// SPDX-License-Identifier: GPL-2.0+ /* * Simple MTD partitioning layer * * Copyright © 2000 Nicolas Pitre * Copyright © 2002 Thomas Gleixner * Copyright © 2000-2010 David Woodhouse * */ #ifndef __UBOOT__ #include #include #include #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include "mtdcore.h" #ifndef __UBOOT__ static DEFINE_MUTEX(mtd_partitions_mutex); #else DEFINE_MUTEX(mtd_partitions_mutex); #endif #ifdef __UBOOT__ /* from mm/util.c */ /** * kstrdup - allocate space for and copy an existing string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory */ char *kstrdup(const char *s, gfp_t gfp) { size_t len; char *buf; if (!s) return NULL; len = strlen(s) + 1; buf = kmalloc(len, gfp); if (buf) memcpy(buf, s, len); return buf; } #endif #define MTD_SIZE_REMAINING (~0LLU) #define MTD_OFFSET_NOT_SPECIFIED (~0LLU) bool mtd_partitions_used(struct mtd_info *master) { struct mtd_info *slave; list_for_each_entry(slave, &master->partitions, node) { if (slave->usecount) return true; } return false; } /** * mtd_parse_partition - Parse @mtdparts partition definition, fill @partition * with it and update the @mtdparts string pointer. * * The partition name is allocated and must be freed by the caller. * * This function is widely inspired from part_parse (mtdparts.c). * * @mtdparts: String describing the partition with mtdparts command syntax * @partition: MTD partition structure to fill * * Return: 0 on success, an error otherwise. */ static int mtd_parse_partition(const char **_mtdparts, struct mtd_partition *partition) { const char *mtdparts = *_mtdparts; const char *name = NULL; int name_len; char *buf; /* Ensure the partition structure is empty */ memset(partition, 0, sizeof(struct mtd_partition)); /* Fetch the partition size */ if (*mtdparts == '-') { /* Assign all remaining space to this partition */ partition->size = MTD_SIZE_REMAINING; mtdparts++; } else { partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0); if (partition->size < SZ_4K) { printf("Minimum partition size 4kiB, %lldB requested\n", partition->size); return -EINVAL; } } /* Check for the offset */ partition->offset = MTD_OFFSET_NOT_SPECIFIED; if (*mtdparts == '@') { mtdparts++; partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0); } /* Now look for the name */ if (*mtdparts == '(') { name = ++mtdparts; mtdparts = strchr(name, ')'); if (!mtdparts) { printf("No closing ')' found in partition name\n"); return -EINVAL; } name_len = mtdparts - name + 1; if ((name_len - 1) == 0) { printf("Empty partition name\n"); return -EINVAL; } mtdparts++; } else { /* Name will be of the form size@offset */ name_len = 22; } /* Check if the partition is read-only */ if (strncmp(mtdparts, "ro", 2) == 0) { partition->mask_flags |= MTD_WRITEABLE; mtdparts += 2; } /* Check for a potential next partition definition */ if (*mtdparts == ',') { if (partition->size == MTD_SIZE_REMAINING) { printf("No partitions allowed after a fill-up\n"); return -EINVAL; } ++mtdparts; } else if ((*mtdparts == ';') || (*mtdparts == '\0')) { /* NOP */ } else { printf("Unexpected character '%c' in mtdparts\n", *mtdparts); return -EINVAL; } /* * Allocate a buffer for the name and either copy the provided name or * auto-generate it with the form 'size@offset'. */ buf = malloc(name_len); if (!buf) return -ENOMEM; if (name) strncpy(buf, name, name_len - 1); else snprintf(buf, name_len, "0x%08llx@0x%08llx", partition->size, partition->offset); buf[name_len - 1] = '\0'; partition->name = buf; *_mtdparts = mtdparts; return 0; } /** * mtd_parse_partitions - Create a partition array from an mtdparts definition * * Stateless function that takes a @parent MTD device, a string @_mtdparts * describing the partitions (with the "mtdparts" command syntax) and creates * the corresponding MTD partition structure array @_parts. Both the name and * the structure partition itself must be freed freed, the caller may use * @mtd_free_parsed_partitions() for this purpose. * * @parent: MTD device which contains the partitions * @_mtdparts: Pointer to a string describing the partitions with "mtdparts" * command syntax. * @_parts: Allocated array containing the partitions, must be freed by the * caller. * @_nparts: Size of @_parts array. * * Return: 0 on success, an error otherwise. */ int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts, struct mtd_partition **_parts, int *_nparts) { struct mtd_partition partition = {}, *parts; const char *mtdparts = *_mtdparts; uint64_t cur_off = 0, cur_sz = 0; int nparts = 0; int ret, idx; u64 sz; /* First, iterate over the partitions until we know their number */ while (mtdparts[0] != '\0' && mtdparts[0] != ';') { ret = mtd_parse_partition(&mtdparts, &partition); if (ret) return ret; free((char *)partition.name); nparts++; } /* Allocate an array of partitions to give back to the caller */ parts = malloc(sizeof(*parts) * nparts); if (!parts) { printf("Not enough space to save partitions meta-data\n"); return -ENOMEM; } /* Iterate again over each partition to save the data in our array */ for (idx = 0; idx < nparts; idx++) { ret = mtd_parse_partition(_mtdparts, &parts[idx]); if (ret) return ret; if (parts[idx].size == MTD_SIZE_REMAINING) parts[idx].size = parent->size - cur_sz; cur_sz += parts[idx].size; sz = parts[idx].size; if (sz < parent->writesize || do_div(sz, parent->writesize)) { printf("Partition size must be a multiple of %d\n", parent->writesize); return -EINVAL; } if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED) parts[idx].offset = cur_off; cur_off += parts[idx].size; parts[idx].ecclayout = parent->ecclayout; } /* Offset by one mtdparts to point to the next device if any */ if (*_mtdparts[0] == ';') (*_mtdparts)++; *_parts = parts; *_nparts = nparts; return 0; } /** * mtd_free_parsed_partitions - Free dynamically allocated partitions * * Each successful call to @mtd_parse_partitions must be followed by a call to * @mtd_free_parsed_partitions to free any allocated array during the parsing * process. * * @parts: Array containing the partitions that will be freed. * @nparts: Size of @parts array. */ void mtd_free_parsed_partitions(struct mtd_partition *parts, unsigned int nparts) { int i; for (i = 0; i < nparts; i++) free((char *)parts[i].name); free(parts); } /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_ecc_stats stats; int res; stats = mtd->parent->ecc_stats; res = mtd->parent->_read(mtd->parent, from + mtd->offset, len, retlen, buf); if (unlikely(mtd_is_eccerr(res))) mtd->ecc_stats.failed += mtd->parent->ecc_stats.failed - stats.failed; else mtd->ecc_stats.corrected += mtd->parent->ecc_stats.corrected - stats.corrected; return res; } #ifndef __UBOOT__ static int part_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { return mtd->parent->_point(mtd->parent, from + mtd->offset, len, retlen, virt, phys); } static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len); } #endif static unsigned long part_get_unmapped_area(struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags) { offset += mtd->offset; return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags); } static int part_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { int res; if (from >= mtd->size) return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; /* * If OOB is also requested, make sure that we do not read past the end * of this partition. */ if (ops->oobbuf) { size_t len, pages; if (ops->mode == MTD_OPS_AUTO_OOB) len = mtd->oobavail; else len = mtd->oobsize; pages = mtd_div_by_ws(mtd->size, mtd); pages -= mtd_div_by_ws(from, mtd); if (ops->ooboffs + ops->ooblen > pages * len) return -EINVAL; } res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops); if (unlikely(res)) { if (mtd_is_bitflip(res)) mtd->ecc_stats.corrected++; if (mtd_is_eccerr(res)) mtd->ecc_stats.failed++; } return res; } static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return mtd->parent->_read_user_prot_reg(mtd->parent, from, len, retlen, buf); } static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen, buf); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len, retlen, buf); } static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen, buf); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { return mtd->parent->_write(mtd->parent, to + mtd->offset, len, retlen, buf); } static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len, retlen, buf); } static int part_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops); } static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return mtd->parent->_write_user_prot_reg(mtd->parent, from, len, retlen, buf); } static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len); } #ifndef __UBOOT__ static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { return mtd->parent->_writev(mtd->parent, vecs, count, to + mtd->offset, retlen); } #endif static int part_erase(struct mtd_info *mtd, struct erase_info *instr) { int ret; instr->addr += mtd->offset; ret = mtd->parent->_erase(mtd->parent, instr); if (ret && instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= mtd->offset; instr->addr -= mtd->offset; return ret; } static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len); } static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len); } static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) { return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len); } static void