait unit clear */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, FSPI_MCR0_SWRST, 0, POLL_TOUT, false); WARN_ON(ret); /* Disable the module */ fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); /* Reset the DLL register to default value */ fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); /* enable module */ fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF), base + FSPI_MCR0); /* * Disable same device enable bit and configure all slave devices * independently. */ reg = fspi_readl(f, f->iobase + FSPI_MCR2); reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); fspi_writel(f, reg, base + FSPI_MCR2); /* AHB configuration for access buffer 0~7. */ for (i = 0; i < 7; i++) fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); /* * Set ADATSZ with the maximum AHB buffer size to improve the read * performance. */ fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); /* prefetch and no start address alignment limitation */ fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, base + FSPI_AHBCR); /* AHB Read - Set lut sequence ID for all CS. */ fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); return 0; } static int nxp_fspi_probe(struct udevice *bus) { struct nxp_fspi *f = dev_get_priv(bus); f->devtype_data = (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus); nxp_fspi_default_setup(f); return 0; } static int nxp_fspi_claim_bus(struct udevice *dev) { struct nxp_fspi *f; struct udevice *bus; struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); bus = dev->parent; f = dev_get_priv(bus); nxp_fspi_select_mem(f, slave_plat->cs); return 0; } static int nxp_fspi_set_speed(struct udevice *bus, uint speed) { #if CONFIG_IS_ENABLED(CLK) struct nxp_fspi *f = dev_get_priv(bus); int ret; nxp_fspi_clk_disable_unprep(f); ret = clk_set_rate(&f->clk, speed); if (ret < 0) return ret; ret = nxp_fspi_clk_prep_enable(f); if (ret) return ret; #endif return 0; } static int nxp_fspi_set_mode(struct udevice *bus, uint mode) { /* Nothing to do */ return 0; } static int nxp_fspi_of_to_plat(struct udevice *bus) { struct nxp_fspi *f = dev_get_priv(bus); #if CONFIG_IS_ENABLED(CLK) int ret; #endif fdt_addr_t iobase; fdt_addr_t iobase_size; fdt_addr_t ahb_addr; fdt_addr_t ahb_size; f->dev = bus; iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size); if (iobase == FDT_ADDR_T_NONE) { dev_err(bus, "fspi_base regs missing\n"); return -ENODEV; } f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE); ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size); if (ahb_addr == FDT_ADDR_T_NONE) { dev_err(bus, "fspi_mmap regs missing\n"); return -ENODEV; } f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE); f->memmap_phy_size = ahb_size; #if CONFIG_IS_ENABLED(CLK) ret = clk_get_by_name(bus, "fspi_en", &f->clk_en); if (ret) { dev_err(bus, "failed to get fspi_en clock\n"); return ret; } ret = clk_get_by_name(bus, "fspi", &f->clk); if (ret) { dev_err(bus, "failed to get fspi clock\n"); return ret; } #endif dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr); return 0; } static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { .adjust_op_size = nxp_fspi_adjust_op_size, .supports_op = nxp_fspi_supports_op, .exec_op = nxp_fspi_exec_op, }; static const struct dm_spi_ops nxp_fspi_ops = { .claim_bus = nxp_fspi_claim_bus, .set_speed = nxp_fspi_set_speed, .set_mode = nxp_fspi_set_mode, .mem_ops = &nxp_fspi_mem_ops, }; static const struct udevice_id nxp_fspi_ids[] = { { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, }, { .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, }, { } }; U_BOOT_DRIVER(nxp_fspi) = { .name = "nxp_fspi", .id = UCLASS_SPI, .of_match = nxp_fspi_ids, .ops = &nxp_fspi_ops, .of_to_plat = nxp_fspi_of_to_plat, .priv_auto = sizeof(struct nxp_fspi), .probe = nxp_fspi_probe, };