// SPDX-License-Identifier: GPL-2.0+ /* * Qualcomm GENI serial engine UART driver * * (C) Copyright 2021 Dzmitry Sankouski * * Based on Linux driver. */ #include #include #include #include #include #include #include #include #include #define UART_OVERSAMPLING 32 #define STALE_TIMEOUT 160 /* Registers*/ #define GENI_FORCE_DEFAULT_REG 0x20 #define GENI_SER_M_CLK_CFG 0x48 #define GENI_SER_S_CLK_CFG 0x4C #define SE_HW_PARAM_0 0xE24 #define SE_GENI_STATUS 0x40 #define SE_GENI_S_CMD0 0x630 #define SE_GENI_S_CMD_CTRL_REG 0x634 #define SE_GENI_S_IRQ_CLEAR 0x648 #define SE_GENI_S_IRQ_STATUS 0x640 #define SE_GENI_S_IRQ_EN 0x644 #define SE_GENI_M_CMD0 0x600 #define SE_GENI_M_CMD_CTRL_REG 0x604 #define SE_GENI_M_IRQ_CLEAR 0x618 #define SE_GENI_M_IRQ_STATUS 0x610 #define SE_GENI_M_IRQ_EN 0x614 #define SE_GENI_TX_FIFOn 0x700 #define SE_GENI_RX_FIFOn 0x780 #define SE_GENI_TX_FIFO_STATUS 0x800 #define SE_GENI_RX_FIFO_STATUS 0x804 #define SE_GENI_TX_WATERMARK_REG 0x80C #define SE_GENI_TX_PACKING_CFG0 0x260 #define SE_GENI_TX_PACKING_CFG1 0x264 #define SE_GENI_RX_PACKING_CFG0 0x284 #define SE_GENI_RX_PACKING_CFG1 0x288 #define SE_UART_RX_STALE_CNT 0x294 #define SE_UART_TX_TRANS_LEN 0x270 #define SE_UART_TX_STOP_BIT_LEN 0x26c #define SE_UART_TX_WORD_LEN 0x268 #define SE_UART_RX_WORD_LEN 0x28c #define SE_UART_TX_TRANS_CFG 0x25c #define SE_UART_TX_PARITY_CFG 0x2a4 #define SE_UART_RX_TRANS_CFG 0x280 #define SE_UART_RX_PARITY_CFG 0x2a8 #define M_TX_FIFO_WATERMARK_EN (BIT(30)) #define DEF_TX_WM 2 /* GENI_FORCE_DEFAULT_REG fields */ #define FORCE_DEFAULT (BIT(0)) #define S_CMD_ABORT_EN (BIT(5)) #define UART_START_READ 0x1 /* GENI_M_CMD_CTRL_REG */ #define M_GENI_CMD_CANCEL (BIT(2)) #define M_GENI_CMD_ABORT (BIT(1)) #define M_GENI_DISABLE (BIT(0)) #define M_CMD_ABORT_EN (BIT(5)) #define M_CMD_DONE_EN (BIT(0)) #define M_CMD_DONE_DISABLE_MASK (~M_CMD_DONE_EN) #define S_GENI_CMD_ABORT (BIT(1)) /* GENI_S_CMD0 fields */ #define S_OPCODE_MSK (GENMASK(31, 27)) #define S_PARAMS_MSK (GENMASK(26, 0)) /* GENI_STATUS fields */ #define M_GENI_CMD_ACTIVE (BIT(0)) #define S_GENI_CMD_ACTIVE (BIT(12)) #define M_CMD_DONE_EN (BIT(0)) #define S_CMD_DONE_EN (BIT(0)) #define M_OPCODE_SHIFT 27 #define S_OPCODE_SHIFT 27 #define M_TX_FIFO_WATERMARK_EN (BIT(30)) #define UART_START_TX 0x1 #define UART_CTS_MASK (BIT(1)) #define M_SEC_IRQ_EN (BIT(31)) #define TX_FIFO_WC_MSK (GENMASK(27, 0)) #define RX_FIFO_WC_MSK (GENMASK(24, 0)) #define S_RX_FIFO_WATERMARK_EN (BIT(26)) #define S_RX_FIFO_LAST_EN (BIT(27)) #define M_RX_FIFO_WATERMARK_EN (BIT(26)) #define M_RX_FIFO_LAST_EN (BIT(27)) /* GENI_SER_M_CLK_CFG/GENI_SER_S_CLK_CFG */ #define SER_CLK_EN (BIT(0)) #define CLK_DIV_MSK (GENMASK(15, 4)) #define CLK_DIV_SHFT 4 /* SE_HW_PARAM_0 fields */ #define TX_FIFO_WIDTH_MSK (GENMASK(29, 24)) #define TX_FIFO_WIDTH_SHFT 24 #define TX_FIFO_DEPTH_MSK (GENMASK(21, 16)) #define TX_FIFO_DEPTH_SHFT 16 /* GENI SE QUP Registers */ #define QUP_HW_VER_REG 0x4 #define QUP_SE_VERSION_2_5 0x20050000 /* * Predefined packing configuration of the serial engine (CFG0, CFG1 regs) * for uart mode. * * Defines following configuration: * - Bits of data per transfer word 8 * - Number of words per fifo element 4 * - Transfer from MSB to LSB or vice-versa false */ #define UART_PACKING_CFG0 0xf #define UART_PACKING_CFG1 0x0 DECLARE_GLOBAL_DATA_PTR; struct