/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2016-2017 Micron Technology, Inc. * * Authors: * Peter Pan */ #ifndef __LINUX_MTD_SPINAND_H #define __LINUX_MTD_SPINAND_H #ifndef __UBOOT__ #include #include #include #include #include #include #include #else #include #include #include #endif /** * Standard SPI NAND flash operations */ #define SPINAND_RESET_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPINAND_WR_EN_DIS_OP(enable) \ SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPINAND_READID_OP(naddr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ SPI_MEM_OP_ADDR(naddr, 0, 1), \ SPI_MEM_OP_DUMMY(ndummy, 1), \ SPI_MEM_OP_DATA_IN(len, buf, 1)) #define SPINAND_SET_FEATURE_OP(reg, valptr) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ SPI_MEM_OP_ADDR(1, reg, 1), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(1, valptr, 1)) #define SPINAND_GET_FEATURE_OP(reg, valptr) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ SPI_MEM_OP_ADDR(1, reg, 1), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_IN(1, valptr, 1)) #define SPINAND_BLK_ERASE_OP(addr) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ SPI_MEM_OP_ADDR(3, addr, 1), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPINAND_PAGE_READ_OP(addr) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ SPI_MEM_OP_ADDR(3, addr, 1), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ SPI_MEM_OP_ADDR(2, addr, 1), \ SPI_MEM_OP_DUMMY(ndummy, 1), \ SPI_MEM_OP_DATA_IN(len, buf, 1)) #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ SPI_MEM_OP_ADDR(3, addr, 1), \ SPI_MEM_OP_DUMMY(ndummy, 1), \ SPI_MEM_OP_DATA_IN(len, buf, 1)) #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ SPI_MEM_OP_ADDR(2, addr, 1), \ SPI_MEM_OP_DUMMY(ndummy, 1), \ SPI_MEM_OP_DATA_IN(len, buf, 2)) #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ SPI_MEM_OP_ADDR(3, addr, 1), \ SPI_MEM_OP_DUMMY(ndummy, 1), \ SPI_MEM_OP_DATA_IN(len, buf, 2)) #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ SPI_MEM_OP_ADDR(2, addr, 1), \ SPI_MEM_OP_DUMMY(ndummy, 1), \ SPI_MEM_OP_DATA_IN(len, buf, 4)) #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ SPI_MEM_OP_ADDR(3, addr, 1), \ SPI_MEM_OP_DUMMY(ndummy, 1), \ SPI_MEM_OP_DATA_IN(len, buf, 4)) #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ SPI_MEM_OP_ADDR(2, addr, 2), \ SPI_MEM_OP_DUMMY(ndummy, 2), \ SPI_MEM_OP_DATA_IN(len, buf, 2)) #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ SPI_MEM_OP_ADDR(3, addr, 2), \ SPI_MEM_OP_DUMMY(ndummy, 2), \ SPI_MEM_OP_DATA_IN(len, buf, 2)) #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ SPI_MEM_OP_ADDR(2, addr, 4), \ SPI_MEM_OP_DUMMY(ndummy, 4), \ SPI_MEM_OP_DATA_IN(len, buf, 4)) #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ SPI_MEM_OP_ADDR(3, addr, 4), \ SPI_MEM_OP_DUMMY(ndummy, 4), \ SPI_MEM_OP_DATA_IN(len, buf, 4)) #define SPINAND_PROG_EXEC_OP(addr) \ SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ SPI_MEM_OP_ADDR(3, addr, 1), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPINAND_PROG_LOAD(reset, addr, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ SPI_MEM_OP_ADDR(2, addr, 1), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(len, buf, 1)) #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ SPI_MEM_OP_ADDR(2, addr, 1), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(len, buf, 4)) /** * Standard SPI NAND flash commands */ #define SPINAND_CMD_PROG_LOAD_X4 0x32 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 /* feature register */ #define REG_BLOCK_LOCK 0xa0 #define BL_ALL_UNLOCKED 0x00 /* configuration register */ #define REG_CFG 0xb0 #define CFG_OTP_ENABLE BIT(6) #define CFG_ECC_ENABLE BIT(4) #define CFG_QUAD_ENABLE BIT(0) /* status register */ #define REG_STATUS 0xc0 #define STATUS_BUSY BIT(0) #define STATUS_ERASE_FAILED BIT(2) #define STATUS_PROG_FAILED BIT(3) #define STATUS_ECC_MASK GENMASK(5, 4) #define STATUS_ECC_NO_BITFLIPS (0 << 4) #define STATUS_ECC_HAS_BITFLIPS (1 << 4) #define STATUS_ECC_UNCOR_ERROR (2 << 4) struct spinand_op; struct spinand_device; #define SPINAND_MAX_ID_LEN 4 /** * struct spinand_id - SPI NAND id structure * @data: buffer containing the id bytes. Currently 4 bytes large, but can * be extended if required * @len: ID length */ struct spinand_id { u8 data[SPINAND_MAX_ID_LEN]; int len; }; enum