// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016-2017 Micron Technology, Inc. * * Authors: * Peter Pan * Boris Brezillon */ #define pr_fmt(fmt) "spi-nand: " fmt #ifndef __UBOOT__ #include #include #include #include #include #include #include #include #include #else #include #include #include #include #include #include #include #include #include #include #endif /* SPI NAND index visible in MTD names */ static int spi_nand_idx; static void spinand_cache_op_adjust_colum(struct spinand_device *spinand, const struct nand_page_io_req *req, u16 *column) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int shift; if (nand->memorg.planes_per_lun < 2) return; /* The plane number is passed in MSB just above the column address */ shift = fls(nand->memorg.pagesize); *column |= req->pos.plane << shift; } static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) { struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, spinand->scratchbuf); int ret; ret = spi_mem_exec_op(spinand->slave, &op); if (ret) return ret; *val = *spinand->scratchbuf; return 0; } static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) { struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, spinand->scratchbuf); *spinand->scratchbuf = val; return spi_mem_exec_op(spinand->slave, &op); } static int spinand_read_status(struct spinand_device *spinand, u8 *status) { return spinand_read_reg_op(spinand, REG_STATUS, status); } static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) { struct nand_device *nand = spinand_to_nand(spinand); if (WARN_ON(spinand->cur_target < 0 || spinand->cur_target >= nand->memorg.ntargets)) return -EINVAL; *cfg = spinand->cfg_cache[spinand->cur_target]; return 0; } static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) { struct nand_device *nand = spinand_to_nand(spinand); int ret; if (WARN_ON(spinand->cur_target < 0 || spinand->cur_target >= nand->memorg.ntargets)) return -EINVAL; if (spinand->cfg_cache[spinand->cur_target] == cfg) return 0; ret = spinand_write_reg_op(spinand, REG_CFG, cfg); if (ret) return ret; spinand->cfg_cache[spinand->cur_target] = cfg; return 0; } /** * spinand_upd_cfg() - Update the configuration register * @spinand: the spinand device * @mask: the mask encoding the bits to update in the config reg * @val: the new value to apply * * Update the configuration register. * * Return: 0 on success, a negative error code otherwise. */ int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) { int ret; u8 cfg; ret = spinand_get_cfg(spinand, &cfg); if (ret) return ret; cfg &= ~mask; cfg |= val; return spinand_set_cfg(spinand, cfg); } /** * spinand_select_target() - Select a specific NAND target/die * @spinand: the spinand device * @target: the target/die to select * * Select a new target/die. If chip only has one die, this function is a NOOP. * * Return: 0 on success, a negative error code otherwise. */ int spinand_select_target(struct spinand_device *spinand, unsigned int target) { struct nand_device *nand = spinand_to_nand(spinand); int ret; if (WARN_ON(target >= nand->memorg.ntargets)) return -EINVAL; if (spinand->cur_target == target) return 0; if (nand->memorg.ntargets == 1) { spinand->cur_target = target; return 0; } ret = spinand->select_target(spinand, target); if (ret) return ret; spinand->cur_target = target; return 0; } static int spinand_init_cfg_cache(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); struct udevice *dev = spinand->slave->dev; unsigned int target; int ret; spinand->cfg_cache = devm_kzalloc(dev, sizeof(*spinand->cfg_cache) * nand->memorg.ntargets, GFP_KERNEL); if (!spinand->cfg_cache) return -ENOMEM; for (target = 0; target < nand->memorg.ntargets; target++) { ret = spinand_select_target(spinand, target); if (ret) return ret; /* * We use spinand_read_reg_op() instead of spinand_get_cfg() * here to bypass the config cache. */ ret = spinand_read_reg_op(spinand, REG_CFG, &spinand->cfg_cache[target]); if (ret) return ret; } return 0; } static int spinand_init_quad_enable(struct spinand_device *spinand) { bool enable = false; if (!