// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017-2021 NXP * Copyright 2014-2015 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_FSL_ESDHC #include #endif #include #ifdef CONFIG_SYS_FSL_DDR #include #include #endif #include #include #include #ifdef CONFIG_TFABOOT #include #ifdef CONFIG_CHAIN_OF_TRUST #include #endif #endif #include #include DECLARE_GLOBAL_DATA_PTR; static struct cpu_type cpu_type_list[] = { CPU_TYPE_ENTRY(LS2080A, LS2080A, 8), CPU_TYPE_ENTRY(LS2085A, LS2085A, 8), CPU_TYPE_ENTRY(LS2045A, LS2045A, 4), CPU_TYPE_ENTRY(LS2088A, LS2088A, 8), CPU_TYPE_ENTRY(LS2084A, LS2084A, 8), CPU_TYPE_ENTRY(LS2048A, LS2048A, 4), CPU_TYPE_ENTRY(LS2044A, LS2044A, 4), CPU_TYPE_ENTRY(LS2081A, LS2081A, 8), CPU_TYPE_ENTRY(LS2041A, LS2041A, 4), CPU_TYPE_ENTRY(LS1043A, LS1043A, 4), CPU_TYPE_ENTRY(LS1043A, LS1043A_P23, 4), CPU_TYPE_ENTRY(LS1023A, LS1023A, 2), CPU_TYPE_ENTRY(LS1023A, LS1023A_P23, 2), CPU_TYPE_ENTRY(LS1046A, LS1046A, 4), CPU_TYPE_ENTRY(LS1026A, LS1026A, 2), CPU_TYPE_ENTRY(LS2040A, LS2040A, 4), CPU_TYPE_ENTRY(LS1012A, LS1012A, 1), CPU_TYPE_ENTRY(LS1017A, LS1017A, 1), CPU_TYPE_ENTRY(LS1018A, LS1018A, 1), CPU_TYPE_ENTRY(LS1027A, LS1027A, 2), CPU_TYPE_ENTRY(LS1028A, LS1028A, 2), CPU_TYPE_ENTRY(LS1088A, LS1088A, 8), CPU_TYPE_ENTRY(LS1084A, LS1084A, 8), CPU_TYPE_ENTRY(LS1048A, LS1048A, 4), CPU_TYPE_ENTRY(LS1044A, LS1044A, 4), CPU_TYPE_ENTRY(LX2160A, LX2160A, 16), CPU_TYPE_ENTRY(LX2120A, LX2120A, 12), CPU_TYPE_ENTRY(LX2080A, LX2080A, 8), CPU_TYPE_ENTRY(LX2162A, LX2162A, 16), CPU_TYPE_ENTRY(LX2122A, LX2122A, 12), CPU_TYPE_ENTRY(LX2082A, LX2082A, 8), }; #define EARLY_PGTABLE_SIZE 0x5000 static struct mm_region early_map[] = { #ifdef CONFIG_FSL_LSCH3 { CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_OCRAM_BASE, CFG_SYS_FSL_OCRAM_BASE, SYS_FSL_OCRAM_SPACE_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE }, { CFG_SYS_FSL_QSPI_BASE1, CFG_SYS_FSL_QSPI_BASE1, CFG_SYS_FSL_QSPI_SIZE1, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE}, #ifdef CONFIG_FSL_IFC /* For IFC Region #1, only the first 4MB is cache-enabled */ { CFG_SYS_FSL_IFC_BASE1, CFG_SYS_FSL_IFC_BASE1, CFG_SYS_FSL_IFC_SIZE1_1, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE }, { CFG_SYS_FSL_IFC_BASE1 + CFG_SYS_FSL_IFC_SIZE1_1, CFG_SYS_FSL_IFC_BASE1 + CFG_SYS_FSL_IFC_SIZE1_1, CFG_SYS_FSL_IFC_SIZE1 - CFG_SYS_FSL_IFC_SIZE1_1, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE }, { CFG_SYS_FLASH_BASE, CFG_SYS_FSL_IFC_BASE1, CFG_SYS_FSL_IFC_SIZE1, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE }, #endif { CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_SIZE1, #if defined(CONFIG_TFABOOT) || \ (defined(CONFIG_SPL) && !defined(CONFIG_SPL_BUILD)) PTE_BLOCK_MEMTYPE(MT_NORMAL) | #else /* Start with nGnRnE and PXN and UXN to prevent speculative access */ PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN | #endif PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, #ifdef CONFIG_FSL_IFC /* Map IFC region #2 up to CFG_SYS_FLASH_BASE for NAND boot */ { CFG_SYS_FSL_IFC_BASE2, CFG_SYS_FSL_IFC_BASE2, CFG_SYS_FLASH_BASE - CFG_SYS_FSL_IFC_BASE2, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE }, #endif { CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_SIZE2, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, #ifdef CFG_SYS_FSL_DRAM_BASE3 { CFG_SYS_FSL_DRAM_BASE3, CFG_SYS_FSL_DRAM_BASE3, CFG_SYS_FSL_DRAM_SIZE3, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, #endif #elif defined(CONFIG_FSL_LSCH2) { CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_OCRAM_BASE, CFG_SYS_FSL_OCRAM_BASE, SYS_FSL_OCRAM_SPACE_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE }, { CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_QSPI_BASE, CFG_SYS_FSL_QSPI_BASE, CFG_SYS_FSL_QSPI_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE }, #ifdef CONFIG_FSL_IFC { CFG_SYS_FSL_IFC_BASE, CFG_SYS_FSL_IFC_BASE, CFG_SYS_FSL_IFC_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE }, #endif { CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_SIZE1, #if defined(CONFIG_TFABOOT) || \ (defined(CONFIG_SPL) && !defined(CONFIG_SPL_BUILD)) PTE_BLOCK_MEMTYPE(MT_NORMAL) | #else /* Start with nGnRnE and PXN and UXN to prevent speculative access */ PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN | #endif PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, { CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_SIZE2, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, #endif {}, /* list terminator */ }; static struct mm_region final_map[] = { #ifdef CONFIG_FSL_LSCH3 { CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_OCRAM_BASE, CFG_SYS_FSL_OCRAM_BASE, SYS_FSL_OCRAM_SPACE_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE }, { CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_SIZE1, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, { CFG_SYS_FSL_QSPI_BASE1, CFG_SYS_FSL_QSPI_BASE1, CFG_SYS_FSL_QSPI_SIZE1, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_QSPI_BASE2, CFG_SYS_FSL_QSPI_BASE2, CFG_SYS_FSL_QSPI_SIZE2, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #ifdef CONFIG_FSL_IFC { CFG_SYS_FSL_IFC_BASE2, CFG_SYS_FSL_IFC_BASE2, CFG_SYS_FSL_IFC_SIZE2, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #endif { CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_MC_BASE, CFG_SYS_FSL_MC_BASE, CFG_SYS_FSL_MC_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_NI_BASE, CFG_SYS_FSL_NI_BASE, CFG_SYS_FSL_NI_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, /* For QBMAN portal, only the first 64MB is cache-enabled */ { CFG_SYS_FSL_QBMAN_BASE, CFG_SYS_FSL_QBMAN_BASE, CFG_SYS_FSL_QBMAN_SIZE_1, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN | PTE_BLOCK_NS }, { CFG_SYS_FSL_QBMAN_BASE + CFG_SYS_FSL_QBMAN_SIZE_1, CFG_SYS_FSL_QBMAN_BASE + CFG_SYS_FSL_QBMAN_SIZE_1, CFG_SYS_FSL_QBMAN_SIZE - CFG_SYS_FSL_QBMAN_SIZE_1, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_PCIE1_PHYS_ADDR, CFG_SYS_PCIE1_PHYS_ADDR, CFG_SYS_PCIE1_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_PCIE2_PHYS_ADDR, CFG_SYS_PCIE2_PHYS_ADDR, CFG_SYS_PCIE2_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #ifdef CFG_SYS_PCIE3_PHYS_ADDR { CFG_SYS_PCIE3_PHYS_ADDR, CFG_SYS_PCIE3_PHYS_ADDR, CFG_SYS_PCIE3_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #endif #ifdef CFG_SYS_PCIE4_PHYS_ADDR { CFG_SYS_PCIE4_PHYS_ADDR, CFG_SYS_PCIE4_PHYS_ADDR, CFG_SYS_PCIE4_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #endif #ifdef SYS_PCIE5_PHYS_ADDR { SYS_PCIE5_PHYS_ADDR, SYS_PCIE5_PHYS_ADDR, SYS_PCIE5_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #endif #ifdef SYS_PCIE6_PHYS_ADDR { SYS_PCIE6_PHYS_ADDR, SYS_PCIE6_PHYS_ADDR, SYS_PCIE6_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #endif { CFG_SYS_FSL_WRIOP1_BASE, CFG_SYS_FSL_WRIOP1_BASE, CFG_SYS_FSL_WRIOP1_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_AIOP1_BASE, CFG_SYS_FSL_AIOP1_BASE, CFG_SYS_FSL_AIOP1_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_PEBUF_BASE, CFG_SYS_FSL_PEBUF_BASE, CFG_SYS_FSL_PEBUF_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_SIZE2, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, #ifdef CFG_SYS_FSL_DRAM_BASE3 { CFG_SYS_FSL_DRAM_BASE3, CFG_SYS_FSL_DRAM_BASE3, CFG_SYS_FSL_DRAM_SIZE3, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, #endif #elif defined(CONFIG_FSL_LSCH2) { CONFIG_SYS_FSL_BOOTROM_BASE, CONFIG_SYS_FSL_BOOTROM_BASE, CONFIG_SYS_FSL_BOOTROM_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_BASE, CFG_SYS_FSL_CCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_OCRAM_BASE, CFG_SYS_FSL_OCRAM_BASE, SYS_FSL_OCRAM_SPACE_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE }, { CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_BASE, CFG_SYS_FSL_DCSR_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_QSPI_BASE, CFG_SYS_FSL_QSPI_BASE, CFG_SYS_FSL_QSPI_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #ifdef CONFIG_FSL_IFC { CFG_SYS_FSL_IFC_BASE, CFG_SYS_FSL_IFC_BASE, CFG_SYS_FSL_IFC_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE }, #endif { CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_BASE1, CFG_SYS_FSL_DRAM_SIZE1, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, { CFG_SYS_FSL_QBMAN_BASE, CFG_SYS_FSL_QBMAN_BASE, CFG_SYS_FSL_QBMAN_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_BASE2, CFG_SYS_FSL_DRAM_SIZE2, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, { CFG_SYS_PCIE1_PHYS_ADDR, CFG_SYS_PCIE1_PHYS_ADDR, CFG_SYS_PCIE1_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { CFG_SYS_PCIE2_PHYS_ADDR, CFG_SYS_PCIE2_PHYS_ADDR, CFG_SYS_PCIE2_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #ifdef CFG_SYS_PCIE3_PHYS_ADDR { CFG_SYS_PCIE3_PHYS_ADDR, CFG_SYS_PCIE3_PHYS_ADDR, CFG_SYS_PCIE3_PHYS_SIZE, PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, #endif { CFG_SYS_FSL_DRAM_BASE3, CFG_SYS_FSL_DRAM_BASE3, CFG_SYS_FSL_DRAM_SIZE3, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS }, #endif #ifdef CFG_SYS_MEM_RESERVE_SECURE {}, /* space holder for secure mem */ #endif {}, }; struct mm_region *mem_map = early_map; void cpu_name(char *name) { struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); unsigned int i, svr, ver; svr = gur_in32(&gur->svr); ver = SVR_SOC_VER(svr); for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++) if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) { strcpy(name, cpu_type_list[i].name); #if defined(CONFIG_ARCH_LX2160A) || defined(CONFIG_ARCH_LX2162A) if (IS_C_PROCESSOR(svr)) strcat(name, "C"); #endif if (IS_E_PROCESSOR(svr)) strcat(name, "E"); sprintf(name + strlen(name), " Rev%d.