// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017-2022 NXP */ #include <common.h> #include <clock_legacy.h> #include <display_options.h> #include <env.h> #include <i2c.h> #include <init.h> #include <log.h> #include <malloc.h> #include <errno.h> #include <netdev.h> #include <fsl_ifc.h> #include <fsl_ddr.h> #include <asm/global_data.h> #include <asm/io.h> #include <fdt_support.h> #include <linux/delay.h> #include <linux/libfdt.h> #include <fsl-mc/fsl_mc.h> #include <env_internal.h> #include <asm/arch-fsl-layerscape/soc.h> #include <asm/arch/ppa.h> #include <hwconfig.h> #include <asm/arch/fsl_serdes.h> #include <asm/arch/soc.h> #include <asm/arch-fsl-layerscape/fsl_icid.h> #include "../common/i2c_mux.h" #include "../common/qixis.h" #include "ls1088a_qixis.h" #include "../common/vid.h" #include <fsl_immap.h> DECLARE_GLOBAL_DATA_PTR; #ifdef CONFIG_TARGET_LS1088AQDS #ifdef CONFIG_TFABOOT struct ifc_regs ifc_cfg_ifc_nor_boot[CONFIG_SYS_FSL_IFC_BANK_COUNT] = { { "nor0", CFG_SYS_NOR0_CSPR_EARLY, CFG_SYS_NOR0_CSPR_EXT, CFG_SYS_NOR_AMASK, CFG_SYS_NOR_CSOR, { CFG_SYS_NOR_FTIM0, CFG_SYS_NOR_FTIM1, CFG_SYS_NOR_FTIM2, CFG_SYS_NOR_FTIM3 }, 0, CFG_SYS_NOR0_CSPR, 0, }, { "nor1", CFG_SYS_NOR1_CSPR_EARLY, CFG_SYS_NOR0_CSPR_EXT, CFG_SYS_NOR_AMASK_EARLY, CFG_SYS_NOR_CSOR, { CFG_SYS_NOR_FTIM0, CFG_SYS_NOR_FTIM1, CFG_SYS_NOR_FTIM2, CFG_SYS_NOR_FTIM3 }, 0, CFG_SYS_NOR1_CSPR, CFG_SYS_NOR_AMASK, }, { "nand", CFG_SYS_NAND_CSPR, CFG_SYS_NAND_CSPR_EXT, CFG_SYS_NAND_AMASK, CFG_SYS_NAND_CSOR, { CFG_SYS_NAND_FTIM0, CFG_SYS_NAND_FTIM1, CFG_SYS_NAND_FTIM2, CFG_SYS_NAND_FTIM3 }, }, { "fpga", CFG_SYS_FPGA_CSPR, CFG_SYS_FPGA_CSPR_EXT, SYS_FPGA_AMASK, CFG_SYS_FPGA_CSOR, { SYS_FPGA_CS_FTIM0, SYS_FPGA_CS_FTIM1, SYS_FPGA_CS_FTIM2, SYS_FPGA_CS_FTIM3 }, 0, SYS_FPGA_CSPR_FINAL, 0, } }; struct ifc_regs ifc_cfg_qspi_nor_boot[CONFIG_SYS_FSL_IFC_BANK_COUNT] = { { "nand", CFG_SYS_NAND_CSPR, CFG_SYS_NAND_CSPR_EXT, CFG_SYS_NAND_AMASK, CFG_SYS_NAND_CSOR, { CFG_SYS_NAND_FTIM0, CFG_SYS_NAND_FTIM1, CFG_SYS_NAND_FTIM2, CFG_SYS_NAND_FTIM3 }, }, { "reserved", }, { "fpga", CFG_SYS_FPGA_CSPR, CFG_SYS_FPGA_CSPR_EXT, SYS_FPGA_AMASK, CFG_SYS_FPGA_CSOR, { SYS_FPGA_CS_FTIM0, SYS_FPGA_CS_FTIM1, SYS_FPGA_CS_FTIM2, SYS_FPGA_CS_FTIM3 }, 0, SYS_FPGA_CSPR_FINAL, 0, } }; void ifc_cfg_boot_info(struct ifc_regs_info *regs_info) { enum boot_src src = get_boot_src(); if (src == BOOT_SOURCE_QSPI_NOR) regs_info->regs = ifc_cfg_qspi_nor_boot; else regs_info->regs = ifc_cfg_ifc_nor_boot; regs_info->cs_size = CONFIG_SYS_FSL_IFC_BANK_COUNT; } #endif /* CONFIG_TFABOOT */ #endif /* CONFIG_TARGET_LS1088AQDS */ int board_early_init_f(void) { #if defined(CONFIG_SYS_I2C_EARLY_INIT) && defined(CONFIG_TARGET_LS1088AQDS) i2c_early_init_f(); #endif fsl_lsch3_early_init_f(); return 0; } #ifdef CONFIG_FSL_QIXIS unsigned long long get_qixis_addr(void) { unsigned long long addr; if (gd->flags & GD_FLG_RELOC) addr = QIXIS_BASE_PHYS; else addr = QIXIS_BASE_PHYS_EARLY; /* * IFC address under 256MB is mapped to 0x30000000, any address above * is mapped to 0x5_10000000 up to 4GB. */ addr = addr > 0x10000000 ? addr + 0x500000000ULL : addr + 0x30000000; return addr; } #endif #if defined(CONFIG_VID) int init_func_vid(void) { if (adjust_vdd(0) < 0) printf("core voltage not adjusted\n"); return 0; } u16 soc_get_fuse_vid(int vid_index) { static const u16 vdd[32] = { 10250, 9875, 9750, 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 9000, 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 10000, /* 1.0000V */ 10125, 10250, 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ 0, /* reserved */ }; return vdd[vid_index]; }; #endif int is_pb_board(void) { u8 board_id; board_id = QIXIS_READ(id); if (board_id == LS1088ARDB_PB_BOARD) return 1; else return 0; } int fixup_ls1088ardb_pb_banner(void *fdt) { fdt_setprop_string(fdt, 0, "model", "LS1088ARDB-PB Board"); return 0; } #if !defined(CONFIG_SPL_BUILD) int checkboard(void) { #ifdef CONFIG_TFABOOT enum boot_src src = get_boot_src(); #endif char buf[64]; u8 sw; static const char *const freq[] = {"100", "125", "156.25", "100 separate SSCG"}; int clock; #ifdef CONFIG_TARGET_LS1088AQDS printf("Board: LS1088A-QDS, "); #else if (is_pb_board()) printf("Board: LS1088ARDB-PB, "); else printf("Board: LS1088A-RDB, "); #endif sw = QIXIS_READ(arch); printf("Board Arch: V%d, ", sw >> 4); #ifdef CONFIG_TARGET_LS1088AQDS printf("Board version: %c, boot from ", (sw & 0xf) + 'A' - 1); #else printf("Board version: %c, boot from ", (sw & 0xf) + 'A'); #endif memset((u8 *)buf, 0x00, ARRAY_SIZE(buf)); sw = QIXIS_READ(brdcfg[0]); sw = (sw & QIXIS_LBMAP_MASK) >> QIXIS_LBMAP_SHIFT; #ifdef CONFIG_TFABOOT if (src == BOOT_SOURCE_SD_MMC) puts("SD card\n"); #else #ifdef CONFIG_SD_BOOT puts("SD card\n"); #endif #endif /* CONFIG_TFABOOT */ switch (sw) { #ifdef CONFIG_TARGET_LS1088AQDS case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: printf("vBank: %d\n", sw); break; case 8: puts("PromJet\n"); break; case 15: puts("IFCCard\n"); break; case 14: #else case 0: #endif puts("QSPI:"); sw = QIXIS_READ(brdcfg[0]); sw = (sw & QIXIS_QMAP_MASK) >> QIXIS_QMAP_SHIFT; if (sw == 0 || sw == 4) puts("0\n"); else if (sw == 1) puts("1\n"); else puts("EMU\n"); break; default: printf("invalid setting of SW%u\n", QIXIS_LBMAP_SWITCH); break; } #ifdef CONFIG_TARGET_LS1088AQDS printf("FPGA: v%d (%s), build %d", (int)QIXIS_READ(scver), qixis_read_tag(buf), (int)qixis_read_minor()); /* the timestamp string contains "\n" at the end */ printf(" on %s", qixis_read_time(buf)); #else printf("CPLD: v%d.