(spinand->flags & SPINAND_HAS_QE_BIT)) return 0; if (spinand->op_templates.read_cache->data.buswidth == 4 || spinand->op_templates.write_cache->data.buswidth == 4 || spinand->op_templates.update_cache->data.buswidth == 4) enable = true; return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, enable ? CFG_QUAD_ENABLE : 0); } static int spinand_ecc_enable(struct spinand_device *spinand, bool enable) { return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, enable ? CFG_ECC_ENABLE : 0); } static int spinand_write_enable_op(struct spinand_device *spinand) { struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); return spi_mem_exec_op(spinand->slave, &op); } static int spinand_load_page_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int row = nanddev_pos_to_row(nand, &req->pos); struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); return spi_mem_exec_op(spinand->slave, &op); } static int spinand_read_from_cache_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct spi_mem_op op = *spinand->op_templates.read_cache; struct nand_device *nand = spinand_to_nand(spinand); struct mtd_info *mtd = nanddev_to_mtd(nand); struct nand_page_io_req adjreq = *req; unsigned int nbytes = 0; void *buf = NULL; u16 column = 0; int ret; if (req->datalen) { adjreq.datalen = nanddev_page_size(nand); adjreq.dataoffs = 0; adjreq.databuf.in = spinand->databuf; buf = spinand->databuf; nbytes = adjreq.datalen; } if (req->ooblen) { adjreq.ooblen = nanddev_per_page_oobsize(nand); adjreq.ooboffs = 0; adjreq.oobbuf.in = spinand->oobbuf; nbytes += nanddev_per_page_oobsize(nand); if (!buf) { buf = spinand->oobbuf; column = nanddev_page_size(nand); } } spinand_cache_op_adjust_colum(spinand, &adjreq, &column); op.addr.val = column; /* * Some controllers are limited in term of max RX data size. In this * case, just repeat the READ_CACHE operation after updating the * column. */ while (nbytes) { op.data.buf.in = buf; op.data.nbytes = nbytes; ret = spi_mem_adjust_op_size(spinand->slave, &op); if (ret) return ret; ret = spi_mem_exec_op(spinand->slave, &op); if (ret) return ret; buf += op.data.nbytes; nbytes -= op.data.nbytes; op.addr.val += op.data.nbytes; } if (req->datalen) memcpy(req->databuf.in, spinand->databuf + req->dataoffs, req->datalen); if (req->ooblen) { if (req->mode == MTD_OPS_AUTO_OOB) mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, spinand->oobbuf, req->ooboffs, req->ooblen); else memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, req->ooblen); } return 0; } static int spinand_write_to_cache_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct spi_mem_op op = *spinand->op_templates.write_cache; struct nand_device *nand = spinand_to_nand(spinand); struct mtd_info *mtd = nanddev_to_mtd(nand); struct nand_page_io_req adjreq = *req; unsigned int nbytes = 0; void *buf = NULL; u16 column = 0; int ret; memset(spinand->databuf, 0xff, nanddev_page_size(nand) + nanddev_per_page_oobsize(nand)); if (req->datalen) { memcpy(spinand->databuf + req->dataoffs, req->databuf.out, req->datalen); adjreq.dataoffs = 0; adjreq.datalen = nanddev_page_size(nand); adjreq.databuf.out = spinand->databuf; nbytes = adjreq.datalen; buf = spinand->databuf; } if (req->ooblen) { if (req->mode == MTD_OPS_AUTO_OOB) mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, spinand->oobbuf, req->ooboffs, req->ooblen); else memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, req->ooblen); adjreq.ooblen = nanddev_per_page_oobsize(nand); adjreq.ooboffs = 0; nbytes += nanddev_per_page_oobsize(nand); if (!buf) { buf = spinand->oobbuf; column = nanddev_page_size(nand); } } spinand_cache_op_adjust_colum(spinand, &adjreq, &column); op = *spinand->op_templates.write_cache; op.addr.val = column; /* * Some controllers are limited in term of max TX data size. In this * case, split the operation into one LOAD CACHE and one or more * LOAD RANDOM CACHE. */ while (nbytes) { op.data.buf.out = buf; op.data.nbytes = nbytes; ret = spi_mem_adjust_op_size(spinand->slave, &op); if (ret) return ret; ret = spi_mem_exec_op(spinand->slave, &op); if (ret) return ret; buf += op.data.nbytes; nbytes -= op.data.nbytes; op.addr.val += op.data.nbytes; /* * We need to use the RANDOM LOAD CACHE operation if there's * more than one iteration, because the LOAD operation resets * the cache to 0xff. */ if (nbytes) { column = op.addr.val; op = *spinand->op_templates.update_cache; op.addr.val = column; } } return 0; } static int spinand_program_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int row = nanddev_pos_to_row(nand, &req->pos); struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); return spi_mem_exec_op(spinand->slave, &op); } static int spinand_erase_op(struct spinand_device *spinand, const struct nand_pos *pos) { struct nand_device *nand = &spinand->base; unsigned int row = nanddev_pos_to_row(nand, pos); struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); return spi_mem_exec_op(spinand->slave, &op); } static int spinand_wait(struct spinand_device *spinand, u8 *s) { unsigned long start, stop; u8 status; int ret; start = get_timer(0); stop = 400; do { ret = spinand_read_status(spinand, &status); if (ret) return ret; if (!