// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../st/common/stpmic1.h" /* SYSCFG registers */ #define SYSCFG_BOOTR 0x00 #define SYSCFG_PMCSETR 0x04 #define SYSCFG_IOCTRLSETR 0x18 #define SYSCFG_ICNR 0x1C #define SYSCFG_CMPCR 0x20 #define SYSCFG_CMPENSETR 0x24 #define SYSCFG_PMCCLRR 0x44 #define SYSCFG_BOOTR_BOOT_MASK GENMASK(2, 0) #define SYSCFG_BOOTR_BOOTPD_SHIFT 4 #define SYSCFG_IOCTRLSETR_HSLVEN_TRACE BIT(0) #define SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI BIT(1) #define SYSCFG_IOCTRLSETR_HSLVEN_ETH BIT(2) #define SYSCFG_IOCTRLSETR_HSLVEN_SDMMC BIT(3) #define SYSCFG_IOCTRLSETR_HSLVEN_SPI BIT(4) #define SYSCFG_CMPCR_SW_CTRL BIT(1) #define SYSCFG_CMPCR_READY BIT(8) #define SYSCFG_CMPENSETR_MPU_EN BIT(0) #define SYSCFG_PMCSETR_ETH_CLK_SEL BIT(16) #define SYSCFG_PMCSETR_ETH_REF_CLK_SEL BIT(17) #define SYSCFG_PMCSETR_ETH_SELMII BIT(20) #define SYSCFG_PMCSETR_ETH_SEL_MASK GENMASK(23, 21) #define SYSCFG_PMCSETR_ETH_SEL_GMII_MII 0 #define SYSCFG_PMCSETR_ETH_SEL_RGMII BIT(21) #define SYSCFG_PMCSETR_ETH_SEL_RMII BIT(23) /* * Get a global data pointer */ DECLARE_GLOBAL_DATA_PTR; #define KS_CCR 0x08 #define KS_CCR_EEPROM BIT(9) #define KS_BE0 BIT(12) #define KS_BE1 BIT(13) #define KS_CIDER 0xC0 #define CIDER_ID 0x8870 int setup_mac_address(void) { unsigned char enetaddr[6]; bool skip_eth0 = false; bool skip_eth1 = false; struct udevice *dev; int off, ret; ret = eth_env_get_enetaddr("ethaddr", enetaddr); if (ret) /* ethaddr is already set */ skip_eth0 = true; off = fdt_path_offset(gd->fdt_blob, "ethernet1"); if (off < 0) { /* ethernet1 is not present in the system */ skip_eth1 = true; goto out_set_ethaddr; } ret = eth_env_get_enetaddr("eth1addr", enetaddr); if (ret) { /* eth1addr is already set */ skip_eth1 = true; goto out_set_ethaddr; } ret = fdt_node_check_compatible(gd->fdt_blob, off, "micrel,ks8851-mll"); if (ret) goto out_set_ethaddr; /* * KS8851 with EEPROM may use custom MAC from EEPROM, read * out the KS8851 CCR register to determine whether EEPROM * is present. If EEPROM is present, it must contain valid * MAC address. */ u32 reg, cider, ccr; reg = fdt_get_base_address(gd->fdt_blob, off); if (!reg) goto out_set_ethaddr; writew(KS_BE0 | KS_BE1 | KS_CIDER, reg + 2); cider = readw(reg); if ((cider & 0xfff0) != CIDER_ID) { skip_eth1 = true; goto out_set_ethaddr; } writew(KS_BE0 | KS_BE1 | KS_CCR, reg + 2); ccr = readw(reg); if (ccr & KS_CCR_EEPROM) { skip_eth1 = true; goto out_set_ethaddr; } out_set_ethaddr: if (skip_eth0 && skip_eth1) return 0; off = fdt_path_offset(gd->fdt_blob, "eeprom0"); if (off < 0) { printf("%s: No eeprom0 path offset\n", __func__); return off; } ret = uclass_get_device_by_of_offset(UCLASS_I2C_EEPROM, off, &dev); if (ret) { printf("Cannot find EEPROM!\n"); return ret; } ret = i2c_eeprom_read(dev, 0xfa, enetaddr, 0x6); if (ret) { printf("Error reading configuration EEPROM!