spinand_readid_method { SPINAND_READID_METHOD_OPCODE, SPINAND_READID_METHOD_OPCODE_ADDR, SPINAND_READID_METHOD_OPCODE_DUMMY, }; /** * struct spinand_devid - SPI NAND device id structure * @id: device id of current chip * @len: number of bytes in device id * @method: method to read chip id * There are 3 possible variants: * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately * after read_id opcode. * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after * read_id opcode + 1-byte address. * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after * read_id opcode + 1 dummy byte. */ struct spinand_devid { const u8 *id; const u8 len; const enum spinand_readid_method method; }; /** * struct manufacurer_ops - SPI NAND manufacturer specific operations * @init: initialize a SPI NAND device * @cleanup: cleanup a SPI NAND device * * Each SPI NAND manufacturer driver should implement this interface so that * NAND chips coming from this vendor can be initialized properly. */ struct spinand_manufacturer_ops { int (*init)(struct spinand_device *spinand); void (*cleanup)(struct spinand_device *spinand); }; /** * struct spinand_manufacturer - SPI NAND manufacturer instance * @id: manufacturer ID * @name: manufacturer name * @devid_len: number of bytes in device ID * @chips: supported SPI NANDs under current manufacturer * @nchips: number of SPI NANDs available in chips array * @ops: manufacturer operations */ struct spinand_manufacturer { u8 id; char *name; const struct spinand_info *chips; const size_t nchips; const struct spinand_manufacturer_ops *ops; }; /* SPI NAND manufacturers */ extern const struct spinand_manufacturer gigadevice_spinand_manufacturer; extern const struct spinand_manufacturer macronix_spinand_manufacturer; extern const struct spinand_manufacturer micron_spinand_manufacturer; extern const struct spinand_manufacturer paragon_spinand_manufacturer; extern const struct spinand_manufacturer toshiba_spinand_manufacturer; extern const struct spinand_manufacturer winbond_spinand_manufacturer; extern const struct spinand_manufacturer esmt_c8_spinand_manufacturer; /** * struct spinand_op_variants - SPI NAND operation variants * @ops: the list of variants for a given operation * @nops: the number of variants * * Some operations like read-from-cache/write-to-cache have several variants * depending on the number of IO lines you use to transfer data or address * cycles. This structure is a way to describe the different variants supported * by a chip and let the core pick the best one based on the SPI mem controller * capabilities. */ struct spinand_op_variants { const struct spi_mem_op *ops; unsigned int nops; }; #define SPINAND_OP_VARIANTS(name, ...) \ const struct spinand_op_variants name = { \ .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ sizeof(struct spi_mem_op), \ } /** * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND * chip * @get_status: get the ECC status. Should return a positive number encoding * the number of corrected bitflips if correction was possible or * -EBADMSG if there are uncorrectable errors. I can also return * other negative error codes if the error is not caused by * uncorrectable bitflips * @ooblayout: the OOB layout used by the on-die ECC implementation */ struct spinand_ecc_info { int (*get_status)(struct spinand_device *spinand, u8 status); const struct mtd_ooblayout_ops *ooblayout; }; #define SPINAND_HAS_QE_BIT BIT(0) #define SPINAND_HAS_CR_FEAT_BIT BIT(1) /** * struct spinand_info - Structure used to describe SPI NAND chips * @model: model name * @devid: device ID * @flags: OR-ing of the SPINAND_XXX flags * @memorg: memory organization * @eccreq: ECC requirements * @eccinfo: on-die ECC info * @op_variants: operations variants * @op_variants.read_cache: variants of the read-cache operation * @op_variants.write_cache: variants of the write-cache operation * @op_variants.update_cache: variants of the update-cache operation * @select_target: function used to select a target/die. Required only for * multi-die chips * * Each SPI NAND manufacturer driver should have a spinand_info table * describing all the chips supported by the driver. */ struct spinand_info { const char *model; struct spinand_devid devid; u32 flags; struct nand_memory_organization memorg; struct nand_ecc_req