(status & STATUS_BUSY)) goto out; } while (get_timer(start) < stop); /* * Extra read, just in case the STATUS_READY bit has changed * since our last check */ ret = spinand_read_status(spinand, &status); if (ret) return ret; out: if (s) *s = status; return status & STATUS_BUSY ? -ETIMEDOUT : 0; } static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf) { struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf, SPINAND_MAX_ID_LEN); int ret; ret = spi_mem_exec_op(spinand->slave, &op); if (!ret) memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); return ret; } static int spinand_reset_op(struct spinand_device *spinand) { struct spi_mem_op op = SPINAND_RESET_OP; int ret; ret = spi_mem_exec_op(spinand->slave, &op); if (ret) return ret; return spinand_wait(spinand, NULL); } static int spinand_lock_block(struct spinand_device *spinand, u8 lock) { return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); } static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) { struct nand_device *nand = spinand_to_nand(spinand); if (spinand->eccinfo.get_status) return spinand->eccinfo.get_status(spinand, status); switch (status & STATUS_ECC_MASK) { case STATUS_ECC_NO_BITFLIPS: return 0; case STATUS_ECC_HAS_BITFLIPS: /* * We have no way to know exactly how many bitflips have been * fixed, so let's return the maximum possible value so that * wear-leveling layers move the data immediately. */ return nand->eccreq.strength; case STATUS_ECC_UNCOR_ERROR: return -EBADMSG; default: break; } return -EINVAL; } static int spinand_read_page(struct spinand_device *spinand, const struct nand_page_io_req *req, bool ecc_enabled) { u8 status; int ret; ret = spinand_load_page_op(spinand, req); if (ret) return ret; ret = spinand_wait(spinand, &status); if (ret < 0) return ret; ret = spinand_read_from_cache_op(spinand, req); if (ret) return ret; if (!ecc_enabled) return 0; return spinand_check_ecc_status(spinand, status); } static int spinand_write_page(struct spinand_device *spinand, const struct nand_page_io_req *req) { u8 status; int ret; ret = spinand_write_enable_op(spinand); if (ret) return ret; ret = spinand_write_to_cache_op(spinand, req); if (ret) return ret; ret = spinand_program_op(spinand, req); if (ret) return ret; ret = spinand_wait(spinand, &status); if (!ret && (status & STATUS_PROG_FAILED)) ret = -EIO; return ret; } static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct spinand_device *spinand = mtd_to_spinand(mtd); struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int max_bitflips = 0; struct nand_io_iter iter; bool enable_ecc = false; bool ecc_failed = false; int ret = 0; if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) enable_ecc = true; #ifndef __UBOOT__ mutex_lock(&spinand->lock); #endif nanddev_io_for_each_page(nand, from, ops, &iter) { schedule(); ret = spinand_select_target(spinand, iter.req.pos.target); if (ret) break; ret = spinand_ecc_enable(spinand, enable_ecc); if (ret) break; ret = spinand_read_page(spinand, &iter.req, enable_ecc); if (ret < 0 && ret != -EBADMSG) break; if (ret == -EBADMSG) { ecc_failed = true; mtd->ecc_stats.failed++; ret = 0; } else { mtd->ecc_stats.corrected += ret; max_bitflips = max_t(unsigned int, max_bitflips, ret); } ops->retlen += iter.req.datalen; ops->oobretlen += iter.req.ooblen; } #ifndef __UBOOT__ mutex_unlock(&spinand->lock); #endif if (ecc_failed && !ret) ret = -EBADMSG; return ret ? ret : max_bitflips; } static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct spinand_device *spinand = mtd_to_spinand(mtd); struct nand_device *nand = mtd_to_nanddev(mtd); struct nand_io_iter iter; bool enable_ecc = false; int ret = 0; if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) enable_ecc = true; #ifndef __UBOOT__ mutex_lock(&spinand->lock); #endif nanddev_io_for_each_page(nand, to, ops, &iter) { schedule(); ret = spinand_select_target(spinand, iter.req.pos.target); if (ret) break; ret = spinand_ecc_enable(spinand, enable_ecc); if (ret) break; ret = spinand_write_page(spinand, &iter.req); if (ret) break; ops->retlen += iter.req.datalen; ops->oobretlen += iter.req.ooblen; } #ifndef __UBOOT__ mutex_unlock(&spinand->lock); #endif return ret; } static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) { struct spinand_device *spinand = nand_to_spinand(nand); u8 marker[2] = { }; struct nand_page_io_req req = { .pos = *pos, .ooblen = sizeof(marker), .ooboffs = 0, .oobbuf.in = marker, .mode = MTD_OPS_RAW, }; int ret; ret = spinand_select_target(spinand, pos->target); if (ret) return ret; ret = spinand_read_page(spinand, &req, false); if (ret) return ret; if (marker[0] != 0xff || marker[1] != 0xff) return true; return false; } static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) { struct nand_device *nand = mtd_to_nanddev(mtd); #ifndef __UBOOT__ struct spinand_device *spinand = nand_to_spinand(nand); #endif struct nand_pos pos; int ret; nanddev_offs_to_pos(nand, offs, &pos); #ifndef __UBOOT__ mutex_lock(&spinand->lock); #endif ret = nanddev_isbad(nand, &pos); #ifndef __UBOOT__ mutex_unlock(&spinand->lock); #endif return ret; } static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) { struct spinand_device *spinand = nand_to_spinand(nand); u8 marker[2] = { }; struct nand_page_io_req req = { .pos = *pos, .ooboffs = 0, .ooblen = sizeof(marker), .oobbuf.out = marker, .mode = MTD_OPS_RAW, }; int ret; ret = spinand_select_target(spinand, pos->target); if (ret) return ret; return spinand_write_page(spinand, &req); } static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) { struct nand_device *nand = mtd_to_nanddev(mtd); #ifndef __UBOOT__ struct spinand_device *spinand = nand_to_spinand(nand); #endif struct nand_pos pos; int ret; nanddev_offs_to_pos(nand, offs, &pos); #ifndef __UBOOT__ mutex_lock(&spinand->lock); #endif ret = nanddev_markbad(nand, &pos); #ifndef __UBOOT__ mutex_unlock(&spinand->lock); #endif return ret; } static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) { struct spinand_device *spinand = nand_to_spinand(nand); u8 status; int ret; ret = spinand_select_target(spinand, pos->target); if (ret) return ret; ret = spinand_write_enable_op(spinand); if (ret) return ret; ret = spinand_erase_op(spinand, pos); if (ret) return ret; ret = spinand_wait(spinand, &status); if (!ret && (status & STATUS_ERASE_FAILED)) ret = -EIO; return ret; } static int spinand_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo) { #ifndef __UBOOT__ struct spinand_device *spinand = mtd_to_spinand(mtd); #endif int ret; #ifndef __UBOOT__ mutex_lock(&spinand->lock); #endif ret = nanddev_mtd_erase(mtd, einfo); #ifndef __UBOOT__ mutex_unlock(&spinand->lock); #endif return ret; } static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) { #ifndef __UBOOT__ struct spinand_device *spinand = mtd_to_spinand(mtd); #endif struct nand_device *nand = mtd_to_nanddev(mtd); struct nand_pos pos; int ret; nanddev_offs_to_pos(nand, offs, &pos); #ifndef __UBOOT__ mutex_lock(&spinand->lock); #endif ret = nanddev_isreserved(nand, &pos); #ifndef __UBOOT__ mutex_unlock(&spinand->lock); #endif return ret; } const struct spi_mem_op * spinand_find_supported_op(struct spinand_device *spinand, const struct spi_mem_op *ops, unsigned int nops) { unsigned int i; for (i = 0; i < nops; i++) { if (spi_mem_supports_op(spinand->slave, &ops[i])) return &ops[i]; } return NULL; } static const struct nand_ops spinand_ops = { .erase = spinand_erase, .markbad = spinand_markbad, .isbad = spinand_isbad, }; static const struct spinand_manufacturer *spinand_manufacturers[] = { &gigadevice_spinand_manufacturer, ¯onix_spinand_manufacturer, µn_spinand_manufacturer, &toshiba_spinand_manufacturer, &winbond_spinand_manufacturer, }; static int spinand_manufacturer_detect(struct spinand_device *spinand) { unsigned int i; int ret; for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { ret = spinand_manufacturers[i]->ops->detect(spinand); if (ret > 0) { spinand->manufacturer = spinand_manufacturers[i]; return 0; } else if (ret < 0) { return