%d", SVR_MAJ(svr), SVR_MIN(svr)); break; } if (i == ARRAY_SIZE(cpu_type_list)) strcpy(name, "unknown"); } #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) /* * To start MMU before DDR is available, we create MMU table in SRAM. * The base address of SRAM is CFG_SYS_FSL_OCRAM_BASE. We use three * levels of translation tables here to cover 40-bit address space. * We use 4KB granule size, with 40 bits physical address, T0SZ=24 * Address above EARLY_PGTABLE_SIZE (0x5000) is free for other purpose. * Note, the debug print in cache_v8.c is not usable for debugging * these early MMU tables because UART is not yet available. */ static inline void early_mmu_setup(void) { unsigned int el = current_el(); /* global data is already setup, no allocation yet */ if (el == 3) gd->arch.tlb_addr = CFG_SYS_FSL_OCRAM_BASE; else gd->arch.tlb_addr = CFG_SYS_DDR_SDRAM_BASE; gd->arch.tlb_fillptr = gd->arch.tlb_addr; gd->arch.tlb_size = EARLY_PGTABLE_SIZE; /* Create early page tables */ setup_pgtables(); /* point TTBR to the new table */ set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(NULL, NULL) & ~(TCR_ORGN_MASK | TCR_IRGN_MASK), MEMORY_ATTRIBUTES); set_sctlr(get_sctlr() | CR_M); } static void fix_pcie_mmu_map(void) { #ifdef CONFIG_ARCH_LS2080A unsigned int i; u32 svr, ver; struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); svr = gur_in32(&gur->svr); ver = SVR_SOC_VER(svr); /* Fix PCIE base and size for LS2088A */ if ((ver == SVR_LS2088A) || (ver == SVR_LS2084A) || (ver == SVR_LS2048A) || (ver == SVR_LS2044A) || (ver == SVR_LS2081A) || (ver == SVR_LS2041A)) { for (i = 0; i < ARRAY_SIZE(final_map); i++) { switch (final_map[i].phys) { case CFG_SYS_PCIE1_PHYS_ADDR: final_map[i].phys = 0x2000000000ULL; final_map[i].virt = 0x2000000000ULL; final_map[i].size = 0x800000000ULL; break; case CFG_SYS_PCIE2_PHYS_ADDR: final_map[i].phys = 0x2800000000ULL; final_map[i].virt = 0x2800000000ULL; final_map[i].size = 0x800000000ULL; break; #ifdef CFG_SYS_PCIE3_PHYS_ADDR case CFG_SYS_PCIE3_PHYS_ADDR: final_map[i].phys = 0x3000000000ULL; final_map[i].virt = 0x3000000000ULL; final_map[i].size = 0x800000000ULL; break; #endif #ifdef CFG_SYS_PCIE4_PHYS_ADDR case CFG_SYS_PCIE4_PHYS_ADDR: final_map[i].phys = 0x3800000000ULL; final_map[i].virt = 0x3800000000ULL; final_map[i].size = 0x800000000ULL; break; #endif default: break; } } } #endif } /* * The final tables look similar to early tables, but different in detail. * These tables are in DRAM. Sub tables are added to enable cache for * QBMan and OCRAM. * * Put the MMU table in secure memory if gd->arch.secure_ram is valid. * OCRAM will be not used for this purpose so gd->arch.secure_ram can't be 0. */ static inline void final_mmu_setup(void) { u64 tlb_addr_save = gd->arch.tlb_addr; unsigned int el = current_el(); int index; /* fix the final_map before filling in the block entries */ fix_pcie_mmu_map(); mem_map = final_map; /* Update mapping for DDR to actual size */ for (index = 0; index < ARRAY_SIZE(final_map) - 2; index++) { /* * Find the entry for DDR mapping and update the address and * size. Zero-sized mapping will be skipped when creating MMU * table. */ switch (final_map[index].virt) { case CFG_SYS_FSL_DRAM_BASE1: final_map[index].virt = gd->bd->bi_dram[0].start; final_map[index].phys = gd->bd->bi_dram[0].start; final_map[index].size = gd->bd->bi_dram[0].size; break; #ifdef CFG_SYS_FSL_DRAM_BASE2 case CFG_SYS_FSL_DRAM_BASE2: #if (CONFIG_NR_DRAM_BANKS >= 2) final_map[index].virt = gd->bd->bi_dram[1].start; final_map[index].phys = gd->bd->bi_dram[1].start; final_map[index].size = gd->bd->bi_dram[1].size; #else final_map[index].size = 0; #endif break; #endif #ifdef CFG_SYS_FSL_DRAM_BASE3 case CFG_SYS_FSL_DRAM_BASE3: #if (CONFIG_NR_DRAM_BANKS >= 3) final_map[index].virt = gd->bd->bi_dram[2].start; final_map[index].phys = gd->bd->bi_dram[2].start; final_map[index].size = gd->bd->bi_dram[2].size; #else final_map[index].size = 0; #endif break; #endif default: break; } } #ifdef CFG_SYS_MEM_RESERVE_SECURE if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) { if (el == 3) { /* * Only use gd->arch.secure_ram if the address is * recalculated. Align to 4KB for MMU table. */ /* put page tables in secure ram */ index = ARRAY_SIZE(final_map) - 2; gd->arch.tlb_addr = gd->arch.secure_ram & ~0xfff; final_map[index].virt = gd->arch.secure_ram & ~0x3; final_map[index].phys = final_map[index].virt; final_map[index].size = CFG_SYS_MEM_RESERVE_SECURE; final_map[index].attrs = PTE_BLOCK_OUTER_SHARE; gd->arch.secure_ram |= MEM_RESERVE_SECURE_SECURED; tlb_addr_save = gd->arch.tlb_addr; } else { /* Use allocated (board_f.c) memory for TLB */ tlb_addr_save = gd->arch.tlb_allocated; gd->arch.tlb_addr = tlb_addr_save; } } #endif /* Reset the fill ptr */ gd->arch.tlb_fillptr = tlb_addr_save; /* Create normal system page tables */ setup_pgtables(); /* Create emergency page tables */ gd->arch.tlb_addr = gd->arch.tlb_fillptr; gd->arch.tlb_emerg = gd->arch.tlb_addr; setup_pgtables(); gd->arch.tlb_addr = tlb_addr_save; /* Disable cache and MMU */ dcache_disable(); /* TLBs are invalidated */ invalidate_icache_all(); /* point TTBR to the new table */ set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(NULL, NULL), MEMORY_ATTRIBUTES); set_sctlr(get_sctlr() | CR_M); } u64 get_page_table_size(void) { return 0x10000; } int arch_cpu_init(void) { /* * This function is called before U-Boot relocates itself to speed up * on system running. It is not necessary to run if performance is not * critical. Skip if MMU is already enabled by SPL or other means. */ if (get_sctlr() & CR_M) return 0; icache_enable(); __asm_invalidate_dcache_all(); __asm_invalidate_tlb_all(); early_mmu_setup(); set_sctlr(get_sctlr() | CR_C); return 0; } void mmu_setup(void) { final_mmu_setup(); } /* * This function is called from common/board_r.c. * It recreates MMU table in main memory. */ void enable_caches(void) { mmu_setup(); __asm_invalidate_tlb_all(); icache_enable(); dcache_enable(); } #endif /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */ #ifdef CONFIG_TFABOOT enum boot_src __get_boot_src(u32 porsr1) { enum boot_src src = BOOT_SOURCE_RESERVED; u32 rcw_src = (porsr1 & RCW_SRC_MASK) >> RCW_SRC_BIT; #if !defined(CONFIG_NXP_LSCH3_2) u32 val; #endif debug("%s: rcw_src 0x%x\n", __func__, rcw_src); #if defined(CONFIG_FSL_LSCH3) #if defined(CONFIG_NXP_LSCH3_2) switch (rcw_src) { case RCW_SRC_SDHC1_VAL: src = BOOT_SOURCE_SD_MMC; break; case RCW_SRC_SDHC2_VAL: src = BOOT_SOURCE_SD_MMC2; break; case RCW_SRC_I2C1_VAL: src = BOOT_SOURCE_I2C1_EXTENDED; break; case RCW_SRC_FLEXSPI_NAND2K_VAL: src = BOOT_SOURCE_XSPI_NAND; break; case RCW_SRC_FLEXSPI_NAND4K_VAL: src = BOOT_SOURCE_XSPI_NAND; break; case RCW_SRC_RESERVED_1_VAL: src = BOOT_SOURCE_RESERVED; break; case RCW_SRC_FLEXSPI_NOR_24B: src = BOOT_SOURCE_XSPI_NOR; break; default: src = BOOT_SOURCE_RESERVED; } #else val = rcw_src & RCW_SRC_TYPE_MASK; if (val == RCW_SRC_NOR_VAL) { val = rcw_src & NOR_TYPE_MASK; switch (val) { case NOR_16B_VAL: case NOR_32B_VAL: src = BOOT_SOURCE_IFC_NOR; break; default: src = BOOT_SOURCE_RESERVED; } } else { /* RCW SRC Serial Flash */ val = rcw_src & RCW_SRC_SERIAL_MASK; switch (val) { case RCW_SRC_QSPI_VAL: /* RCW SRC Serial NOR (QSPI) */ src = BOOT_SOURCE_QSPI_NOR; break; case RCW_SRC_SD_CARD_VAL: /* RCW SRC SD Card */ src = BOOT_SOURCE_SD_MMC; break; case RCW_SRC_EMMC_VAL: /* RCW SRC EMMC */ src = BOOT_SOURCE_SD_MMC; break; case RCW_SRC_I2C1_VAL: /* RCW SRC I2C1 Extended */ src = BOOT_SOURCE_I2C1_EXTENDED; break; default: src = BOOT_SOURCE_RESERVED; } } #endif #elif defined(CONFIG_FSL_LSCH2) /* RCW SRC NAND */ val = rcw_src & RCW_SRC_NAND_MASK; if (val == RCW_SRC_NAND_VAL) { val = rcw_src & NAND_RESERVED_MASK; if (val != NAND_RESERVED_1 && val != NAND_RESERVED_2) src = BOOT_SOURCE_IFC_NAND; } else { /* RCW SRC NOR */ val = rcw_src & RCW_SRC_NOR_MASK; if (val == NOR_8B_VAL || val == NOR_16B_VAL) { src = BOOT_SOURCE_IFC_NOR; } else { switch (rcw_src) { case QSPI_VAL1: case QSPI_VAL2: src = BOOT_SOURCE_QSPI_NOR; break; case SD_VAL: src = BOOT_SOURCE_SD_MMC; break; default: src = BOOT_SOURCE_RESERVED; } } } #endif if (CONFIG_IS_ENABLED(SYS_FSL_ERRATUM_A010539) && !rcw_src) src = BOOT_SOURCE_QSPI_NOR; debug("%s: src 0x%x\n", __func__, src); return src; } enum boot_src get_boot_src(void) { struct arm_smccc_res res; u32 porsr1 = 0; #if defined(CONFIG_FSL_LSCH3) u32 __iomem *dcfg_ccsr = (u32 __iomem *)DCFG_BASE; #elif defined(CONFIG_FSL_LSCH2) struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); #endif if (current_el() == 2) { arm_smccc_smc(SIP_SVC_RCW, 0, 0, 0, 0, 0, 0, 0, &res); if (!res.a0) porsr1 = res.a1; } if (current_el() == 3 || !porsr1) { #ifdef CONFIG_FSL_LSCH3 porsr1 = in_le32(dcfg_ccsr + DCFG_PORSR1 / 4); #elif defined(CONFIG_FSL_LSCH2) porsr1 = in_be32(&gur->porsr1); #endif } debug("%s: porsr1 0x%x\n", __func__, porsr1); return __get_boot_src(porsr1); } #ifdef CONFIG_ENV_IS_IN_MMC int mmc_get_env_dev(void) { enum boot_src src = get_boot_src(); int dev = CONFIG_SYS_MMC_ENV_DEV; switch (src) { case BOOT_SOURCE_SD_MMC: dev = 0; break; case BOOT_SOURCE_SD_MMC2: dev = 1; break; default: break; } return