msm_serial_data { phys_addr_t base; u32 baud; u32 oversampling; }; unsigned long root_freq[] = {7372800, 14745600, 19200000, 29491200, 32000000, 48000000, 64000000, 80000000, 96000000, 100000000}; /** * get_clk_cfg() - Get clock rate to apply on clock supplier. * @clk_freq: Desired clock frequency after build-in divider. * * Return: frequency, supported by clock supplier, multiple of clk_freq. */ static int get_clk_cfg(unsigned long clk_freq) { for (int i = 0; i < ARRAY_SIZE(root_freq); i++) { if (!(root_freq[i] % clk_freq)) return root_freq[i]; } return 0; } /** * get_clk_div_rate() - Find clock supplier frequency, and calculate divisor. * @baud: Baudrate. * @sampling_rate: Clock ticks per character. * @clk_div: Pointer to calculated divisor. * * This function searches for suitable frequency for clock supplier, * calculates divisor for internal divider, based on found frequency, * and stores divisor under clk_div pointer. * * Return: frequency, supported by clock supplier, multiple of clk_freq. */ static int get_clk_div_rate(u32 baud, u64 sampling_rate, u32 *clk_div) { unsigned long ser_clk; unsigned long desired_clk; desired_clk = baud * sampling_rate; ser_clk = get_clk_cfg(desired_clk); if (!ser_clk) { pr_err("%s: Can't find matching DFS entry for baud %d\n", __func__, baud); return ser_clk; } *clk_div = ser_clk / desired_clk; return ser_clk; } static int geni_serial_set_clock_rate(struct udevice *dev, u64 rate) { struct clk *clk; int ret; clk = devm_clk_get(dev, NULL); if (!clk) return -EINVAL; ret = clk_set_rate(clk, rate); return ret; } /** * geni_se_get_tx_fifo_depth() - Get the TX fifo depth of the serial engine * @base: Pointer to the concerned serial engine. * * This function is used to get the depth i.e. number of elements in the * TX fifo of the serial engine. * * Return: TX fifo depth in units of FIFO words. */ static inline u32 geni_se_get_tx_fifo_depth(long base) { u32 tx_fifo_depth; tx_fifo_depth = ((readl(base + SE_HW_PARAM_0) & TX_FIFO_DEPTH_MSK) >> TX_FIFO_DEPTH_SHFT); return tx_fifo_depth; } /** * geni_se_get_tx_fifo_width() - Get the TX fifo width of the serial engine * @base: Pointer to the concerned serial engine. * * This function is used to get the width i.e. word size per element in the * TX fifo of the serial engine. * * Return: TX fifo width in bits */ static inline u32 geni_se_get_tx_fifo_width(long base) { u32 tx_fifo_width; tx_fifo_width = ((readl(base + SE_HW_PARAM_0) & TX_FIFO_WIDTH_MSK) >> TX_FIFO_WIDTH_SHFT); return tx_fifo_width; } static inline void geni_serial_baud(phys_addr_t base_address, u32 clk_div, int baud) { u32 s_clk_cfg = 0; s_clk_cfg |= SER_CLK_EN; s_clk_cfg |= (clk_div << CLK_DIV_SHFT); writel(s_clk_cfg, base_address + GENI_SER_M_CLK_CFG); writel(s_clk_cfg, base_address + GENI_SER_S_CLK_CFG); } static int msm_serial_setbrg(struct udevice *dev, int baud) { struct msm_serial_data *priv = dev_get_priv(dev); u64 clk_rate; u32 clk_div; priv->baud = baud; clk_rate = get_clk_div_rate(baud, priv->oversampling, &clk_div); geni_serial_set_clock_rate(dev, clk_rate); geni_serial_baud(priv->base, clk_div, baud); return 0; } /** * qcom_geni_serial_poll_bit() - Poll reg bit until desired value or timeout. * @base: Pointer to the concerned serial engine. * @offset: Offset to register address. * @field: AND bitmask for desired