%d\n", QIXIS_READ(scver), QIXIS_READ(tagdata)); #endif /* * Display the actual SERDES reference clocks as configured by the * dip switches on the board. Note that the SWx registers could * technically be set to force the reference clocks to match the * values that the SERDES expects (or vice versa). For now, however, * we just display both values and hope the user notices when they * don't match. */ puts("SERDES1 Reference : "); sw = QIXIS_READ(brdcfg[2]); clock = (sw >> 6) & 3; printf("Clock1 = %sMHz ", freq[clock]); clock = (sw >> 4) & 3; printf("Clock2 = %sMHz", freq[clock]); puts("\nSERDES2 Reference : "); clock = (sw >> 2) & 3; printf("Clock1 = %sMHz ", freq[clock]); clock = (sw >> 0) & 3; printf("Clock2 = %sMHz\n", freq[clock]); return 0; } #endif bool if_board_diff_clk(void) { #ifdef CONFIG_TARGET_LS1088AQDS u8 diff_conf = QIXIS_READ(brdcfg[11]); return diff_conf & 0x40; #else u8 diff_conf = QIXIS_READ(dutcfg[11]); return diff_conf & 0x80; #endif } #ifdef CONFIG_DYNAMIC_SYS_CLK_FREQ unsigned long get_board_sys_clk(void) { u8 sysclk_conf = QIXIS_READ(brdcfg[1]); switch (sysclk_conf & 0x0f) { case QIXIS_SYSCLK_83: return 83333333; case QIXIS_SYSCLK_100: return 100000000; case QIXIS_SYSCLK_125: return 125000000; case QIXIS_SYSCLK_133: return 133333333; case QIXIS_SYSCLK_150: return 150000000; case QIXIS_SYSCLK_160: return 160000000; case QIXIS_SYSCLK_166: return 166666666; } return 66666666; } #endif #ifdef CONFIG_DYNAMIC_DDR_CLK_FREQ unsigned long get_board_ddr_clk(void) { u8 ddrclk_conf = QIXIS_READ(brdcfg[1]); if (if_board_diff_clk()) return get_board_sys_clk(); switch ((ddrclk_conf & 0x30) >> 4) { case QIXIS_DDRCLK_100: return 100000000; case QIXIS_DDRCLK_125: return 125000000; case QIXIS_DDRCLK_133: return 133333333; } return 66666666; } #endif #if !defined(CONFIG_SPL_BUILD) void board_retimer_init(void) { u8 reg; /* Retimer is connected to I2C1_CH5 */ select_i2c_ch_pca9547(I2C_MUX_CH5, 0); /* Access to Control/Shared register */ reg = 0x0; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0xff, 1, ®, 1); #else struct udevice *dev; i2c_get_chip_for_busnum(0, I2C_RETIMER_ADDR, 1, &dev); dm_i2c_write(dev, 0xff, ®, 1); #endif /* Read device revision and ID */ #if !CONFIG_IS_ENABLED(DM_I2C) i2c_read(I2C_RETIMER_ADDR, 1, 1, ®, 1); #else dm_i2c_read(dev, 1, ®, 1); #endif debug("Retimer version id = 0x%x\n", reg); /* Enable Broadcast. All writes target all channel register sets */ reg = 0x0c; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0xff, 1, ®, 1); #else dm_i2c_write(dev, 0xff, ®, 1); #endif /* Reset Channel Registers */ #if !CONFIG_IS_ENABLED(DM_I2C) i2c_read(I2C_RETIMER_ADDR, 0, 1, ®, 1); #else dm_i2c_read(dev, 0, ®, 1); #endif reg |= 0x4; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0, 1, ®, 1); #else dm_i2c_write(dev, 0, ®, 1); #endif /* Set data rate as 10.3125 Gbps */ reg = 0x90; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0x60, 1, ®, 1); #else dm_i2c_write(dev, 0x60, ®, 1); #endif reg = 0xb3; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0x61, 1, ®, 1); #else dm_i2c_write(dev, 