// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2002 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. */ #include #include #include #include #include #include #include #include /* Ethernet chip registers. */ #define SCBStatus 0 /* Rx/Command Unit Status *Word* */ #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */ #define SCBCmd 2 /* Rx/Command Unit Command *Word* */ #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */ #define SCBPointer 4 /* General purpose pointer. */ #define SCBPort 8 /* Misc. commands and operands. */ #define SCBflash 12 /* Flash memory control. */ #define SCBeeprom 14 /* EEPROM memory control. */ #define SCBCtrlMDI 16 /* MDI interface control. */ #define SCBEarlyRx 20 /* Early receive byte count. */ #define SCBGenControl 28 /* 82559 General Control Register */ #define SCBGenStatus 29 /* 82559 General Status register */ /* 82559 SCB status word defnitions */ #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */ #define SCB_STATUS_FR 0x4000 /* frame received */ #define SCB_STATUS_CNA 0x2000 /* CU left active state */ #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */ #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */ #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */ #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */ #define SCB_INTACK_MASK 0xFD00 /* all the above */ #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA) #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR) /* System control block commands */ /* CU Commands */ #define CU_NOP 0x0000 #define CU_START 0x0010 #define CU_RESUME 0x0020 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */ #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */ #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */ #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */ /* RUC Commands */ #define RUC_NOP 0x0000 #define RUC_START 0x0001 #define RUC_RESUME 0x0002 #define RUC_ABORT 0x0004 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */ #define RUC_RESUMENR 0x0007 #define CU_CMD_MASK 0x00f0 #define RU_CMD_MASK 0x0007 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */ #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */ #define CU_STATUS_MASK 0x00C0 #define RU_STATUS_MASK 0x003C #define RU_STATUS_IDLE (0 << 2) #define RU_STATUS_SUS (1 << 2) #define RU_STATUS_NORES (2 << 2) #define RU_STATUS_READY (4 << 2) #define RU_STATUS_NO_RBDS_SUS ((1 << 2) | (8 << 2)) #define RU_STATUS_NO_RBDS_NORES ((2 << 2) | (8 << 2)) #define RU_STATUS_NO_RBDS_READY ((4 << 2) | (8 << 2)) /* 82559 Port interface commands. */ #define I82559_RESET 0x00000000 /* Software reset */ #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */ #define I82559_SELECTIVE_RESET 0x00000002 #define I82559_DUMP 0x00000003 #define I82559_DUMP_WAKEUP 0x00000007 /* 82559 Eeprom interface. */ #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */ #define EE_CS 0x02 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ #define EE_WRITE_0 0x01 #define EE_WRITE_1 0x05 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ #define EE_ENB (0x4800 | EE_CS) #define EE_CMD_BITS 3 #define EE_DATA_BITS 16 /* The EEPROM commands include the alway-set leading bit. */ #define EE_EWENB_CMD (4 << addr_len) #define EE_WRITE_CMD (5 << addr_len) #define EE_READ_CMD (6 << addr_len) #define EE_ERASE_CMD (7 << addr_len) /* Receive frame descriptors. */ struct RxFD { volatile u16 status; volatile u16 control; volatile u32 link; /* struct RxFD * */ volatile u32 rx_buf_addr; /* void * */ volatile u32 count; volatile u8 data[PKTSIZE_ALIGN]; }; #define RFD_STATUS_C 0x8000 /* completion of received frame */ #define RFD_STATUS_OK 0x2000 /* frame received with no errors */ #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */ #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */ #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */ #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */ #define RFD_COUNT_MASK 0x3fff #define RFD_COUNT_F 0x4000 #define RFD_COUNT_EOF 0x8000 #define RFD_RX_CRC 0x0800 /* crc error */ #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */ #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */ #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */ #define RFD_RX_SHORT 0x0080 /* short frame error */ #define RFD_RX_LENGTH 0x0020 #define RFD_RX_ERROR 0x0010 /* receive error */ #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */ #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */ #define RFD_RX_TCO 0x0001 /* TCO indication */ /* Transmit frame descriptors */ struct TxFD { /* Transmit frame descriptor set. */ volatile u16 status; volatile u16 command; volatile u32 link; /* void * */ volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */ volatile s32 count; volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */ volatile s32 tx_buf_size0; /* Length of Tx frame. */ volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */ volatile s32 tx_buf_size1; /* Length of Tx frame. */ }; #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */ #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */ #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */ #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */ #define TxCB_CMD_S 0x4000 /* suspend on completion */ #define TxCB_CMD_EL 0x8000 /* last command block in CBL */ #define TxCB_COUNT_MASK 0x3fff #define TxCB_COUNT_EOF 0x8000 /* The Speedo3 Rx and Tx frame/buffer descriptors. */ struct descriptor { /* A generic descriptor. */ volatile u16 status; volatile u16 command; volatile u32 link; /* struct descriptor * */ unsigned char params[0]; }; #define CONFIG_SYS_CMD_EL 0x8000 #define CONFIG_SYS_CMD_SUSPEND 0x4000 #define CONFIG_SYS_CMD_INT 0x2000 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */ #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */ #define CONFIG_SYS_STATUS_C 0x8000 #define CONFIG_SYS_STATUS_OK 0x2000 /* Misc. */ #define NUM_RX_DESC PKTBUFSRX #define NUM_TX_DESC 1 /* Number of TX descriptors */ #define TOUT_LOOP 1000000 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */ static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */ static int rx_next; /* RX descriptor ring pointer */ static int tx_next; /* TX descriptor ring pointer */ static int tx_threshold; /* * The parameters for a CmdConfigure operation. * There are so many options that it would be difficult to document * each bit. We mostly use the default or recommended settings. */ static const char i82558_config_cmd[] = { 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */ 0, 0x2E, 0, 0x60, 0x08, 0x88, 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */ 0x31, 0x05, }; static void init_rx_ring(struct eth_device *dev); static void purge_tx_ring(struct eth_device *dev); static void read_hw_addr(struct eth_device *dev, bd_t *bis); static int eepro100_init(struct eth_device *dev, bd_t *bis); static int eepro100_send(struct eth_device *dev, void *packet, int length); static int eepro100_recv(struct eth_device *dev); static void eepro100_halt(struct eth_device *dev); #if defined(CONFIG_E500) #define bus_to_phys(a) (a) #define phys_to_bus(a) (a) #else #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a) #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a) #endif static inline int INW(struct eth_device *dev, u_long addr) { return le16_to_cpu(*(volatile u16 *)(addr + (u_long)dev->iobase)); } static inline void OUTW(struct eth_device *dev, int command, u_long addr) { *(volatile u16 *)((addr + (u_long)dev->iobase)) = cpu_to_le16(command); } static inline void OUTL(struct eth_device *dev, int command, u_long addr) { *(volatile u32 *)((addr + (u_long)dev->iobase)) = cpu_to_le32(command); } #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) static inline int INL(struct eth_device *dev, u_long addr) { return le32_to_cpu(*(volatile u32 *)(addr + (u_long)dev->iobase)); } static int get_phyreg(struct eth_device *dev, unsigned char addr, unsigned char reg, unsigned short *value) { int cmd; int timeout = 50; /* read requested data */ cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); OUTL(dev, cmd, SCBCtrlMDI); do { udelay(1000); cmd = INL(dev, SCBCtrlMDI); } while (!