bit. * @set: Desired bit value. * * This function is used to get the width i.e. word size per element in the * TX fifo of the serial engine. * * Return: true, when register bit equals desired value, false, when timeout * reached. */ static bool qcom_geni_serial_poll_bit(const struct udevice *dev, int offset, int field, bool set) { u32 reg; struct msm_serial_data *priv = dev_get_priv(dev); unsigned int baud; unsigned int tx_fifo_depth; unsigned int tx_fifo_width; unsigned int fifo_bits; unsigned long timeout_us = 10000; baud = 115200; if (priv) { baud = priv->baud; if (!baud) baud = 115200; tx_fifo_depth = geni_se_get_tx_fifo_depth(priv->base); tx_fifo_width = geni_se_get_tx_fifo_width(priv->base); fifo_bits = tx_fifo_depth * tx_fifo_width; /* * Total polling iterations based on FIFO worth of bytes to be * sent at current baud. Add a little fluff to the wait. */ timeout_us = ((fifo_bits * USEC_PER_SEC) / baud) + 500; } timeout_us = DIV_ROUND_UP(timeout_us, 10) * 10; while (timeout_us) { reg = readl(priv->base + offset); if ((bool)(reg & field) == set) return true; udelay(10); timeout_us -= 10; } return false; } static void qcom_geni_serial_setup_tx(u64 base, u32 xmit_size) { u32 m_cmd; writel(xmit_size, base + SE_UART_TX_TRANS_LEN); m_cmd = UART_START_TX << M_OPCODE_SHIFT; writel(m_cmd, base + SE_GENI_M_CMD0); } static inline void qcom_geni_serial_poll_tx_done(const struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); int done = 0; u32 irq_clear = M_CMD_DONE_EN; done = qcom_geni_serial_poll_bit(dev, SE_GENI_M_IRQ_STATUS, M_CMD_DONE_EN, true); if (!done) { writel(M_GENI_CMD_ABORT, priv->base + SE_GENI_M_CMD_CTRL_REG); irq_clear |= M_CMD_ABORT_EN; qcom_geni_serial_poll_bit(dev, SE_GENI_M_IRQ_STATUS, M_CMD_ABORT_EN, true); } writel(irq_clear, priv->base + SE_GENI_M_IRQ_CLEAR); } static u32 qcom_geni_serial_tx_empty(u64 base) { return !readl(base + SE_GENI_TX_FIFO_STATUS); } /** * geni_se_setup_s_cmd() - Setup the secondary sequencer * @se: Pointer to the concerned serial engine. * @cmd: Command/Operation to setup in the secondary sequencer. * @params: Parameter for the sequencer command. * * This function is used to configure the secondary sequencer with the * command and its associated parameters. */ static inline void geni_se_setup_s_cmd(u64 base, u32 cmd, u32 params) { u32 s_cmd; s_cmd = readl(base + SE_GENI_S_CMD0); s_cmd &= ~(S_OPCODE_MSK | S_PARAMS_MSK); s_cmd |= (cmd << S_OPCODE_SHIFT); s_cmd |= (params & S_PARAMS_MSK); writel(s_cmd, base + SE_GENI_S_CMD0); } static void qcom_geni_serial_start_tx(u64 base) { u32 irq_en; u32 status; status = readl(base + SE_GENI_STATUS); if (status & M_GENI_CMD_ACTIVE) return; if (!qcom_geni_serial_tx_empty(base)) return; irq_en = readl(base + SE_GENI_M_IRQ_EN); irq_en |= M_TX_FIFO_WATERMARK_EN | M_CMD_DONE_EN; writel(DEF_TX_WM, base + SE_GENI_TX_WATERMARK_REG); writel(irq_en, base + SE_GENI_M_IRQ_EN); } static void qcom_geni_serial_start_rx(struct udevice *dev) { u32 status; struct msm_serial_data *priv = dev_get_priv(dev); status = readl(priv->base + SE_GENI_STATUS); geni_se_setup_s_cmd(priv->base, UART_START_READ, 0); setbits_le32(priv->base + SE_GENI_S_IRQ_EN, S_RX_FIFO_WATERMARK_EN | S_RX_FIFO_LAST_EN); setbits_le32(priv->base + SE_GENI_M_IRQ_EN, M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN); } static void