\n"); return ret; } if (is_valid_ethaddr(enetaddr)) { if (!skip_eth0) eth_env_set_enetaddr("ethaddr", enetaddr); enetaddr[5]++; if (!skip_eth1) eth_env_set_enetaddr("eth1addr", enetaddr); } return 0; } int checkboard(void) { char *mode; const char *fdt_compat; int fdt_compat_len; if (IS_ENABLED(CONFIG_TFABOOT)) mode = "trusted"; else mode = "basic"; printf("Board: stm32mp1 in %s mode", mode); fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible", &fdt_compat_len); if (fdt_compat && fdt_compat_len) printf(" (%s)", fdt_compat); puts("\n"); return 0; } #ifdef CONFIG_BOARD_EARLY_INIT_F static u8 brdcode __section("data"); static u8 ddr3code __section("data"); static u8 somcode __section("data"); static u32 opp_voltage_mv __section(".data"); static void board_get_coding_straps(void) { struct gpio_desc gpio[4]; ofnode node; int i, ret; brdcode = 0; ddr3code = 0; somcode = 0; node = ofnode_path("/config"); if (!ofnode_valid(node)) { printf("%s: no /config node?\n", __func__); return; } ret = gpio_request_list_by_name_nodev(node, "dh,som-coding-gpios", gpio, ARRAY_SIZE(gpio), GPIOD_IS_IN); for (i = 0; i < ret; i++) somcode |= !!dm_gpio_get_value(&(gpio[i])) << i; gpio_free_list_nodev(gpio, ret); ret = gpio_request_list_by_name_nodev(node, "dh,ddr3-coding-gpios", gpio, ARRAY_SIZE(gpio), GPIOD_IS_IN); for (i = 0; i < ret; i++) ddr3code |= !!dm_gpio_get_value(&(gpio[i])) << i; gpio_free_list_nodev(gpio, ret); ret = gpio_request_list_by_name_nodev(node, "dh,board-coding-gpios", gpio, ARRAY_SIZE(gpio), GPIOD_IS_IN); for (i = 0; i < ret; i++) brdcode |= !!dm_gpio_get_value(&(gpio[i])) << i; gpio_free_list_nodev(gpio, ret); printf("Code: SoM:rev=%d,ddr3=%d Board:rev=%d\n", somcode, ddr3code, brdcode); } int board_stm32mp1_ddr_config_name_match(struct udevice *dev, const char *name) { if (ddr3code == 1 && !strcmp(name, "st,ddr3l-dhsom-1066-888-bin-g-2x1gb-533mhz")) return 0; if (ddr3code == 2 && !strcmp(name, "st,ddr3l-dhsom-1066-888-bin-g-2x2gb-533mhz")) return 0; if (ddr3code == 3 && !strcmp(name, "st,ddr3l-dhsom-1066-888-bin-g-2x4gb-533mhz")) return 0; return -EINVAL; } void board_vddcore_init(u32 voltage_mv) { if (IS_ENABLED(CONFIG_SPL_BUILD)) opp_voltage_mv = voltage_mv; } int board_early_init_f(void) { if (IS_ENABLED(CONFIG_SPL_BUILD)) stpmic1_init(opp_voltage_mv); board_get_coding_straps(); return 0; } #ifdef CONFIG_SPL_LOAD_FIT int board_fit_config_name_match(const char *name) { const char *compat; char test[128]; compat = fdt_getprop(gd->fdt_blob, 0, "compatible", NULL); snprintf(test, sizeof(test), "%s_somrev%d_boardrev%d", compat, somcode, brdcode); if (!strcmp(name, test)) return 0; return -EINVAL; } #endif #endif static void board_key_check(void) { #if defined(CONFIG_FASTBOOT) || defined(CONFIG_CMD_STM32PROG) ofnode node; struct gpio_desc gpio; enum forced_boot_mode boot_mode = BOOT_NORMAL; node = ofnode_path("/config"); if (!ofnode_valid(node)) { debug("%s: no /config node?\n", __func__); return; } #ifdef CONFIG_FASTBOOT if (gpio_request_by_name_nodev(node, "st,fastboot-gpios", 0, &gpio, GPIOD_IS_IN)) { debug("%s: could not find a /config/st,fastboot-gpios\n", __func__); } else { if (dm_gpio_get_value(&gpio)) { puts("Fastboot key pressed, "); boot_mode = BOOT_FASTBOOT; } dm_gpio_free(NULL, &gpio); } #endif #ifdef CONFIG_CMD_STM32PROG if (gpio_request_by_name_nodev(node, "st,stm32prog-gpios", 0, &gpio, GPIOD_IS_IN)) { debug("%s: could not find a /config/st,stm32prog-gpios\n", __func__); } else { if (dm_gpio_get_value(&gpio)) { puts("STM32Programmer key pressed, "); boot_mode = BOOT_STM32PROG; } dm_gpio_free(NULL, &gpio); } #endif if (boot_mode != BOOT_NORMAL) { puts("entering download mode...