// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2007,2009-2014 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static void *get_fdt_virt(void) { return (void *)CONFIG_SYS_TMPVIRT; } static uint64_t get_fdt_phys(void) { return (uint64_t)(uintptr_t)gd->fdt_blob; } static void map_fdt_as(int esel) { u32 mas0, mas1, mas2, mas3, mas7; uint64_t fdt_phys = get_fdt_phys(); unsigned long fdt_phys_tlb = fdt_phys & ~0xffffful; unsigned long fdt_virt_tlb = (ulong)get_fdt_virt() & ~0xffffful; mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(esel); mas1 = MAS1_VALID | MAS1_TID(0) | MAS1_TS | MAS1_TSIZE(BOOKE_PAGESZ_1M); mas2 = FSL_BOOKE_MAS2(fdt_virt_tlb, 0); mas3 = FSL_BOOKE_MAS3(fdt_phys_tlb, 0, MAS3_SW|MAS3_SR); mas7 = FSL_BOOKE_MAS7(fdt_phys_tlb); write_tlb(mas0, mas1, mas2, mas3, mas7); } uint64_t get_phys_ccsrbar_addr_early(void) { void *fdt = get_fdt_virt(); uint64_t r; int size, node; u32 naddr; const fdt32_t *prop; /* * To be able to read the FDT we need to create a temporary TLB * map for it. */ map_fdt_as(10); node = fdt_path_offset(fdt, "/soc"); naddr = fdt_address_cells(fdt, node); prop = fdt_getprop(fdt, node, "ranges", &size); r = fdt_translate_address(fdt, node, prop + naddr); disable_tlb(10); return r; } int board_early_init_f(void) { return 0; } int checkboard(void) { return 0; } static int pci_map_region(void *fdt, int pci_node, int range_id, phys_addr_t *pbaddr, phys_size_t *ppaddr, pci_addr_t *pvaddr, pci_size_t *psize, ulong *pmap_addr) { uint64_t baddr; uint64_t paddr; uint64_t size; ulong map_addr; int r; r = fdt_read_range(fdt, pci_node, range_id, &baddr, &paddr, &size); if (r) return r; if (pbaddr) *pbaddr = baddr; if (ppaddr) *ppaddr = paddr; if (psize) *psize = size; if (!pmap_addr) return 0; map_addr = *pmap_addr; /* Align map_addr */ map_addr += size - 1; map_addr &= ~(size - 1); if (map_addr + size >= CONFIG_SYS_PCI_MAP_END) return -1; /* Map virtual memory for range */ assert(!tlb_map_range(map_addr, paddr, size, TLB_MAP_IO)); *pmap_addr = map_addr + size; if (pvaddr) *pvaddr = map_addr; return 0; } void pci_init_board(void) { struct pci_controller *pci_hoses; void *fdt = get_fdt_virt(); int pci_node = -1; int pci_num = 0; int pci_count = 0; ulong map_addr; puts("\n"); /* Start MMIO and PIO range maps above RAM */ map_addr = CONFIG_SYS_PCI_MAP_START; /* Count and allocate PCI buses */ pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, "device_type", "pci", 4); while (pci_node != -FDT_ERR_NOTFOUND) { pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, "device_type", "pci", 4); pci_count++; } if (pci_count) { pci_hoses = malloc(sizeof(struct pci_controller) * pci_count); } else { printf("PCI: disabled\n\n"); return; } /* Spawn PCI buses based on device tree */ pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, "device_type", "pci", 4); while (pci_node != -FDT_ERR_NOTFOUND) { struct fsl_pci_info pci_info = { }; const fdt32_t *reg; int r; reg = fdt_getprop(fdt, pci_node, "reg", NULL); pci_info.regs = fdt_translate_address(fdt, pci_node, reg); /* Map MMIO range */ r = pci_map_region(fdt, pci_node, 0, &pci_info.mem_bus, &pci_info.mem_phys, NULL, &pci_info.mem_size, &map_addr); if (r) break; /* Map PIO range */ r = pci_map_region(fdt, pci_node, 1, &pci_info.io_bus, &pci_info.io_phys, NULL, &pci_info.io_size, &map_addr); if (r) break; /* Instantiate */ pci_info.pci_num = pci_num + 1; fsl_setup_hose(&pci_hoses[pci_num], pci_info.regs); printf("PCI: base address %lx\n", pci_info.regs); fsl_pci_init_port(&pci_info, &pci_hoses[pci_num], pci_num); /* Jump to next PCI node */ pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, "device_type", "pci", 