part_sync(struct mtd_info *mtd) { mtd->parent->_sync(mtd->parent); } #ifndef __UBOOT__ static int part_suspend(struct mtd_info *mtd) { return mtd->parent->_suspend(mtd->parent); } static void part_resume(struct mtd_info *mtd) { mtd->parent->_resume(mtd->parent); } #endif static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) { ofs += mtd->offset; return mtd->parent->_block_isreserved(mtd->parent, ofs); } static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) { ofs += mtd->offset; return mtd->parent->_block_isbad(mtd->parent, ofs); } static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) { int res; ofs += mtd->offset; res = mtd->parent->_block_markbad(mtd->parent, ofs); if (!res) mtd->ecc_stats.badblocks++; return res; } static inline void free_partition(struct mtd_info *p) { kfree(p->name); kfree(p); } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object, recursively. */ static int do_del_mtd_partitions(struct mtd_info *master) { struct mtd_info *slave, *next; int ret, err = 0; list_for_each_entry_safe(slave, next, &master->partitions, node) { if (mtd_has_partitions(slave)) del_mtd_partitions(slave); debug("Deleting %s MTD partition\n", slave->name); ret = del_mtd_device(slave); if (ret < 0) { printf("Error when deleting partition \"%s\" (%d)\n", slave->name, ret); err = ret; continue; } list_del(&slave->node); free_partition(slave); } return err; } int del_mtd_partitions(struct mtd_info *master) { int ret; debug("Deleting MTD partitions on \"%s\":\n", master->name); mutex_lock(&mtd_partitions_mutex); ret = do_del_mtd_partitions(master); mutex_unlock(&mtd_partitions_mutex); return ret; } static struct mtd_info *allocate_partition(struct mtd_info *master, const struct mtd_partition *part, int partno, uint64_t cur_offset) { struct mtd_info *slave; char *name; /* allocate the partition structure */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); name = kstrdup(part->name, GFP_KERNEL); if (!name || !slave) { printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", master->name); kfree(name); kfree(slave); return ERR_PTR(-ENOMEM); } /* set up the MTD object for this partition */ slave->type = master->type; slave->flags = master->flags & ~part->mask_flags; slave->size = part->size; slave->writesize = master->writesize; slave->writebufsize = master->writebufsize; slave->oobsize = master->oobsize; slave->oobavail = master->oobavail; slave->subpage_sft = master->subpage_sft; slave->name = name; slave->owner = master->owner; #ifndef __UBOOT__ slave->backing_dev_info = master->backing_dev_info; /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone * to have the same data be in two different partitions. */ slave->dev.parent = master->dev.parent; #endif if (master->_read) slave->_read = part_read; if (master->_write) slave->_write = part_write; if (master->_panic_write) slave->_panic_write = part_panic_write; #ifndef __UBOOT__ if (master->_point && master->_unpoint) { slave->_point = part_point; slave->_unpoint = part_unpoint; } #endif if (master->_get_unmapped_area) slave->_get_unmapped_area = part_get_unmapped_area; if (master->_read_oob) slave->_read_oob = part_read_oob; if (master->_write_oob) slave->_write_oob = part_write_oob; if (master->_read_user_prot_reg) slave->_read_user_prot_reg = part_read_user_prot_reg; if (master->_read_fact_prot_reg) slave->_read_fact_prot_reg = part_read_fact_prot_reg; if (master->_write_user_prot_reg) slave->_write_user_prot_reg = part_write_user_prot_reg; if (master->_lock_user_prot_reg) slave->_lock_user_prot_reg = part_lock_user_prot_reg; if (master->_get_user_prot_info) slave->_get_user_prot_info = part_get_user_prot_info; if (master->_get_fact_prot_info) slave->_get_fact_prot_info = part_get_fact_prot_info; if (master->_sync) slave->_sync = part_sync; #ifndef __UBOOT__ if (!partno && !master->dev.class && master->_suspend && master->_resume) { slave->_suspend = part_suspend; slave->_resume = part_resume; } if (master->_writev) slave->_writev = part_writev; #endif if (master->_lock) slave->_lock = part_lock; if (master->_unlock) slave->_unlock = part_unlock; if (master->_is_locked) slave->_is_locked = part_is_locked; if (master->_block_isreserved) slave->_block_isreserved = part_block_isreserved; if (master->_block_isbad) slave->_block_isbad = part_block_isbad; if (master->_block_markbad) slave->_block_markbad = part_block_markbad; slave->_erase = part_erase; slave->parent = master; slave->offset = part->offset; INIT_LIST_HEAD(&slave->partitions); INIT_LIST_HEAD(&slave->node); if (slave->offset == MTDPART_OFS_APPEND) slave->offset = cur_offset; if (slave->offset == MTDPART_OFS_NXTBLK) { slave->offset = cur_offset; if (mtd_mod_by_eb(cur_offset, master) != 