dev; } #endif enum env_location arch_env_get_location(enum env_operation op, int prio) { enum boot_src src = get_boot_src(); enum env_location env_loc = ENVL_NOWHERE; if (prio) return ENVL_UNKNOWN; #ifdef CONFIG_ENV_IS_NOWHERE return env_loc; #endif switch (src) { case BOOT_SOURCE_IFC_NOR: env_loc = ENVL_FLASH; break; case BOOT_SOURCE_QSPI_NOR: /* FALLTHROUGH */ case BOOT_SOURCE_XSPI_NOR: env_loc = ENVL_SPI_FLASH; break; case BOOT_SOURCE_IFC_NAND: /* FALLTHROUGH */ case BOOT_SOURCE_QSPI_NAND: /* FALLTHROUGH */ case BOOT_SOURCE_XSPI_NAND: env_loc = ENVL_NAND; break; case BOOT_SOURCE_SD_MMC: /* FALLTHROUGH */ case BOOT_SOURCE_SD_MMC2: env_loc = ENVL_MMC; break; case BOOT_SOURCE_I2C1_EXTENDED: /* FALLTHROUGH */ default: break; } return env_loc; } #endif /* CONFIG_TFABOOT */ u32 initiator_type(u32 cluster, int init_id) { struct ccsr_gur *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK; u32 type = 0; type = gur_in32(&gur->tp_ityp[idx]); if (type & TP_ITYP_AV) return type; return 0; } u32 cpu_pos_mask(void) { struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); int i = 0; u32 cluster, type, mask = 0; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type && (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)) mask |= 1 << (i * TP_INIT_PER_CLUSTER + j); } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return mask; } u32 cpu_mask(void) { struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster, type, mask = 0; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type) { if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) mask |= 1 << count; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return mask; } /* * Return the number of cores on this SOC. */ int cpu_numcores(void) { return hweight32(cpu_mask()); } int fsl_qoriq_core_to_cluster(unsigned int core) { struct ccsr_gur __iomem *gur = (void __iomem *)(CFG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { if (initiator_type(cluster, j)) { if (count == core) return i; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return -1; /* cannot identify the cluster */ } u32 fsl_qoriq_core_to_type(unsigned int core) { struct ccsr_gur __iomem *gur = (void __iomem *)(CFG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster, type; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type) { if (count == core) return type; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return -1; /* cannot identify the cluster */ } #ifndef CONFIG_FSL_LSCH3 uint get_svr(void) { struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); return gur_in32(&gur->svr); } #endif #ifdef CONFIG_DISPLAY_CPUINFO int print_cpuinfo(void) { struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR); struct sys_info sysinfo; char buf[32]; unsigned int i, core; u32 type, rcw, svr = gur_in32(&gur->svr); puts("SoC: "); cpu_name(buf); printf(" %s (0x%x)\n", buf, svr); memset((u8 *)buf, 0x00, ARRAY_SIZE(buf)); get_sys_info(&sysinfo); puts("Clock Configuration:"); for_each_cpu(i, core, cpu_numcores(), cpu_mask()) { if (!(i % 3)) puts("\n "); type = TP_ITYP_VER(fsl_qoriq_core_to_type(core)); printf("CPU%d(%s):%-4s MHz ", core, type == TY_ITYP_VER_A7 ? "A7 " : (type == TY_ITYP_VER_A53 ? "A53" : (type == TY_ITYP_VER_A57 ? "A57" : (type == TY_ITYP_VER_A72 ? "A72" : " "))), strmhz(buf, sysinfo.freq_processor[core])); } /* Display platform clock as Bus frequency. */ printf("\n Bus: %-4s MHz ", strmhz(buf, sysinfo.freq_systembus / CONFIG_SYS_FSL_PCLK_DIV)); printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus)); #ifdef CONFIG_SYS_DPAA_FMAN printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0])); #endif #ifdef CONFIG_SYS_FSL_HAS_DP_DDR if (soc_has_dp_ddr()) { printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2)); } #endif puts("\n"); /* * Display the RCW, so that no one gets confused as to what RCW * we're actually using for this boot. */ puts("Reset Configuration Word (RCW):"); for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) { rcw = gur_in32(&gur->rcwsr[i]); if ((i % 4) == 0) printf("\n %08x:", i * 4); printf(" %08x", rcw); } puts("\n"); return 0; } #endif #ifdef CONFIG_FSL_ESDHC int cpu_mmc_init(struct bd_info *bis) { return fsl_esdhc_mmc_init(bis); } #endif int cpu_eth_init(struct bd_info *bis) { int error = 0; #if defined(CONFIG_FSL_MC_ENET) && !defined(CONFIG_SPL_BUILD) error = fsl_mc_ldpaa_init(bis); #endif return error; } int check_psci(void) { unsigned int psci_ver; psci_ver = sec_firmware_support_psci_version(); if (psci_ver == PSCI_INVALID_VER) return 1; return 0; } static void config_core_prefetch(void) { char *buf = NULL; char buffer[HWCONFIG_BUFFER_SIZE]; const char *prefetch_arg = NULL; struct arm_smccc_res