qcom_geni_serial_abort_rx(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); u32 irq_clear = S_CMD_DONE_EN | S_CMD_ABORT_EN; writel(S_GENI_CMD_ABORT, priv->base + SE_GENI_S_CMD_CTRL_REG); qcom_geni_serial_poll_bit(dev, SE_GENI_S_CMD_CTRL_REG, S_GENI_CMD_ABORT, false); writel(irq_clear, priv->base + SE_GENI_S_IRQ_CLEAR); writel(FORCE_DEFAULT, priv->base + GENI_FORCE_DEFAULT_REG); } static void msm_geni_serial_setup_rx(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); qcom_geni_serial_abort_rx(dev); writel(UART_PACKING_CFG0, priv->base + SE_GENI_RX_PACKING_CFG0); writel(UART_PACKING_CFG1, priv->base + SE_GENI_RX_PACKING_CFG1); geni_se_setup_s_cmd(priv->base, UART_START_READ, 0); setbits_le32(priv->base + SE_GENI_S_IRQ_EN, S_RX_FIFO_WATERMARK_EN | S_RX_FIFO_LAST_EN); setbits_le32(priv->base + SE_GENI_M_IRQ_EN, M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN); } static int msm_serial_putc(struct udevice *dev, const char ch) { struct msm_serial_data *priv = dev_get_priv(dev); writel(DEF_TX_WM, priv->base + SE_GENI_TX_WATERMARK_REG); qcom_geni_serial_setup_tx(priv->base, 1); qcom_geni_serial_poll_bit(dev, SE_GENI_M_IRQ_STATUS, M_TX_FIFO_WATERMARK_EN, true); writel(ch, priv->base + SE_GENI_TX_FIFOn); writel(M_TX_FIFO_WATERMARK_EN, priv->base + SE_GENI_M_IRQ_CLEAR); qcom_geni_serial_poll_tx_done(dev); return 0; } static int msm_serial_getc(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); u32 rx_fifo; u32 m_irq_status; u32 s_irq_status; writel(1 << S_OPCODE_SHIFT, priv->base + SE_GENI_S_CMD0); qcom_geni_serial_poll_bit(dev, SE_GENI_M_IRQ_STATUS, M_SEC_IRQ_EN, true); m_irq_status = readl(priv->base + SE_GENI_M_IRQ_STATUS); s_irq_status = readl(priv->base + SE_GENI_S_IRQ_STATUS); writel(m_irq_status, priv->base + SE_GENI_M_IRQ_CLEAR); writel(s_irq_status, priv->base + SE_GENI_S_IRQ_CLEAR); qcom_geni_serial_poll_bit(dev, SE_GENI_RX_FIFO_STATUS, RX_FIFO_WC_MSK, true); if (!readl(priv->base + SE_GENI_RX_FIFO_STATUS)) return 0; rx_fifo = readl(priv->base + SE_GENI_RX_FIFOn); return rx_fifo & 0xff; } static int msm_serial_pending(struct udevice *dev, bool input) { struct msm_serial_data *priv = dev_get_priv(dev); if (input) return readl(priv->base + SE_GENI_RX_FIFO_STATUS) & RX_FIFO_WC_MSK; else return readl(priv->base + SE_GENI_TX_FIFO_STATUS) & TX_FIFO_WC_MSK; return 0; } static const struct dm_serial_ops msm_serial_ops = { .putc = msm_serial_putc, .pending = msm_serial_pending, .getc = msm_serial_getc, .setbrg = msm_serial_setbrg, }; static int geni_set_oversampling(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); ofnode parent_node = ofnode_get_parent(dev_ofnode(dev)); u32 geni_se_version; fdt_addr_t addr; priv->oversampling = UART_OVERSAMPLING; /* * It could happen that GENI SE IP is missing in the board's device * tree or GENI UART node is a direct child of SoC device tree node. */ if (!ofnode_device_is_compatible(parent_node, "qcom,geni-se-qup")) { pr_err("%s: UART node must be a child of geniqup node\n", __func__); return -ENODEV; } /* Read the HW_VER register relative to the parents address space */ addr = ofnode_get_addr(parent_node); geni_se_version = readl(addr + QUP_HW_VER_REG); if (geni_se_version >= QUP_SE_VERSION_2_5) priv->oversampling /= 2; return 0; } static inline void geni_serial_init(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); phys_addr_t