0x61, ®, 1); #endif reg = 0x90; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0x62, 1, ®, 1); #else dm_i2c_write(dev, 0x62, ®, 1); #endif reg = 0xb3; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0x63, 1, ®, 1); #else dm_i2c_write(dev, 0x63, ®, 1); #endif reg = 0xcd; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0x64, 1, ®, 1); #else dm_i2c_write(dev, 0x64, ®, 1); #endif /* Select VCO Divider to full rate (000) */ #if !CONFIG_IS_ENABLED(DM_I2C) i2c_read(I2C_RETIMER_ADDR, 0x2F, 1, ®, 1); #else dm_i2c_read(dev, 0x2F, ®, 1); #endif reg &= 0x0f; reg |= 0x70; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR, 0x2F, 1, ®, 1); #else dm_i2c_write(dev, 0x2F, ®, 1); #endif #ifdef CONFIG_TARGET_LS1088AQDS /* Retimer is connected to I2C1_CH5 */ select_i2c_ch_pca9547(I2C_MUX_CH5, 0); /* Access to Control/Shared register */ reg = 0x0; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0xff, 1, ®, 1); #else i2c_get_chip_for_busnum(0, I2C_RETIMER_ADDR2, 1, &dev); dm_i2c_write(dev, 0xff, ®, 1); #endif /* Read device revision and ID */ #if !CONFIG_IS_ENABLED(DM_I2C) i2c_read(I2C_RETIMER_ADDR2, 1, 1, ®, 1); #else dm_i2c_read(dev, 1, ®, 1); #endif debug("Retimer version id = 0x%x\n", reg); /* Enable Broadcast. All writes target all channel register sets */ reg = 0x0c; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0xff, 1, ®, 1); #else dm_i2c_write(dev, 0xff, ®, 1); #endif /* Reset Channel Registers */ #if !CONFIG_IS_ENABLED(DM_I2C) i2c_read(I2C_RETIMER_ADDR2, 0, 1, ®, 1); #else dm_i2c_read(dev, 0, ®, 1); #endif reg |= 0x4; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0, 1, ®, 1); #else dm_i2c_write(dev, 0, ®, 1); #endif /* Set data rate as 10.3125 Gbps */ reg = 0x90; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0x60, 1, ®, 1); #else dm_i2c_write(dev, 0x60, ®, 1); #endif reg = 0xb3; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0x61, 1, ®, 1); #else dm_i2c_write(dev, 0x61, ®, 1); #endif reg = 0x90; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0x62, 1, ®, 1); #else dm_i2c_write(dev, 0x62, ®, 1); #endif reg = 0xb3; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0x63, 1, ®, 1); #else dm_i2c_write(dev, 0x63, ®, 1); #endif reg = 0xcd; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0x64, 1, ®, 1); #else dm_i2c_write(dev, 0x64, ®, 1); #endif /* Select VCO Divider to full rate (000) */ #if !CONFIG_IS_ENABLED(DM_I2C) i2c_read(I2C_RETIMER_ADDR2, 0x2F, 1, ®, 1); #else dm_i2c_read(dev, 0x2F, ®, 1); #endif reg &= 0x0f; reg |= 0x70; #if !CONFIG_IS_ENABLED(DM_I2C) i2c_write(I2C_RETIMER_ADDR2, 0x2F, 1, ®, 1); #else dm_i2c_write(dev, 0x2F, ®, 1); #endif #endif /*return the default channel*/ select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0); } #ifdef CONFIG_MISC_INIT_R int misc_init_r(void) { #ifdef CONFIG_TARGET_LS1088ARDB u8 brdcfg5; if (hwconfig("esdhc-force-sd")) { brdcfg5 = QIXIS_READ(brdcfg[5]); brdcfg5 &= ~BRDCFG5_SPISDHC_MASK; brdcfg5 |= BRDCFG5_FORCE_SD; QIXIS_WRITE(brdcfg[5], brdcfg5); } #endif #ifdef CONFIG_TARGET_LS1088AQDS u8 brdcfg4, brdcfg5; if (hwconfig("dspi-on-board")) { brdcfg4 = QIXIS_READ(brdcfg[4]); brdcfg4 &= ~BRDCFG4_USBOSC_MASK; brdcfg4 |= BRDCFG4_SPI; QIXIS_WRITE(brdcfg[4], brdcfg4); brdcfg5 = QIXIS_READ(brdcfg[5]); brdcfg5 &= ~BRDCFG5_SPR_MASK; brdcfg5 |= BRDCFG5_SPI_ON_BOARD; QIXIS_WRITE(brdcfg[5], brdcfg5); } else if (hwconfig("dspi-off-board")) { brdcfg4 = QIXIS_READ(brdcfg[4]); brdcfg4 &= ~BRDCFG4_USBOSC_MASK; brdcfg4 |= BRDCFG4_SPI; QIXIS_WRITE(brdcfg[4], brdcfg4); brdcfg5 = QIXIS_READ(brdcfg[5]); brdcfg5 &= ~BRDCFG5_SPR_MASK; brdcfg5 |= BRDCFG5_SPI_OFF_BOARD; QIXIS_WRITE(brdcfg[5], brdcfg5); } #endif return 0; } #endif #endif int i2c_multiplexer_select_vid_channel(u8 channel) { return select_i2c_ch_pca9547(channel, 0); } #ifdef CONFIG_TARGET_LS1088AQDS /* read the current value(SVDD) of the LTM Regulator Voltage */ int get_serdes_volt(void) { int ret, vcode = 0; u8 chan = PWM_CHANNEL0; /* Select the PAGE 0 using PMBus commands PAGE for VDD */ #if !CONFIG_IS_ENABLED(DM_I2C) ret = i2c_write(I2C_SVDD_MONITOR_ADDR, PMBUS_CMD_PAGE, 1, &chan, 1); #else struct udevice *dev; ret = i2c_get_chip_for_busnum(0, I2C_SVDD_MONITOR_ADDR, 1, &dev); if (!ret) ret = dm_i2c_write(dev, PMBUS_CMD_PAGE, &chan, 1); #endif if (ret) { printf("VID: failed to select VDD Page 0\n"); return ret; } /* Read the output voltage using PMBus command READ_VOUT */ #if !CONFIG_IS_ENABLED(DM_I2C) ret = i2c_read(I2C_SVDD_MONITOR_ADDR, PMBUS_CMD_READ_VOUT, 1, (void *)&vcode, 2); #else dm_i2c_read(dev, PMBUS_CMD_READ_VOUT, (void *)&vcode, 2); #endif if (ret) { printf("VID: failed to read the volatge\n"); return ret; } return vcode; } int set_serdes_volt(int svdd) { int ret, vdd_last; u8 buff[5] = {0x04, PWM_CHANNEL0, PMBUS_CMD_VOUT_COMMAND, svdd & 0xFF, (svdd & 0xFF00) >> 8}; /* Write the desired voltage code to the SVDD regulator */ #if !CONFIG_IS_ENABLED(DM_I2C) ret = i2c_write(I2C_SVDD_MONITOR_ADDR, PMBUS_CMD_PAGE_PLUS_WRITE, 1, (void *)&buff, 5); #else struct udevice *dev; ret = i2c_get_chip_for_busnum(0, I2C_SVDD_MONITOR_ADDR, 1, &dev); if (!ret) ret = dm_i2c_write(dev, PMBUS_CMD_PAGE_PLUS_WRITE, (void *)&buff, 5); #endif if (ret) { printf("VID: I2C failed to write to the volatge regulator\n"); return -1; } /* Wait for the volatge to get to the desired value */ do { vdd_last = get_serdes_volt(); if (vdd_last < 0) { printf("VID: Couldn't read sensor abort VID adjust\n"); return -1; } } while (vdd_last != svdd); return 1; } #else int get_serdes_volt(void) { return 0; } int set_serdes_volt(int svdd) { int ret; u8 brdcfg4; printf("SVDD changing of RDB\n"); /* Read the BRDCFG54 via CLPD */ #if !CONFIG_IS_ENABLED(DM_I2C) ret = i2c_read(CFG_SYS_I2C_FPGA_ADDR, QIXIS_BRDCFG4_OFFSET, 