0) { /* Round up to next erasesize */ slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; debug("Moving partition %d: " "0x%012llx -> 0x%012llx\n", partno, (unsigned long long)cur_offset, (unsigned long long)slave->offset); } } if (slave->offset == MTDPART_OFS_RETAIN) { slave->offset = cur_offset; if (master->size - slave->offset >= slave->size) { slave->size = master->size - slave->offset - slave->size; } else { debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", part->name, master->size - slave->offset, slave->size); /* register to preserve ordering */ goto out_register; } } if (slave->size == MTDPART_SIZ_FULL) slave->size = master->size - slave->offset; debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, (unsigned long long)(slave->offset + slave->size), slave->name); /* let's do some sanity checks */ if (slave->offset >= master->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->size = 0; printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", part->name); goto out_register; } if (slave->offset + slave->size > master->size) { slave->size = master->size - slave->offset; printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", part->name, master->name, slave->size); } if (master->numeraseregions > 1) { /* Deal with variable erase size stuff */ int i, max = master->numeraseregions; u64 end = slave->offset + slave->size; struct mtd_erase_region_info *regions = master->eraseregions; /* Find the first erase regions which is part of this * partition. */ for (i = 0; i < max && regions[i].offset <= slave->offset; i++) ; /* The loop searched for the region _behind_ the first one */ if (i > 0) i--; /* Pick biggest erasesize */ for (; i < max && regions[i].offset < end; i++) { if (slave->erasesize < regions[i].erasesize) slave->erasesize = regions[i].erasesize; } WARN_ON(slave->erasesize == 0); } else { /* Single erase size */ slave->erasesize = master->erasesize; } if ((slave->flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->offset, slave)) { /* Doesn't start on a boundary of major erase size */ /* FIXME: Let it be writable if it is on a boundary of * _minor_ erase size though */ slave->flags &= ~MTD_WRITEABLE; printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", part->name); } if ((slave->flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->size, slave)) { slave->flags &= ~MTD_WRITEABLE; printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", part->name); } slave->ecclayout = master->ecclayout; slave->ecc_step_size = master->ecc_step_size; slave->ecc_strength = master->ecc_strength; slave->bitflip_threshold = master->bitflip_threshold; if (master->_block_isbad) { uint64_t offs = 0; while (offs < slave->size) { if (mtd_block_isbad(master, offs + slave->offset)) slave->ecc_stats.badblocks++; offs += slave->erasesize; } } out_register: return slave; } #ifndef __UBOOT__ int mtd_add_partition(struct mtd_info *master, const char *name, long long offset, long long length) { struct mtd_partition part; struct mtd_info *p, *new; uint64_t start, end; int ret = 0; /* the direct offset is expected */ if (offset == MTDPART_OFS_APPEND || offset == MTDPART_OFS_NXTBLK) return -EINVAL; if (length == MTDPART_SIZ_FULL) length = master->size - offset; if (length <= 0) return -EINVAL; part.name = name; part.size = length; part.offset = offset; part.mask_flags = 0; part.ecclayout = NULL; new = allocate_partition(master, &part, -1, offset); if (IS_ERR(new)) return PTR_ERR(new); start = offset; end = offset + length; mutex_lock(&mtd_partitions_mutex); list_for_each_entry(p, &master->partitions, node) { if (start >= p->offset && (start < (p->offset + p->size))) goto err_inv; if (end >= p->offset && (end < (p->offset + p->size))) goto err_inv; } list_add_tail(&new->node, &master->partitions); mutex_unlock(&mtd_partitions_mutex); add_mtd_device(new); return ret; err_inv: mutex_unlock(&mtd_partitions_mutex); free_partition(new); return -EINVAL; } EXPORT_SYMBOL_GPL(mtd_add_partition); int mtd_del_partition(struct mtd_info *master, int partno) { struct mtd_info *slave, *next; int ret = -EINVAL; mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &master->partitions, node) if (slave->index == partno) { ret = del_mtd_device(slave); if (ret < 0) break; list_del(&slave->node); free_partition(slave); break; } mutex_unlock(&mtd_partitions_mutex); return ret; } EXPORT_SYMBOL_GPL(mtd_del_partition); #endif /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * * We don't register the master, or expect the caller to have done so, * for reasons of data integrity. */ int add_mtd_partitions(struct mtd_info *master, const struct mtd_partition *parts, int nbparts) { struct mtd_info *slave; uint64_t cur_offset = 0; int i; debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { slave = allocate_partition(master, parts + i, i, cur_offset); if (IS_ERR(slave)) return PTR_ERR(slave); mutex_lock(&mtd_partitions_mutex); list_add_tail(&slave->node, &master->partitions); mutex_unlock(&mtd_partitions_mutex); add_mtd_device(slave); cur_offset = slave->offset + slave->size; } return 0; } #if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL) int add_mtd_partitions_of(struct mtd_info *master) { ofnode parts, child; int i = 0; if (!master->dev && !ofnode_valid(master->flash_node)) return 0; if (master->dev) parts = ofnode_find_subnode(mtd_get_ofnode(master), "partitions"); else parts = ofnode_find_subnode(master->flash_node, "partitions"); if (!ofnode_valid(parts) || !ofnode_is_available(parts) || !ofnode_device_is_compatible(parts, "fixed-partitions")) return 0; ofnode_for_each_subnode(child, parts) { struct mtd_partition part = { 0 }; struct mtd_info *slave; fdt_addr_t offset, size; if (!ofnode_is_available(child)) continue; offset = ofnode_get_addr_size_index_notrans(child, 0, &size); if (offset == FDT_ADDR_T_NONE || !size) { debug("Missing partition offset/size on \"%s\" partition\n", master->name); continue; } part.name = ofnode_read_string(child, "label"); if (!part.name) part.name = ofnode_read_string(child, "name"); /* * .mask_flags is used to remove flags in allocate_partition(), * so when "read-only" is present, we add MTD_WRITABLE to the * mask, and so MTD_WRITABLE will be removed on partition * allocation */ if (ofnode_read_bool(child, "read-only")) part.mask_flags |= MTD_WRITEABLE; if (ofnode_read_bool(child, "lock")) part.mask_flags |= MTD_POWERUP_LOCK; part.offset = offset; part.size = size; part.ecclayout = master->ecclayout; slave = allocate_partition(master, &part, i++, 0); if (IS_ERR(slave)) return PTR_ERR(slave); mutex_lock(&mtd_partitions_mutex); list_add_tail(&slave->node, &master->partitions); mutex_unlock(&mtd_partitions_mutex); add_mtd_device(slave); } return 0; } #endif /* CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL) */ #ifndef __UBOOT__ static DEFINE_SPINLOCK(part_parser_lock); static LIST_HEAD(part_parsers); static struct mtd_part_parser *get_partition_parser(const char *name) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); list_for_each_entry(p, &part_parsers, list) if (!strcmp(p->name, name) && try_module_get(p->owner)) { ret = p; break; } spin_unlock(&part_parser_lock); return ret; } #define put_partition_parser(p) do { module_put((p)->owner); } while (0) void register_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); } EXPORT_SYMBOL_GPL(register_mtd_parser); void deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); } EXPORT_SYMBOL_GPL(deregister_mtd_parser); /* * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you * are changing this array! */ static const char * const default_mtd_part_types[] = { "cmdlinepart", "ofpart", NULL }; /** * parse_mtd_partitions - parse MTD partitions * @master: the master partition (describes whole MTD device) * @types: names of partition parsers to try or %NULL * @pparts: array of partitions found is returned here * @data: MTD partition parser-specific data * * This function tries to find partition on MTD device @master. It uses MTD * partition parsers, specified in @types. However, if @types is %NULL, then * the default list of parsers is used. The default list contains only the * "cmdlinepart" and "ofpart" parsers ATM. * Note: If there are more then one parser in @types, the kernel only takes the * partitions parsed out by the first parser. * * This function may return: * o a negative error code in case of failure * o zero if no partitions were found * o a positive number of found partitions, in which case on exit @pparts will * point to an array containing this number of &struct mtd_info objects. */ int parse_mtd_partitions(struct mtd_info *master, const char *const *types, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { struct mtd_part_parser *parser; int ret = 0; if (!types) types = default_mtd_part_types; for ( ; ret <= 0 && *types; types++) { parser = get_partition_parser(*types); if (!parser && !request_module("%s", *types)) parser = get_partition_parser(*types); if (!parser) continue; ret = (*parser->parse_fn)(master, pparts, data); put_partition_parser(parser); if (ret > 0) { printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); break; } } return ret; } #endif /* Returns the size of the entire flash chip */ uint64_t mtd_get_device_size(const struct mtd_info *mtd) { if (mtd_is_partition(mtd)) return mtd->parent->size; return mtd->size; } EXPORT_SYMBOL_GPL(mtd_get_device_size);