base_address = priv->base; u32 tx_trans_cfg; u32 tx_parity_cfg = 0; /* Disable Tx Parity */ u32 rx_trans_cfg = 0; u32 rx_parity_cfg = 0; /* Disable Rx Parity */ u32 stop_bit_len = 0; /* Default stop bit length - 1 bit */ u32 bits_per_char; /* * Ignore Flow control. * n = 8. */ tx_trans_cfg = UART_CTS_MASK; bits_per_char = BITS_PER_BYTE; /* * Make an unconditional cancel on the main sequencer to reset * it else we could end up in data loss scenarios. */ qcom_geni_serial_poll_tx_done(dev); qcom_geni_serial_abort_rx(dev); writel(UART_PACKING_CFG0, base_address + SE_GENI_TX_PACKING_CFG0); writel(UART_PACKING_CFG1, base_address + SE_GENI_TX_PACKING_CFG1); writel(UART_PACKING_CFG0, base_address + SE_GENI_RX_PACKING_CFG0); writel(UART_PACKING_CFG1, base_address + SE_GENI_RX_PACKING_CFG1); writel(tx_trans_cfg, base_address + SE_UART_TX_TRANS_CFG); writel(tx_parity_cfg, base_address + SE_UART_TX_PARITY_CFG); writel(rx_trans_cfg, base_address + SE_UART_RX_TRANS_CFG); writel(rx_parity_cfg, base_address + SE_UART_RX_PARITY_CFG); writel(bits_per_char, base_address + SE_UART_TX_WORD_LEN); writel(bits_per_char, base_address + SE_UART_RX_WORD_LEN); writel(stop_bit_len, base_address + SE_UART_TX_STOP_BIT_LEN); } static int msm_serial_probe(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); int ret; ret = geni_set_oversampling(dev); if (ret < 0) return ret; /* No need to reinitialize the UART after relocation */ if (gd->flags & GD_FLG_RELOC) return 0; geni_serial_init(dev); msm_geni_serial_setup_rx(dev); qcom_geni_serial_start_rx(dev); qcom_geni_serial_start_tx(priv->base); return 0; } static int msm_serial_ofdata_to_platdata(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); priv->base = dev_read_addr(dev); if (priv->base == FDT_ADDR_T_NONE) return -EINVAL; return 0; } static const struct udevice_id msm_serial_ids[] = { { .compatible = "qcom,geni-debug-uart" }, { } }; U_BOOT_DRIVER(serial_msm_geni) = { .name = "serial_msm_geni", .id = UCLASS_SERIAL, .of_match = msm_serial_ids, .of_to_plat = msm_serial_ofdata_to_platdata, .priv_auto = sizeof(struct msm_serial_data), .probe = msm_serial_probe, .ops = &msm_serial_ops, .flags = DM_FLAG_PRE_RELOC, }; #ifdef CONFIG_DEBUG_UART_MSM_GENI static struct msm_serial_data init_serial_data = { .base = CONFIG_VAL(DEBUG_UART_BASE) }; /* Serial dumb device, to reuse driver code */ static struct udevice init_dev = { .priv_ = &init_serial_data, }; #include #define CLK_DIV (CONFIG_DEBUG_UART_CLOCK / \ (CONFIG_BAUDRATE * UART_OVERSAMPLING)) #if (CONFIG_DEBUG_UART_CLOCK % (CONFIG_BAUDRATE * UART_OVERSAMPLING) > 0) #error Clocks cannot be set at early debug. Change CONFIG_BAUDRATE #endif static inline void _debug_uart_init(void) { phys_addr_t base = CONFIG_VAL(DEBUG_UART_BASE); geni_serial_init(&init_dev); geni_serial_baud(base, CLK_DIV, CONFIG_BAUDRATE); qcom_geni_serial_start_tx(base); } static inline void _debug_uart_putc(int ch) { phys_addr_t base = CONFIG_VAL(DEBUG_UART_BASE); writel(DEF_TX_WM, base + SE_GENI_TX_WATERMARK_REG); qcom_geni_serial_setup_tx(base, 1); qcom_geni_serial_poll_bit(&init_dev, SE_GENI_M_IRQ_STATUS, M_TX_FIFO_WATERMARK_EN, true); writel(ch, base + SE_GENI_TX_FIFOn); writel(M_TX_FIFO_WATERMARK_EN, base + SE_GENI_M_IRQ_CLEAR); qcom_geni_serial_poll_tx_done(&init_dev); } DEBUG_UART_FUNCS #endif