(cmd & (1 << 28)) && (--timeout)); if (timeout == 0) return -1; *value = (unsigned short)(cmd & 0xffff); return 0; } static int set_phyreg(struct eth_device *dev, unsigned char addr, unsigned char reg, unsigned short value) { int cmd; int timeout = 50; /* write requested data */ cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); OUTL(dev, cmd | value, SCBCtrlMDI); while (!(INL(dev, SCBCtrlMDI) & (1 << 28)) && (--timeout)) udelay(1000); if (timeout == 0) return -1; return 0; } /* * Check if given phyaddr is valid, i.e. there is a PHY connected. * Do this by checking model value field from ID2 register. */ static struct eth_device *verify_phyaddr(const char *devname, unsigned char addr) { struct eth_device *dev; unsigned short value; unsigned char model; dev = eth_get_dev_by_name(devname); if (dev == NULL) { printf("%s: no such device\n", devname); return NULL; } /* read id2 register */ if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) { printf("%s: mii read timeout!\n", devname); return NULL; } /* get model */ model = (unsigned char)((value >> 4) & 0x003f); if (model == 0) { printf("%s: no PHY at address %d\n", devname, addr); return NULL; } return dev; } static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad, int reg) { unsigned short value = 0; struct eth_device *dev; dev = verify_phyaddr(bus->name, addr); if (dev == NULL) return -1; if (get_phyreg(dev, addr, reg, &value) != 0) { printf("%s: mii read timeout!\n", bus->name); return -1; } return value; } static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad, int reg, u16 value) { struct eth_device *dev; dev = verify_phyaddr(bus->name, addr); if (dev == NULL) return -1; if (set_phyreg(dev, addr, reg, value) != 0) { printf("%s: mii write timeout!\n", bus->name); return -1; } return 0; } #endif /* Wait for the chip get the command. */ static int wait_for_eepro100(struct eth_device *dev) { int i; for (i = 0; INW(dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) { if (i >= TOUT_LOOP) return 0; } return 1; } static struct pci_device_id supported[] = { {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557}, {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559}, {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER}, {} }; int eepro100_initialize(bd_t *bis) { pci_dev_t devno; int card_number = 0; struct eth_device *dev; u32 iobase, status; int idx = 0; while (1) { /* Find PCI device */ devno = pci_find_devices(supported, idx++); if (devno < 0) break; pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); iobase &= ~0xf; debug("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n", iobase); pci_write_config_dword(devno, PCI_COMMAND, PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); /* Check if I/O accesses and Bus Mastering are enabled. */ pci_read_config_dword(devno, PCI_COMMAND, &status); if (!(status & PCI_COMMAND_MEMORY)) { printf("Error: Can not enable MEM access.\n"); continue; } if (!(status & PCI_COMMAND_MASTER)) { printf("Error: Can not enable Bus Mastering.\n"); continue; } dev = (struct eth_device *)malloc(sizeof *dev); if (!dev) { printf("eepro100: Can not allocate memory\n"); break; } memset(dev, 0, sizeof(*dev)); sprintf(dev->name, "i82559#%d", card_number); dev->priv = (void *)devno; /* this have to come before bus_to_phys() */ dev->iobase = bus_to_phys(iobase); dev->init = eepro100_init; dev->halt = eepro100_halt; dev->send = eepro100_send; dev->recv = eepro100_recv; eth_register(dev); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) /* register mii command access routines */ int retval; struct mii_dev *mdiodev = mdio_alloc(); if (!mdiodev) return -ENOMEM; strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN); mdiodev->read = eepro100_miiphy_read; mdiodev->write = eepro100_miiphy_write; retval = mdio_register(mdiodev); if (retval < 0) return retval; #endif card_number++; /* Set the latency timer for value. */ pci_write_config_byte(devno, PCI_LATENCY_TIMER, 0x20); udelay(10 * 1000); read_hw_addr(dev, bis); } return card_number; } static int eepro100_init(struct eth_device *dev, bd_t *bis) { int i, status = -1; int tx_cur; struct descriptor *ias_cmd, *cfg_cmd; /* Reset the ethernet controller */ OUTL(dev, I82559_SELECTIVE_RESET, SCBPort); udelay(20); OUTL(dev, I82559_RESET, SCBPort); udelay(20); if (!wait_for_eepro100(dev)) { printf("Error: Can not reset ethernet controller.