ret; } } return -ENOTSUPP; } static int spinand_manufacturer_init(struct spinand_device *spinand) { if (spinand->manufacturer->ops->init) return spinand->manufacturer->ops->init(spinand); return 0; } static void spinand_manufacturer_cleanup(struct spinand_device *spinand) { /* Release manufacturer private data */ if (spinand->manufacturer->ops->cleanup) return spinand->manufacturer->ops->cleanup(spinand); } static const struct spi_mem_op * spinand_select_op_variant(struct spinand_device *spinand, const struct spinand_op_variants *variants) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int i; for (i = 0; i < variants->nops; i++) { struct spi_mem_op op = variants->ops[i]; unsigned int nbytes; int ret; nbytes = nanddev_per_page_oobsize(nand) + nanddev_page_size(nand); while (nbytes) { op.data.nbytes = nbytes; ret = spi_mem_adjust_op_size(spinand->slave, &op); if (ret) break; if (!spi_mem_supports_op(spinand->slave, &op)) break; nbytes -= op.data.nbytes; } if (!nbytes) return &variants->ops[i]; } return NULL; } /** * spinand_match_and_init() - Try to find a match between a device ID and an * entry in a spinand_info table * @spinand: SPI NAND object * @table: SPI NAND device description table * @table_size: size of the device description table * * Should be used by SPI NAND manufacturer drivers when they want to find a * match between a device ID retrieved through the READ_ID command and an * entry in the SPI NAND description table. If a match is found, the spinand * object will be initialized with information provided by the matching * spinand_info entry. * * Return: 0 on success, a negative error code otherwise. */ int spinand_match_and_init(struct spinand_device *spinand, const struct spinand_info *table, unsigned int table_size, u8 devid) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int i; for (i = 0; i < table_size; i++) { const struct spinand_info *info = &table[i]; const struct spi_mem_op *op; if (devid != info->devid) continue; nand->memorg = table[i].memorg; nand->eccreq = table[i].eccreq; spinand->eccinfo = table[i].eccinfo; spinand->flags = table[i].flags; spinand->select_target = table[i].select_target; op = spinand_select_op_variant(spinand, info->op_variants.read_cache); if (!op) return -ENOTSUPP; spinand->op_templates.read_cache = op; op = spinand_select_op_variant(spinand, info->op_variants.write_cache); if (!op) return -ENOTSUPP; spinand->op_templates.write_cache = op; op = spinand_select_op_variant(spinand, info->op_variants.update_cache); spinand->op_templates.update_cache = op; return 0; } return -ENOTSUPP; } static int spinand_detect(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); int ret; ret = spinand_reset_op(spinand); if (ret) return ret; ret = spinand_read_id_op(spinand, spinand->id.data); if (ret) return ret; spinand->id.len = SPINAND_MAX_ID_LEN; ret = spinand_manufacturer_detect(spinand); if (ret) { dev_err(spinand->slave->dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, spinand->id.data); return ret; } if (nand->memorg.ntargets > 1 && !spinand->select_target) { dev_err(spinand->slave->dev, "SPI NANDs with more than one die must implement ->select_target()\n"); return -EINVAL; } dev_info(spinand->slave->dev, "%s SPI NAND was found.\n", spinand->manufacturer->name); dev_info(spinand->slave->dev, "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); return 0; } static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *region) { return -ERANGE; } static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *region) { if (section) return -ERANGE; /* Reserve 2 bytes for the BBM. */ region->offset = 2; region->length = 62; return 0; } static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { .ecc = spinand_noecc_ooblayout_ecc, .rfree = spinand_noecc_ooblayout_free, }; static int spinand_init(struct spinand_device *spinand) { struct mtd_info *mtd = spinand_to_mtd(spinand); struct nand_device *nand = mtd_to_nanddev(mtd); int ret, i; /* * We need a scratch buffer because the spi_mem interface requires that * buf passed in spi_mem_op->data.buf be DMA-able. */ spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); if (!spinand->scratchbuf) return -ENOMEM; ret = spinand_detect(spinand); if (ret) goto err_free_bufs; /* * Use kzalloc() instead of devm_kzalloc() here, because some drivers * may use