\n"); clrsetbits_le32(TAMP_BOOT_CONTEXT, TAMP_BOOT_FORCED_MASK, boot_mode); } #endif } #if defined(CONFIG_USB_GADGET) && defined(CONFIG_USB_GADGET_DWC2_OTG) #include int g_dnl_board_usb_cable_connected(void) { struct udevice *dwc2_udc_otg; int ret; ret = uclass_get_device_by_driver(UCLASS_USB_GADGET_GENERIC, DM_DRIVER_GET(dwc2_udc_otg), &dwc2_udc_otg); if (!ret) debug("dwc2_udc_otg init failed\n"); return dwc2_udc_B_session_valid(dwc2_udc_otg); } #define STM32MP1_G_DNL_DFU_PRODUCT_NUM 0xdf11 #define STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM 0x0afb int g_dnl_bind_fixup(struct usb_device_descriptor *dev, const char *name) { if (!strcmp(name, "usb_dnl_dfu")) put_unaligned(STM32MP1_G_DNL_DFU_PRODUCT_NUM, &dev->idProduct); else if (!strcmp(name, "usb_dnl_fastboot")) put_unaligned(STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM, &dev->idProduct); else put_unaligned(CONFIG_USB_GADGET_PRODUCT_NUM, &dev->idProduct); return 0; } #endif /* CONFIG_USB_GADGET */ #ifdef CONFIG_LED static int get_led(struct udevice **dev, char *led_string) { const char *led_name; int ret; led_name = ofnode_conf_read_str(led_string); if (!led_name) { pr_debug("%s: could not find %s config string\n", __func__, led_string); return -ENOENT; } ret = led_get_by_label(led_name, dev); if (ret) { debug("%s: get=%d\n", __func__, ret); return ret; } return 0; } static int setup_led(enum led_state_t cmd) { struct udevice *dev; int ret; ret = get_led(&dev, "u-boot,boot-led"); if (ret) return ret; ret = led_set_state(dev, cmd); return ret; } #endif static void __maybe_unused led_error_blink(u32 nb_blink) { #ifdef CONFIG_LED int ret; struct udevice *led; u32 i; #endif if (!nb_blink) return; #ifdef CONFIG_LED ret = get_led(&led, "u-boot,error-led"); if (!ret) { /* make u-boot,error-led blinking */ /* if U32_MAX and 125ms interval, for 17.02 years */ for (i = 0; i < 2 * nb_blink; i++) { led_set_state(led, LEDST_TOGGLE); mdelay(125); WATCHDOG_RESET(); } } #endif /* infinite: the boot process must be stopped */ if (nb_blink == U32_MAX) hang(); } static void sysconf_init(void) { #ifndef CONFIG_TFABOOT u8 *syscfg; #ifdef CONFIG_DM_REGULATOR struct udevice *pwr_dev; struct udevice *pwr_reg; struct udevice *dev; int ret; u32 otp = 0; #endif u32 bootr; syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG); /* interconnect update : select master using the port 1 */ /* LTDC = AXI_M9 */ /* GPU = AXI_M8 */ /* today information is hardcoded in U-Boot */ writel(BIT(9), syscfg + SYSCFG_ICNR); /* disable Pull-Down for boot pin connected to VDD */ bootr = readl(syscfg + SYSCFG_BOOTR); bootr &= ~(SYSCFG_BOOTR_BOOT_MASK << SYSCFG_BOOTR_BOOTPD_SHIFT); bootr |= (bootr & SYSCFG_BOOTR_BOOT_MASK) << SYSCFG_BOOTR_BOOTPD_SHIFT; writel(bootr, syscfg + SYSCFG_BOOTR); #ifdef CONFIG_DM_REGULATOR /* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI * and TRACE. Needed above ~50MHz and conditioned by AFMUX selection. * The customer will have to disable this for low frequencies * or if AFMUX is selected but the function not used, typically for * TRACE. Otherwise, impact on power consumption. * * WARNING: * enabling High Speed mode while VDD>2.7V * with the OTP product_below_2v5 (OTP 18, BIT 13) * erroneously set to 1 can damage the IC! * => U-Boot set the register only if VDD < 2.7V (in DT) * but this value need to be consistent with board design */ ret = uclass_get_device_by_driver(UCLASS_PMIC, DM_DRIVER_GET(stm32mp_pwr_pmic), &pwr_dev); if (!ret) { ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret) { pr_err("Can't find stm32mp_bsec driver\n"); return; } ret = misc_read(dev, STM32_BSEC_SHADOW(18), &otp, 4); if (ret > 0) otp = otp & BIT(13); /* get VDD = vdd-supply */ ret = device_get_supply_regulator(pwr_dev, "vdd-supply", &pwr_reg); /* check if VDD is Low Voltage */ if (!ret) { if (regulator_get_value(pwr_reg) < 2700000) { writel(SYSCFG_IOCTRLSETR_HSLVEN_TRACE | SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI | SYSCFG_IOCTRLSETR_HSLVEN_ETH | SYSCFG_IOCTRLSETR_HSLVEN_SDMMC | SYSCFG_IOCTRLSETR_HSLVEN_SPI, syscfg + SYSCFG_IOCTRLSETR); if (!otp) pr_err("product_below_2v5=0: HSLVEN protected by HW\n"); } else { if (otp) pr_err("product_below_2v5=1: HSLVEN update is destructive, no update as VDD>2.7V\n"); } } else { debug("VDD unknown"); } } #endif /* activate automatic I/O compensation * warning: need to ensure CSI enabled and ready in clock driver */ writel(SYSCFG_CMPENSETR_MPU_EN, syscfg + SYSCFG_CMPENSETR); while (!(readl(syscfg + SYSCFG_CMPCR) & SYSCFG_CMPCR_READY)) ; clrbits_le32(syscfg + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL); #endif } static void board_init_fmc2(void) { #define STM32_FMC2_BCR1 0x0 #define STM32_FMC2_BTR1 0x4 #define STM32_FMC2_BWTR1 0x104 #define STM32_FMC2_BCR(x) ((x) * 0x8 + STM32_FMC2_BCR1) #define STM32_FMC2_BCRx_FMCEN BIT(31) #define STM32_FMC2_BCRx_WREN BIT(12) #define STM32_FMC2_BCRx_RSVD BIT(7) #define STM32_FMC2_BCRx_FACCEN BIT(6) #define STM32_FMC2_BCRx_MWID(n) ((n) << 4) #define STM32_FMC2_BCRx_MTYP(n) ((n) << 2) #define STM32_FMC2_BCRx_MUXEN BIT(1) #define STM32_FMC2_BCRx_MBKEN BIT(0) #define STM32_FMC2_BTR(x) ((x) * 0x8 + STM32_FMC2_BTR1) #define STM32_FMC2_BTRx_DATAHLD(n) ((n) << 30) #define STM32_FMC2_BTRx_BUSTURN(n) ((n) << 16) #define STM32_FMC2_BTRx_DATAST(n) ((n) << 8) #define STM32_FMC2_BTRx_ADDHLD(n) ((n) << 4) #define STM32_FMC2_BTRx_ADDSET(n) ((n) << 0) #define RCC_MP_AHB6RSTCLRR 0x218 #define RCC_MP_AHB6RSTCLRR_FMCRST BIT(12) #define RCC_MP_AHB6ENSETR 0x19c #define RCC_MP_AHB6ENSETR_FMCEN BIT(12) const u32 bcr = STM32_FMC2_BCRx_WREN |STM32_FMC2_BCRx_RSVD | STM32_FMC2_BCRx_FACCEN | STM32_FMC2_BCRx_MWID(1) | STM32_FMC2_BCRx_MTYP(2) | STM32_FMC2_BCRx_MUXEN | STM32_FMC2_BCRx_MBKEN; const u32 btr = STM32_FMC2_BTRx_DATAHLD(3) | STM32_FMC2_BTRx_BUSTURN(2) | STM32_FMC2_BTRx_DATAST(0x22) | STM32_FMC2_BTRx_ADDHLD(2) | STM32_FMC2_BTRx_ADDSET(2); /* Set up FMC2 bus for KS8851-16MLL and X11 SRAM */ writel(RCC_MP_AHB6RSTCLRR_FMCRST, STM32_RCC_BASE + RCC_MP_AHB6RSTCLRR); writel(RCC_MP_AHB6ENSETR_FMCEN, STM32_RCC_BASE + RCC_MP_AHB6ENSETR); /* KS8851-16MLL -- Muxed mode */ writel(bcr, STM32_FMC2_BASE + STM32_FMC2_BCR(1)); writel(btr, STM32_FMC2_BASE + STM32_FMC2_BTR(1)); /* AS7C34098 SRAM on X11 -- Muxed mode */ writel(bcr, STM32_FMC2_BASE + STM32_FMC2_BCR(3)); writel(btr, STM32_FMC2_BASE + STM32_FMC2_BTR(3)); setbits_le32(STM32_FMC2_BASE + STM32_FMC2_BCR1, STM32_FMC2_BCRx_FMCEN); } /* board dependent setup after realloc */ int board_init(void) { board_key_check(); #ifdef CONFIG_DM_REGULATOR regulators_enable_boot_on(_DEBUG); #endif sysconf_init(); board_init_fmc2(); if (CONFIG_IS_ENABLED(LED)) led_default_state(); return 0; } int