4); pci_num++; } puts("\n"); } int last_stage_init(void) { void *fdt = get_fdt_virt(); int len = 0; const uint64_t *prop; int chosen; chosen = fdt_path_offset(fdt, "/chosen"); if (chosen < 0) { printf("Couldn't find /chosen node in fdt\n"); return -EIO; } /* -kernel boot */ prop = fdt_getprop(fdt, chosen, "qemu,boot-kernel", &len); if (prop && (len >= 8)) env_set_hex("qemu_kernel_addr", *prop); /* Give the user a variable for the host fdt */ env_set_hex("fdt_addr_r", (ulong)fdt); return 0; } static uint64_t get_linear_ram_size(void) { void *fdt = get_fdt_virt(); const void *prop; int memory; int len; memory = fdt_path_offset(fdt, "/memory"); prop = fdt_getprop(fdt, memory, "reg", &len); if (prop && len >= 16) return *(uint64_t *)(prop+8); panic("Couldn't determine RAM size"); } int board_eth_init(struct bd_info *bis) { return pci_eth_init(bis); } #if defined(CONFIG_OF_BOARD_SETUP) int ft_board_setup(void *blob, struct bd_info *bd) { FT_FSL_PCI_SETUP; return 0; } #endif void print_laws(void) { /* We don't emulate LAWs yet */ } phys_size_t fixed_sdram(void) { return get_linear_ram_size(); } phys_size_t fsl_ddr_sdram_size(void) { return get_linear_ram_size(); } void init_tlbs(void) { phys_size_t ram_size; /* * Create a temporary AS=1 map for the fdt * * We use ESEL=0 here to overwrite the previous AS=0 map for ourselves * which was only 4k big. This way we don't have to clear any other maps. */ map_fdt_as(0); /* Fetch RAM size from the fdt */ ram_size = get_linear_ram_size(); /* And remove our fdt map again */ disable_tlb(0); /* Create an internal map of manually created TLB maps */ init_used_tlb_cams(); /* Create a dynamic AS=0 CCSRBAR mapping */ assert(!tlb_map_range(CONFIG_SYS_CCSRBAR, CONFIG_SYS_CCSRBAR_PHYS, 1024 * 1024, TLB_MAP_IO)); /* Create a RAM map that spans all accessible RAM */ setup_ddr_tlbs(ram_size >> 20); /* Create a map for the TLB */ assert(!tlb_map_range((ulong)get_fdt_virt(), get_fdt_phys(), 1024 * 1024, TLB_MAP_RAM)); } void init_laws(void) { /* We don't emulate LAWs yet */ } static uint32_t get_cpu_freq(void) { void *fdt = get_fdt_virt(); int cpus_node = fdt_path_offset(fdt, "/cpus"); int cpu_node = fdt_first_subnode(fdt, cpus_node); const char *prop = "clock-frequency"; return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0); } void get_sys_info(sys_info_t *sys_info) { int freq = get_cpu_freq(); memset(sys_info, 0, sizeof(sys_info_t)); sys_info->freq_systembus = freq; sys_info->freq_ddrbus = freq; sys_info->freq_processor[0] = freq; } int get_clocks(void) { sys_info_t sys_info; get_sys_info(&sys_info); gd->cpu_clk = sys_info.freq_processor[0]; gd->bus_clk = sys_info.freq_systembus; gd->mem_clk = sys_info.freq_ddrbus; gd->arch.lbc_clk = sys_info.freq_ddrbus; return 0; } unsigned long get_tbclk(void) { void *fdt = get_fdt_virt(); int cpus_node = fdt_path_offset(fdt, "/cpus"); int cpu_node = fdt_first_subnode(fdt, cpus_node); const char *prop = "timebase-frequency"; return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0); } /******************************************** * get_bus_freq * return system bus freq in Hz *********************************************/ ulong get_bus_freq(ulong dummy) { sys_info_t sys_info; get_sys_info(&sys_info); return sys_info.freq_systembus; } /* * Return the number of cores on this SOC. */ int cpu_numcores(void) { /* * The QEMU u-boot target only needs to drive the first core, * spinning and device tree nodes get driven by QEMU itself */ return 1; } /* * Return a 32-bit mask indicating which cores are present on this SOC. */ u32 cpu_mask(void) { return (1 << cpu_numcores()) - 1; }