\n"); goto Done; } OUTL(dev, 0, SCBPointer); OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCBCmd); if (!wait_for_eepro100(dev)) { printf("Error: Can not reset ethernet controller.\n"); goto Done; } OUTL(dev, 0, SCBPointer); OUTW(dev, SCB_M | CU_ADDR_LOAD, SCBCmd); /* Initialize Rx and Tx rings. */ init_rx_ring(dev); purge_tx_ring(dev); /* Tell the adapter where the RX ring is located. */ if (!wait_for_eepro100(dev)) { printf("Error: Can not reset ethernet controller.\n"); goto Done; } OUTL(dev, phys_to_bus((u32)&rx_ring[rx_next]), SCBPointer); OUTW(dev, SCB_M | RUC_START, SCBCmd); /* Send the Configure frame */ tx_cur = tx_next; tx_next = ((tx_next + 1) % NUM_TX_DESC); cfg_cmd = (struct descriptor *)&tx_ring[tx_cur]; cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE)); cfg_cmd->status = 0; cfg_cmd->link = cpu_to_le32 (phys_to_bus((u32)&tx_ring[tx_next])); memcpy(cfg_cmd->params, i82558_config_cmd, sizeof(i82558_config_cmd)); if (!wait_for_eepro100(dev)) { printf("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n"); goto Done; } OUTL(dev, phys_to_bus((u32)&tx_ring[tx_cur]), SCBPointer); OUTW(dev, SCB_M | CU_START, SCBCmd); for (i = 0; !(le16_to_cpu(tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); i++) { if (i >= TOUT_LOOP) { printf("%s: Tx error buffer not ready\n", dev->name); goto Done; } } if (!(le16_to_cpu(tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { printf("TX error status = 0x%08X\n", le16_to_cpu(tx_ring[tx_cur].status)); goto Done; } /* Send the Individual Address Setup frame */ tx_cur = tx_next; tx_next = ((tx_next + 1) % NUM_TX_DESC); ias_cmd = (struct descriptor *)&tx_ring[tx_cur]; ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS)); ias_cmd->status = 0; ias_cmd->link = cpu_to_le32 (phys_to_bus((u32)&tx_ring[tx_next])); memcpy(ias_cmd->params, dev->enetaddr, 6); /* Tell the adapter where the TX ring is located. */ if (!wait_for_eepro100(dev)) { printf("Error: Can not reset ethernet controller.\n"); goto Done; } OUTL(dev, phys_to_bus((u32)&tx_ring[tx_cur]), SCBPointer); OUTW(dev, SCB_M | CU_START, SCBCmd); for (i = 0; !(le16_to_cpu(tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); i++) { if (i >= TOUT_LOOP) { printf("%s: Tx error buffer not ready\n", dev->name); goto Done; } } if (!(le16_to_cpu(tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { printf("TX error status = 0x%08X\n", le16_to_cpu(tx_ring[tx_cur].status)); goto Done; } status = 0; Done: return status; } static int eepro100_send(struct eth_device *dev, void *packet, int length) { int i, status = -1; int tx_cur; if (length <= 0) { printf("%s: bad packet size: %d\n", dev->name, length); goto Done; } tx_cur = tx_next; tx_next = (tx_next + 1) % NUM_TX_DESC; tx_ring[tx_cur].command = cpu_to_le16 (TxCB_CMD_TRANSMIT | TxCB_CMD_SF | TxCB_CMD_S | TxCB_CMD_EL); tx_ring[tx_cur].status = 0; tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold); tx_ring[tx_cur].link = cpu_to_le32 (phys_to_bus((u32)&tx_ring[tx_next])); tx_ring[tx_cur].tx_desc_addr = cpu_to_le32 (phys_to_bus((u32)&tx_ring[tx_cur].tx_buf_addr0)); tx_ring[tx_cur].tx_buf_addr0 = cpu_to_le32 (phys_to_bus((u_long)packet)); tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length); if (!wait_for_eepro100(dev)) { printf("%s: Tx error ethernet controller not ready.\n", dev->name); goto Done; } /* Send the packet. */ OUTL(dev, phys_to_bus((u32)&tx_ring[tx_cur]), SCBPointer); OUTW(dev, SCB_M | CU_START, SCBCmd); for (i = 0; !(le16_to_cpu(tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); i++) { if (i >= TOUT_LOOP) { printf("%s: Tx error buffer not ready\n", dev->name); goto Done; } } if (!