res; size_t arglen; unsigned int mask; if (env_get_f("hwconfig", buffer, sizeof(buffer)) > 0) buf = buffer; else return; prefetch_arg = hwconfig_subarg_f("core_prefetch", "disable", &arglen, buf); if (prefetch_arg) { mask = simple_strtoul(prefetch_arg, NULL, 0) & 0xff; if (mask & 0x1) { printf("Core0 prefetch can't be disabled\n"); return; } #define SIP_PREFETCH_DISABLE_64 0xC200FF13 arm_smccc_smc(SIP_PREFETCH_DISABLE_64, mask, 0, 0, 0, 0, 0, 0, &res); if (res.a0) printf("Prefetch disable config failed for mask "); else printf("Prefetch disable config passed for mask "); printf("0x%x\n", mask); } } #ifdef CONFIG_PCIE_ECAM_GENERIC __weak void set_ecam_icids(void) { } #endif int arch_early_init_r(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A009635 u32 svr_dev_id; /* * erratum A009635 is valid only for LS2080A SoC and * its personalitiesi */ svr_dev_id = get_svr(); if (IS_SVR_DEV(svr_dev_id, SVR_DEV(SVR_LS2080A))) erratum_a009635(); #endif #if defined(CONFIG_SYS_FSL_ERRATUM_A009942) && defined(CONFIG_SYS_FSL_DDR) erratum_a009942_check_cpo(); #endif if (check_psci()) { debug("PSCI: PSCI does not exist.\n"); /* if PSCI does not exist, boot secondary cores here */ if (fsl_layerscape_wake_seconday_cores()) printf("Did not wake secondary cores\n"); } config_core_prefetch(); #ifdef CONFIG_SYS_HAS_SERDES fsl_serdes_init(); #endif #ifdef CONFIG_SYS_FSL_HAS_RGMII /* some dpmacs in armv8a based freescale layerscape SOCs can be * configured via both serdes(sgmii, 10gbase-r, xlaui etc) bits and via * EC*_PMUX(rgmii) bits in RCW. * e.g. dpmac 17 and 18 in LX2160A can be configured as SGMII from * serdes bits and as RGMII via EC1_PMUX/EC2_PMUX bits * Now if a dpmac is enabled as RGMII through ECx_PMUX then it takes * precedence over SerDes protocol. i.e. in LX2160A if we select serdes * protocol that configures dpmac17 as SGMII and set the EC1_PMUX as * RGMII, then the dpmac is RGMII and not SGMII. * * Therefore, even thought fsl_rgmii_init is after fsl_serdes_init * function of SOC, the dpmac will be enabled as RGMII even if it was * also enabled before as SGMII. If ECx_PMUX is not configured for * RGMII, DPMAC will remain configured as SGMII from fsl_serdes_init(). */ fsl_rgmii_init(); #endif #ifdef CONFIG_FMAN_ENET #ifndef CONFIG_DM_ETH fman_enet_init(); #endif #endif #ifdef CONFIG_SYS_DPAA_QBMAN setup_qbman_portals(); #endif #ifdef CONFIG_PCIE_ECAM_GENERIC set_ecam_icids(); #endif return 0; } int timer_init(void) { u32 __iomem *cntcr = (u32 *)CFG_SYS_FSL_TIMER_ADDR; #ifdef CONFIG_FSL_LSCH3 u32 __iomem *cltbenr = (u32 *)CFG_SYS_FSL_PMU_CLTBENR; #endif #if defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \ defined(CONFIG_ARCH_LS1028A) u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET; u32 svr_dev_id; #endif #ifdef COUNTER_FREQUENCY_REAL unsigned long cntfrq = COUNTER_FREQUENCY_REAL; /* Update with accurate clock frequency */ if (current_el() == 3) asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory"); #endif #ifdef CONFIG_FSL_LSCH3 /* Enable timebase for all clusters. * It is safe to do so even some clusters are not enabled. */ out_le32(cltbenr, 0xf); #endif #if defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \ defined(CONFIG_ARCH_LS1028A) /* * In certain Layerscape SoCs, the clock for each core's * has an enable bit in the PMU Physical Core Time Base Enable * Register (PCTBENR), which allows the watchdog to operate. */ setbits_le32(pctbenr, 0xff); /* * For LS2080A SoC and its personalities, timer controller * offset is different */ svr_dev_id = get_svr(); if (IS_SVR_DEV(svr_dev_id, SVR_DEV(SVR_LS2080A))) cntcr = (u32 *)SYS_FSL_LS2080A_LS2085A_TIMER_ADDR; #endif /* Enable clock for timer * This is a global setting. */ out_le32(cntcr, 0x1); return 0; } #if !CONFIG_IS_ENABLED(SYSRESET) __efi_runtime_data u32 __iomem *rstcr = (u32 *)CFG_SYS_FSL_RST_ADDR; void __efi_runtime reset_cpu(void) { #if defined(CONFIG_ARCH_LX2160A) || defined(CONFIG_ARCH_LX2162A) /* clear the RST_REQ_MSK and SW_RST_REQ */ out_le32(rstcr, 0x0); /* initiate the sw reset request */ out_le32(rstcr, 0x1); #else u32 val; /* Raise RESET_REQ_B */ val = scfg_in32(rstcr); val |= 0x02; scfg_out32(rstcr, val); #endif } #endif #if defined(CONFIG_EFI_LOADER) && !defined(CONFIG_PSCI_RESET) void __efi_runtime EFIAPI efi_reset_system( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { switch (reset_type) { case EFI_RESET_COLD: case EFI_RESET_WARM: case EFI_RESET_PLATFORM_SPECIFIC: reset_cpu(); break; case EFI_RESET_SHUTDOWN: /* Nothing we can do */ break; } while (1) { } } efi_status_t efi_reset_system_init(void) { return efi_add_runtime_mmio(&rstcr, sizeof(*rstcr)); } #endif /* * Calculate reserved memory with