board_late_init(void) { char *boot_device; #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG const void *fdt_compat; int fdt_compat_len; fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible", &fdt_compat_len); if (fdt_compat && fdt_compat_len) { if (strncmp(fdt_compat, "st,", 3) != 0) env_set("board_name", fdt_compat); else env_set("board_name", fdt_compat + 3); } #endif /* Check the boot-source to disable bootdelay */ boot_device = env_get("boot_device"); if (!strcmp(boot_device, "serial") || !strcmp(boot_device, "usb")) env_set("bootdelay", "0"); #ifdef CONFIG_BOARD_EARLY_INIT_F env_set_ulong("dh_som_rev", somcode); env_set_ulong("dh_board_rev", brdcode); env_set_ulong("dh_ddr3_code", ddr3code); #endif return 0; } void board_quiesce_devices(void) { #ifdef CONFIG_LED setup_led(LEDST_OFF); #endif } /* eth init function : weak called in eqos driver */ int board_interface_eth_init(struct udevice *dev, phy_interface_t interface_type) { u8 *syscfg; u32 value; bool eth_clk_sel_reg = false; bool eth_ref_clk_sel_reg = false; /* Gigabit Ethernet 125MHz clock selection. */ eth_clk_sel_reg = dev_read_bool(dev, "st,eth-clk-sel"); /* Ethernet 50Mhz RMII clock selection */ eth_ref_clk_sel_reg = dev_read_bool(dev, "st,eth-ref-clk-sel"); syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG); if (!syscfg) return -ENODEV; switch (interface_type) { case PHY_INTERFACE_MODE_MII: value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL; debug("%s: PHY_INTERFACE_MODE_MII\n", __func__); break; case PHY_INTERFACE_MODE_GMII: if (eth_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII | SYSCFG_PMCSETR_ETH_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII; debug("%s: PHY_INTERFACE_MODE_GMII\n", __func__); break; case PHY_INTERFACE_MODE_RMII: if (eth_ref_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_RMII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_RMII; debug("%s: PHY_INTERFACE_MODE_RMII\n", __func__); break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: if (eth_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_RGMII | SYSCFG_PMCSETR_ETH_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_RGMII; debug("%s: PHY_INTERFACE_MODE_RGMII\n", __func__); break; default: debug("%s: Do not manage %d interface\n", __func__, interface_type); /* Do not manage others interfaces */ return -EINVAL; } /* clear and set ETH configuration bits */ writel(SYSCFG_PMCSETR_ETH_SEL_MASK | SYSCFG_PMCSETR_ETH_SELMII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL | SYSCFG_PMCSETR_ETH_CLK_SEL, syscfg + SYSCFG_PMCCLRR); writel(value, syscfg + SYSCFG_PMCSETR); return 0; } #if defined(CONFIG_OF_BOARD_SETUP) int ft_board_setup(void *blob, struct bd_info *bd) { return 0; } #endif static void board_copro_image_process(ulong fw_image, size_t fw_size) { int ret, id = 0; /* Copro id fixed to 0 as only one coproc on mp1 */ if (!rproc_is_initialized()) if (rproc_init()) { printf("Remote Processor %d initialization failed\n", id); return; } ret = rproc_load(id, fw_image, fw_size); printf("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n", id, fw_image, fw_size, ret ? " Failed!" : " Success!"); if (!ret) { rproc_start(id); env_set("copro_state", "booted"); } } U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_COPRO, board_copro_image_process);