1, (void *)&brdcfg4, 1); #else struct udevice *dev; ret = i2c_get_chip_for_busnum(0, CFG_SYS_I2C_FPGA_ADDR, 1, &dev); if (!ret) ret = dm_i2c_read(dev, QIXIS_BRDCFG4_OFFSET, (void *)&brdcfg4, 1); #endif if (ret) { printf("VID: I2C failed to read the CPLD BRDCFG4\n"); return -1; } brdcfg4 = brdcfg4 | 0x08; /* Write to the BRDCFG4 */ #if !CONFIG_IS_ENABLED(DM_I2C) ret = i2c_write(CFG_SYS_I2C_FPGA_ADDR, QIXIS_BRDCFG4_OFFSET, 1, (void *)&brdcfg4, 1); #else ret = dm_i2c_write(dev, QIXIS_BRDCFG4_OFFSET, (void *)&brdcfg4, 1); #endif if (ret) { debug("VID: I2C failed to set the SVDD CPLD BRDCFG4\n"); return -1; } /* Wait for the volatge to get to the desired value */ udelay(10000); return 1; } #endif /* this function disables the SERDES, changes the SVDD Voltage and enables it*/ int board_adjust_vdd(int vdd) { int ret = 0; debug("%s: vdd = %d\n", __func__, vdd); /* Special settings to be performed when voltage is 900mV */ if (vdd == 900) { ret = setup_serdes_volt(vdd); if (ret < 0) { ret = -1; goto exit; } } exit: return ret; } #if !defined(CONFIG_SPL_BUILD) int board_init(void) { init_final_memctl_regs(); #if defined(CONFIG_TARGET_LS1088ARDB) && defined(CONFIG_FSL_MC_ENET) u32 __iomem *irq_ccsr = (u32 __iomem *)ISC_BASE; #endif select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0); board_retimer_init(); #if defined(CONFIG_TARGET_LS1088ARDB) && defined(CONFIG_FSL_MC_ENET) /* invert AQR105 IRQ pins polarity */ out_le32(irq_ccsr + IRQCR_OFFSET / 4, AQR105_IRQ_MASK); #endif #ifdef CONFIG_FSL_LS_PPA ppa_init(); #endif #if !defined(CONFIG_SYS_EARLY_PCI_INIT) && defined(CONFIG_DM_ETH) pci_init(); #endif return 0; } void detail_board_ddr_info(void) { puts("\nDDR "); print_size(gd->bd->bi_dram[0].size + gd->bd->bi_dram[1].size, ""); print_ddr_info(0); } #ifdef CONFIG_FSL_MC_ENET void board_quiesce_devices(void) { fsl_mc_ldpaa_exit(gd->bd); } void fdt_fixup_board_enet(void *fdt) { int offset; offset = fdt_path_offset(fdt, "/fsl-mc"); if (offset < 0) offset = fdt_path_offset(fdt, "/soc/fsl-mc"); if (offset < 0) { printf("%s: ERROR: fsl-mc node not found in device tree (error %d)\n", __func__, offset); return; } if (get_mc_boot_status() == 0 && (is_lazy_dpl_addr_valid() || get_dpl_apply_status() == 0)) fdt_status_okay(fdt, offset); else fdt_status_fail(fdt, offset); } #endif #ifdef CONFIG_OF_BOARD_SETUP void fsl_fdt_fixup_flash(void *fdt) { int offset; #ifdef CONFIG_TFABOOT u32 __iomem *dcfg_ccsr = (u32 __iomem *)DCFG_BASE; u32 val; #endif /* * IFC-NOR and QSPI are muxed on SoC. * So disable IFC node in dts if QSPI is enabled or * disable QSPI node in dts in case QSPI is not enabled. */ #ifdef CONFIG_TFABOOT enum boot_src src = get_boot_src(); bool disable_ifc = false; switch (src) { case BOOT_SOURCE_IFC_NOR: disable_ifc = false; break; case BOOT_SOURCE_QSPI_NOR: disable_ifc = true; break; default: val = in_le32(dcfg_ccsr + DCFG_RCWSR15 / 4); if (DCFG_RCWSR15_IFCGRPABASE_QSPI == (val & (u32)0x3)) disable_ifc = true; break; } if (disable_ifc) { offset = fdt_path_offset(fdt, "/soc/memory-controller/nor"); if (offset < 0) offset = fdt_path_offset(fdt, "/memory-controller/nor"); } else { offset = fdt_path_offset(fdt, "/soc/quadspi"); if (offset < 0) offset = fdt_path_offset(fdt, "/quadspi"); } #else #ifdef CONFIG_FSL_QSPI offset = fdt_path_offset(fdt, "/soc/memory-controller/nor"); if (offset < 0) offset = fdt_path_offset(fdt, "/memory-controller/nor"); #else offset = fdt_path_offset(fdt, "/soc/quadspi"); if (offset < 0) offset = fdt_path_offset(fdt, "/quadspi"); #endif #endif if (offset < 0) return; fdt_status_disabled(fdt, offset); } int ft_board_setup(void *blob, struct bd_info *bd) { int i; u16 mc_memory_bank = 0; u64 *base; u64 *size; u64 mc_memory_base = 0; u64 mc_memory_size = 0; u16 total_memory_banks; ft_cpu_setup(blob, bd); fdt_fixup_mc_ddr(&mc_memory_base, &mc_memory_size); if (mc_memory_base != 0) mc_memory_bank++; total_memory_banks = CONFIG_NR_DRAM_BANKS + mc_memory_bank; base = calloc(total_memory_banks, sizeof(u64)); size = calloc(total_memory_banks, sizeof(u64)); /* fixup DT for the two GPP DDR banks */ for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { base[i] = gd->bd->bi_dram[i].start; size[i] = gd->bd->bi_dram[i].size; } #ifdef CONFIG_RESV_RAM /* reduce size if reserved memory is within this bank */ if (gd->arch.resv_ram >= base[0] && gd->arch.resv_ram < base[0] + size[0]) size[0] = gd->arch.resv_ram - base[0]; else if (gd->arch.resv_ram >= base[1] && gd->arch.resv_ram < base[1] + size[1]) size[1] = gd->arch.resv_ram - base[1]; #endif if (mc_memory_base != 0) { for (i = 0; i <= total_memory_banks; i++) { if (base[i] == 0 && size[i] == 0) { base[i] = mc_memory_base; size[i] = mc_memory_size; break; } } } fdt_fixup_memory_banks(blob, base, size, total_memory_banks); fdt_fsl_mc_fixup_iommu_map_entry(blob); fsl_fdt_fixup_flash(blob); #ifdef CONFIG_FSL_MC_ENET fdt_fixup_board_enet(blob); #endif fdt_fixup_icid(blob); if (is_pb_board()) fixup_ls1088ardb_pb_banner(blob); return 0; } #endif #endif /* defined(CONFIG_SPL_BUILD) */ #ifdef CONFIG_TFABOOT #ifdef CONFIG_MTD_NOR_FLASH int is_flash_available(void) { char *env_hwconfig = env_get("hwconfig"); enum boot_src src = get_boot_src(); int is_nor_flash_available = 1; switch (src) { case BOOT_SOURCE_IFC_NOR: is_nor_flash_available = 1; break; case BOOT_SOURCE_QSPI_NOR: is_nor_flash_available = 0; break; /* * In Case of SD boot,if qspi is defined in env_hwconfig * disable nor flash probe. */ default: if (hwconfig_f("qspi", env_hwconfig)) is_nor_flash_available = 0; break; } return is_nor_flash_available; } #endif #ifdef CONFIG_ENV_IS_IN_SPI_FLASH void *env_sf_get_env_addr(void) { return (void *)(CFG_SYS_FSL_QSPI_BASE + CONFIG_ENV_OFFSET); } #endif #endif