given memory bank * Return aligned memory size on success * Return (ram_size + needed size) for failure */ phys_size_t board_reserve_ram_top(phys_size_t ram_size) { phys_size_t ram_top = ram_size; #if defined(CONFIG_FSL_MC_ENET) && !defined(CONFIG_SPL_BUILD) ram_top = mc_get_dram_block_size(); if (ram_top > ram_size) return ram_size + ram_top; ram_top = ram_size - ram_top; /* The start address of MC reserved memory needs to be aligned. */ ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1); #endif return ram_size - ram_top; } phys_size_t get_effective_memsize(void) { phys_size_t ea_size, rem = 0; /* * For ARMv8 SoCs, DDR memory is split into two or three regions. The * first region is 2GB space at 0x8000_0000. Secure memory needs to * allocated from first region. If the memory extends to the second * region (or the third region if applicable), Management Complex (MC) * memory should be put into the highest region, i.e. the end of DDR * memory. CFG_MAX_MEM_MAPPED is set to the size of first region so * U-Boot doesn't relocate itself into higher address. Should DDR be * configured to skip the first region, this function needs to be * adjusted. */ if (gd->ram_size > CFG_MAX_MEM_MAPPED) { ea_size = CFG_MAX_MEM_MAPPED; rem = gd->ram_size - ea_size; } else { ea_size = gd->ram_size; } #ifdef CFG_SYS_MEM_RESERVE_SECURE /* Check if we have enough space for secure memory */ if (ea_size > CFG_SYS_MEM_RESERVE_SECURE) ea_size -= CFG_SYS_MEM_RESERVE_SECURE; else printf("Error: No enough space for secure memory.\n"); #endif /* Check if we have enough memory for MC */ if (rem < board_reserve_ram_top(rem)) { /* Not enough memory in high region to reserve */ if (ea_size > board_reserve_ram_top(ea_size)) ea_size -= board_reserve_ram_top(ea_size); else printf("Error: No enough space for reserved memory.\n"); } return ea_size; } #ifdef CONFIG_TFABOOT phys_size_t tfa_get_dram_size(void) { struct arm_smccc_res res; arm_smccc_smc(SMC_DRAM_BANK_INFO, -1, 0, 0, 0, 0, 0, 0, &res); if (res.a0) return 0; return res.a1; } static int tfa_dram_init_banksize(void) { int i = 0, ret = 0; phys_size_t dram_size = tfa_get_dram_size(); struct arm_smccc_res res; debug("dram_size %llx\n", dram_size); if (!dram_size) return -EINVAL; do { arm_smccc_smc(SMC_DRAM_BANK_INFO, i, 0, 0, 0, 0, 0, 0, &res); if (res.a0) { ret = -EINVAL; break; } debug("bank[%d]: start %lx, size %lx\n", i, res.a1, res.a2); gd->bd->bi_dram[i].start = res.a1; gd->bd->bi_dram[i].size = res.a2; dram_size -= gd->bd->bi_dram[i].size; i++; } while (dram_size); if (i > 0) ret = 0; #if defined(CONFIG_RESV_RAM) && !defined(CONFIG_SPL_BUILD) /* Assign memory for MC */ #ifdef CONFIG_SYS_DDR_BLOCK3_BASE if (gd->bd->bi_dram[2].size >= board_reserve_ram_top(gd->bd->bi_dram[2].size)) { gd->arch.resv_ram = gd->bd->bi_dram[2].start + gd->bd->bi_dram[2].size - board_reserve_ram_top(gd->bd->bi_dram[2].size); } else #endif { if (gd->bd->bi_dram[1].size >= board_reserve_ram_top(gd->bd->bi_dram[1].size)) { gd->arch.resv_ram = gd->bd->bi_dram[1].start + gd->bd->bi_dram[1].size - board_reserve_ram_top(gd->bd->bi_dram[1].size); } else if (gd->bd->bi_dram[0].size > board_reserve_ram_top(gd->bd->bi_dram[0].size)) { gd->arch.resv_ram = gd->bd->bi_dram[0].start + gd->bd->bi_dram[0].size - board_reserve_ram_top(gd->bd->bi_dram[0].size); } } #endif /* CONFIG_RESV_RAM */ return ret; } #endif int dram_init_banksize(void) { #ifdef CONFIG_SYS_DP_DDR_BASE_PHY phys_size_t dp_ddr_size; #endif #ifdef CONFIG_TFABOOT if (!tfa_dram_init_banksize()) return 0; #endif /* * gd->ram_size has the total size of DDR memory, less reserved secure * memory. The DDR extends from low region to high region(s) presuming * no hole is created with DDR configuration. gd->arch.secure_ram tracks * the location of secure memory. gd->arch.resv_ram tracks the location * of reserved memory for Management Complex (MC). Because gd->ram_size * is reduced by this function if secure memory is reserved, checking * gd->arch.secure_ram should be done to avoid running it repeatedly. */ #ifdef CFG_SYS_MEM_RESERVE_SECURE if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) { debug("No need to run again, skip %s\n", __func__); return 0; } #endif gd->bd->bi_dram[0].start = CFG_SYS_SDRAM_BASE; if (gd->ram_size > CFG_SYS_DDR_BLOCK1_SIZE) { gd->bd->bi_dram[0].size = CFG_SYS_DDR_BLOCK1_SIZE; gd->bd->bi_dram[1].start = CFG_SYS_DDR_BLOCK2_BASE; gd->bd->bi_dram[1].size = gd->ram_size - CFG_SYS_DDR_BLOCK1_SIZE; #ifdef CONFIG_SYS_DDR_BLOCK3_BASE if (gd->bi_dram[1].size > CONFIG_SYS_DDR_BLOCK2_SIZE) { gd->bd->bi_dram[2].start = CONFIG_SYS_DDR_BLOCK3_BASE; gd->bd->bi_dram[2].size = gd->bd->bi_dram[1].size - CONFIG_SYS_DDR_BLOCK2_SIZE; gd->bd->bi_dram[1].size = CONFIG_SYS_DDR_BLOCK2_SIZE; } #endif } else { gd->bd->bi_dram[0].size = gd->ram_size; } #ifdef CFG_SYS_MEM_RESERVE_SECURE if (gd->bd->bi_dram[0].size > CFG_SYS_MEM_RESERVE_SECURE) { gd->bd->bi_dram[0].size -= CFG_SYS_MEM_RESERVE_SECURE; gd->arch.secure_ram = gd->bd->bi_dram[0].start + gd->bd->bi_dram[0].size; gd->arch.secure_ram |= MEM_RESERVE_SECURE_MAINTAINED; gd->ram_size -= CFG_SYS_MEM_RESERVE_SECURE; } #endif /* CFG_SYS_MEM_RESERVE_SECURE */ #if defined(CONFIG_RESV_RAM) && !defined(CONFIG_SPL_BUILD) /* Assign memory for MC */ #ifdef CONFIG_SYS_DDR_BLOCK3_BASE if (gd->bd->bi_dram[2].size >= board_reserve_ram_top(gd->bd->bi_dram[2].size)) { gd->arch.resv_ram = gd->bd->bi_dram[2].start + gd->bd->bi_dram[2].size - board_reserve_ram_top(gd->bd->bi_dram[2].size); } else #endif { if (gd->bd->bi_dram[1].size >= board_reserve_ram_top(gd->bd->bi_dram[1].size)) { gd->arch.resv_ram = gd->bd->bi_dram[1].start + gd->bd->bi_dram[1].size - board_reserve_ram_top(gd->bd->bi_dram[1].size); } else if (gd->bd->bi_dram[0].size > board_reserve_ram_top(gd->bd->bi_dram[0].size)) { gd->arch.resv_ram = gd->bd->bi_dram[0].start + gd->bd->bi_dram[0].size - board_reserve_ram_top(gd->bd->bi_dram[0].size); } } #endif /* CONFIG_RESV_RAM */ #ifdef CONFIG_SYS_DP_DDR_BASE_PHY #ifdef CONFIG_SYS_DDR_BLOCK3_BASE #error "This SoC shouldn't have DP DDR" #endif if (soc_has_dp_ddr()) { /* initialize DP-DDR here */ puts("DP-DDR: "); /* * DDR controller use 0 as the base address for binding. * It is mapped to CONFIG_SYS_DP_DDR_BASE for core to access. */ dp_ddr_size = fsl_other_ddr_sdram(CONFIG_SYS_DP_DDR_BASE_PHY, CONFIG_DP_DDR_CTRL, CONFIG_DP_DDR_NUM_CTRLS, CONFIG_DP_DDR_DIMM_SLOTS_PER_CTLR, NULL, NULL, NULL); if (dp_ddr_size) { gd->bd->bi_dram[2].start = CONFIG_SYS_DP_DDR_BASE; gd->bd->bi_dram[2].size = dp_ddr_size; } else { puts("Not detected"); } } #endif #ifdef CFG_SYS_MEM_RESERVE_SECURE debug("%s is called. gd->ram_size is reduced to %lu\n", __func__, (ulong)gd->ram_size); #endif return 0; } #if CONFIG_IS_ENABLED(EFI_LOADER) void efi_add_known_memory(void) { int i; phys_addr_t ram_start; phys_size_t ram_size; /* Add RAM */ for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { #ifdef CONFIG_SYS_DP_DDR_BASE_PHY #ifdef CONFIG_SYS_DDR_BLOCK3_BASE #error "This SoC shouldn't have DP DDR" #endif if (i == 2) continue; /* skip DP-DDR */ #endif ram_start = gd->bd->bi_dram[i].start; ram_size = gd->bd->bi_dram[i].size; #ifdef CONFIG_RESV_RAM if (gd->arch.resv_ram >= ram_start && gd->arch.resv_ram < ram_start + ram_size) ram_size = gd->arch.resv_ram - ram_start; #endif efi_add_memory_map(ram_start, ram_size, EFI_CONVENTIONAL_MEMORY); } } #endif /* * Before DDR size is known, early MMU table have DDR mapped as device memory * to avoid speculative access. To relocate U-Boot to DDR, "normal memory" * needs to be set for these mappings. * If a special case configures DDR with holes in the mapping, the holes need * to be marked as invalid. This is not implemented in this function. */ void update_early_mmu_table(void) { if (!gd->arch.tlb_addr) return; if (gd->ram_size <= CFG_SYS_FSL_DRAM_SIZE1) { mmu_change_region_attr( CFG_SYS_SDRAM_BASE, gd->ram_size, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS | PTE_TYPE_VALID); } else { mmu_change_region_attr( CFG_SYS_SDRAM_BASE, CFG_SYS_DDR_BLOCK1_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS | PTE_TYPE_VALID); #ifdef CONFIG_SYS_DDR_BLOCK3_BASE #ifndef CONFIG_SYS_DDR_BLOCK2_SIZE #error "Missing CONFIG_SYS_DDR_BLOCK2_SIZE" #endif if (gd->ram_size - CFG_SYS_DDR_BLOCK1_SIZE > CONFIG_SYS_DDR_BLOCK2_SIZE) { mmu_change_region_attr( CFG_SYS_DDR_BLOCK2_BASE, CONFIG_SYS_DDR_BLOCK2_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS | PTE_TYPE_VALID); mmu_change_region_attr( CONFIG_SYS_DDR_BLOCK3_BASE, gd->ram_size - CFG_SYS_DDR_BLOCK1_SIZE - CONFIG_SYS_DDR_BLOCK2_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS | PTE_TYPE_VALID); } else #endif { mmu_change_region_attr( CFG_SYS_DDR_BLOCK2_BASE, gd->ram_size - CFG_SYS_DDR_BLOCK1_SIZE, PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS | PTE_TYPE_VALID); } } } __weak int dram_init(void) { #ifdef CONFIG_SYS_FSL_DDR fsl_initdram(); #if (!defined(CONFIG_SPL) && !defined(CONFIG_TFABOOT)) || \ defined(CONFIG_SPL_BUILD) /* This will break-before-make MMU for DDR */ update_early_mmu_table(); #endif #endif return 0; } #ifdef CONFIG_ARCH_MISC_INIT __weak int serdes_misc_init(void) { return 0; } int arch_misc_init(void) { if (IS_ENABLED(CONFIG_FSL_CAAM)) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(caam_jr), &dev); if (ret) printf("Failed to initialize caam_jr: %d\n", ret); } serdes_misc_init(); return 0; } #endif