(le16_to_cpu(tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { printf("TX error status = 0x%08X\n", le16_to_cpu(tx_ring[tx_cur].status)); goto Done; } status = length; Done: return status; } static int eepro100_recv(struct eth_device *dev) { u16 status, stat; int rx_prev, length = 0; stat = INW(dev, SCBStatus); OUTW(dev, stat & SCB_STATUS_RNR, SCBStatus); for (;;) { status = le16_to_cpu(rx_ring[rx_next].status); if (!(status & RFD_STATUS_C)) break; /* Valid frame status. */ if ((status & RFD_STATUS_OK)) { /* A valid frame received. */ length = le32_to_cpu(rx_ring[rx_next].count) & 0x3fff; /* Pass the packet up to the protocol layers. */ net_process_received_packet((u8 *)rx_ring[rx_next].data, length); } else { /* There was an error. */ printf("RX error status = 0x%08X\n", status); } rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S); rx_ring[rx_next].status = 0; rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16); rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC; rx_ring[rx_prev].control = 0; /* Update entry information. */ rx_next = (rx_next + 1) % NUM_RX_DESC; } if (stat & SCB_STATUS_RNR) { printf("%s: Receiver is not ready, restart it !\n", dev->name); /* Reinitialize Rx ring. */ init_rx_ring(dev); if (!wait_for_eepro100(dev)) { printf("Error: Can not restart ethernet controller.\n"); goto Done; } OUTL(dev, phys_to_bus((u32)&rx_ring[rx_next]), SCBPointer); OUTW(dev, SCB_M | RUC_START, SCBCmd); } Done: return length; } static void eepro100_halt(struct eth_device *dev) { /* Reset the ethernet controller */ OUTL(dev, I82559_SELECTIVE_RESET, SCBPort); udelay(20); OUTL(dev, I82559_RESET, SCBPort); udelay(20); if (!wait_for_eepro100(dev)) { printf("Error: Can not reset ethernet controller.\n"); goto Done; } OUTL(dev, 0, SCBPointer); OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCBCmd); if (!wait_for_eepro100(dev)) { printf("Error: Can not reset ethernet controller.\n"); goto Done; } OUTL(dev, 0, SCBPointer); OUTW(dev, SCB_M | CU_ADDR_LOAD, SCBCmd); Done: return; } /* SROM Read. */ static int read_eeprom(struct eth_device *dev, int location, int addr_len) { unsigned short retval = 0; int read_cmd = location | EE_READ_CMD; int i; OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); OUTW(dev, EE_ENB, SCBeeprom); /* Shift the read command bits out. */ for (i = 12; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; OUTW(dev, EE_ENB | dataval, SCBeeprom); udelay(1); OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); udelay(1); } OUTW(dev, EE_ENB, SCBeeprom); for (i = 15; i >= 0; i--) { OUTW(dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom); udelay(1); retval = (retval << 1) | ((INW(dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0); OUTW(dev, EE_ENB, SCBeeprom); udelay(1); } /* Terminate the EEPROM access. */ OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); return retval; } static void init_rx_ring(struct eth_device *dev) { int i; for (i = 0; i < NUM_RX_DESC; i++) { rx_ring[i].status = 0; rx_ring[i].control = (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0; rx_ring[i].link = cpu_to_le32 (phys_to_bus ((u32)&rx_ring[(i + 1) % NUM_RX_DESC])); rx_ring[i].rx_buf_addr = 0xffffffff; rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16); } rx_next = 0; } static void purge_tx_ring(struct eth_device *dev) { int i; tx_next = 0; tx_threshold = 0x01208000; for (i = 0; i < NUM_TX_DESC; i++) { tx_ring[i].status = 0; tx_ring[i].command = 0; tx_ring[i].link = 0; tx_ring[i].tx_desc_addr = 0; tx_ring[i].count = 0; tx_ring[i].tx_buf_addr0 = 0; tx_ring[i].tx_buf_size0 = 0; tx_ring[i].tx_buf_addr1 = 0; tx_ring[i].tx_buf_size1 = 0; } } static void read_hw_addr(struct eth_device *dev, bd_t *bis) { u16 sum = 0; int i, j; int addr_len = read_eeprom(dev, 0, 6) == 0xffff ? 8 : 6; for (j = 0, i = 0; i < 0x40; i++) { u16 value = read_eeprom(dev, i, addr_len); sum += value; if (i < 3) { dev->enetaddr[j++] = value; dev->enetaddr[j++] = value >> 8; } } if (sum != 0xBABA) { memset(dev->enetaddr, 0, ETH_ALEN); debug("%s: Invalid EEPROM checksum %#4.4x, check settings before activating this device!\n", dev->name, sum); } }