this buffer for DMA access. * Memory allocated by devm_ does not guarantee DMA-safe alignment. */ spinand->databuf = kzalloc(nanddev_page_size(nand) + nanddev_per_page_oobsize(nand), GFP_KERNEL); if (!spinand->databuf) { ret = -ENOMEM; goto err_free_bufs; } spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); ret = spinand_init_cfg_cache(spinand); if (ret) goto err_free_bufs; ret = spinand_init_quad_enable(spinand); if (ret) goto err_free_bufs; ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); if (ret) goto err_free_bufs; ret = spinand_manufacturer_init(spinand); if (ret) { dev_err(spinand->slave->dev, "Failed to initialize the SPI NAND chip (err = %d)\n", ret); goto err_free_bufs; } /* After power up, all blocks are locked, so unlock them here. */ for (i = 0; i < nand->memorg.ntargets; i++) { ret = spinand_select_target(spinand, i); if (ret) goto err_free_bufs; ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); if (ret) goto err_free_bufs; } ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); if (ret) goto err_manuf_cleanup; /* * Right now, we don't support ECC, so let the whole oob * area is available for user. */ mtd->_read_oob = spinand_mtd_read; mtd->_write_oob = spinand_mtd_write; mtd->_block_isbad = spinand_mtd_block_isbad; mtd->_block_markbad = spinand_mtd_block_markbad; mtd->_block_isreserved = spinand_mtd_block_isreserved; mtd->_erase = spinand_mtd_erase; if (spinand->eccinfo.ooblayout) mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); else mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); ret = mtd_ooblayout_count_freebytes(mtd); if (ret < 0) goto err_cleanup_nanddev; mtd->oobavail = ret; return 0; err_cleanup_nanddev: nanddev_cleanup(nand); err_manuf_cleanup: spinand_manufacturer_cleanup(spinand); err_free_bufs: kfree(spinand->databuf); kfree(spinand->scratchbuf); return ret; } static void spinand_cleanup(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); nanddev_cleanup(nand); spinand_manufacturer_cleanup(spinand); kfree(spinand->databuf); kfree(spinand->scratchbuf); } static int spinand_probe(struct udevice *dev) { struct spinand_device *spinand = dev_get_priv(dev); struct spi_slave *slave = dev_get_parent_priv(dev); struct mtd_info *mtd = dev_get_uclass_priv(dev); struct nand_device *nand = spinand_to_nand(spinand); int ret; #ifndef __UBOOT__ spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), GFP_KERNEL); if (!spinand) return -ENOMEM; spinand->spimem = mem; spi_mem_set_drvdata(mem, spinand); spinand_set_of_node(spinand, mem->spi->dev.of_node); mutex_init(&spinand->lock); mtd = spinand_to_mtd(spinand); mtd->dev.parent = &mem->spi->dev; #else nand->mtd = mtd; mtd->priv = nand; mtd->dev = dev; mtd->name = malloc(20); if (!mtd->name) return -ENOMEM; sprintf(mtd->name, "spi-nand%d", spi_nand_idx++); spinand->slave = slave; spinand_set_ofnode(spinand, dev_ofnode(dev)); #endif ret = spinand_init(spinand); if (ret) return ret; #ifndef __UBOOT__ ret = mtd_device_register(mtd, NULL, 0); #else ret = add_mtd_device(mtd); #endif if (ret) goto err_spinand_cleanup; return 0; err_spinand_cleanup: spinand_cleanup(spinand); return ret; } #ifndef __UBOOT__ static int spinand_remove(struct udevice *slave) { struct spinand_device *spinand; struct mtd_info *mtd; int ret; spinand = spi_mem_get_drvdata(slave); mtd = spinand_to_mtd(spinand); free(mtd->name); ret = mtd_device_unregister(mtd); if (ret) return ret; spinand_cleanup(spinand); return 0; } static const struct spi_device_id spinand_ids[] = { { .name = "spi-nand" }, { /* sentinel */ }, }; #ifdef CONFIG_OF static const struct of_device_id spinand_of_ids[] = { { .compatible = "spi-nand" }, { /* sentinel */ }, }; #endif static struct spi_mem_driver spinand_drv = { .spidrv = { .id_table = spinand_ids, .driver = { .name = "spi-nand", .of_match_table = of_match_ptr(spinand_of_ids), }, }, .probe = spinand_probe, .remove = spinand_remove, }; module_spi_mem_driver(spinand_drv); MODULE_DESCRIPTION("SPI NAND framework"); MODULE_AUTHOR("Peter Pan"); MODULE_LICENSE("GPL v2"); #endif /* __UBOOT__ */ static const struct udevice_id spinand_ids[] = { { .compatible = "spi-nand" }, { /* sentinel */ }, }; U_BOOT_DRIVER(spinand) = { .name = "spi_nand", .id = UCLASS_MTD, .of_match = spinand_ids, .priv_auto = sizeof(struct spinand_device), .probe = spinand_probe, };