eccreq; struct spinand_ecc_info eccinfo; struct { const struct spinand_op_variants *read_cache; const struct spinand_op_variants *write_cache; const struct spinand_op_variants *update_cache; } op_variants; int (*select_target)(struct spinand_device *spinand, unsigned int target); }; #define SPINAND_ID(__method, ...) \ { \ .id = (const u8[]){ __VA_ARGS__ }, \ .len = sizeof((u8[]){ __VA_ARGS__ }), \ .method = __method, \ } #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ { \ .read_cache = __read, \ .write_cache = __write, \ .update_cache = __update, \ } #define SPINAND_ECCINFO(__ooblayout, __get_status) \ .eccinfo = { \ .ooblayout = __ooblayout, \ .get_status = __get_status, \ } #define SPINAND_SELECT_TARGET(__func) \ .select_target = __func, #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ __flags, ...) \ { \ .model = __model, \ .devid = __id, \ .memorg = __memorg, \ .eccreq = __eccreq, \ .op_variants = __op_variants, \ .flags = __flags, \ __VA_ARGS__ \ } /** * struct spinand_device - SPI NAND device instance * @base: NAND device instance * @slave: pointer to the SPI slave object * @lock: lock used to serialize accesses to the NAND * @id: NAND ID as returned by READ_ID * @flags: NAND flags * @op_templates: various SPI mem op templates * @op_templates.read_cache: read cache op template * @op_templates.write_cache: write cache op template * @op_templates.update_cache: update cache op template * @select_target: select a specific target/die. Usually called before sending * a command addressing a page or an eraseblock embedded in * this die. Only required if your chip exposes several dies * @cur_target: currently selected target/die * @eccinfo: on-die ECC information * @cfg_cache: config register cache. One entry per die * @databuf: bounce buffer for data * @oobbuf: bounce buffer for OOB data * @scratchbuf: buffer used for everything but page accesses. This is needed * because the spi-mem interface explicitly requests that buffers * passed in spi_mem_op be DMA-able, so we can't based the bufs on * the stack * @manufacturer: SPI NAND manufacturer information * @priv: manufacturer private data */ struct spinand_device { struct nand_device base; #ifndef __UBOOT__ struct spi_mem *spimem; struct mutex lock; #else struct spi_slave *slave; #endif struct spinand_id id; u32 flags; struct { const struct spi_mem_op *read_cache; const struct spi_mem_op *write_cache; const struct spi_mem_op *update_cache; } op_templates; int (*select_target)(struct spinand_device *spinand, unsigned int target); unsigned int cur_target; struct spinand_ecc_info eccinfo; u8 *cfg_cache; u8 *databuf; u8 *oobbuf; u8 *scratchbuf; const struct spinand_manufacturer *manufacturer; void *priv; }; /** * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance * @mtd: MTD instance * * Return: the SPI NAND device attached to @mtd. */ static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) { return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); } /** * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device * @spinand: SPI NAND device * * Return: the MTD device embedded in @spinand. */ static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) { return nanddev_to_mtd(&spinand->base); } /** * nand_to_spinand() - Get the SPI NAND device embedding an NAND object * @nand: NAND object * * Return: the SPI NAND device embedding @nand. */ static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) { return container_of(nand, struct spinand_device, base); } /** * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object * @spinand: SPI NAND device * * Return: the NAND device embedded in @spinand. */ static inline struct nand_device * spinand_to_nand(struct spinand_device *spinand) { return &spinand->base; } #ifndef __UBOOT__ /** * spinand_set_of_node - Attach a DT node to a SPI NAND device * @spinand: SPI NAND device * @np: DT node * * Attach a DT node to a SPI NAND device. */ static inline void spinand_set_of_node(struct spinand_device *spinand, const struct device_node *np) { nanddev_set_of_node(&spinand->base, np); } #else /** * spinand_set_of_node - Attach a DT node to a SPI NAND device * @spinand: SPI NAND device * @node: ofnode * * Attach a DT node to a SPI NAND device. */ static inline void spinand_set_ofnode(struct spinand_device *spinand, ofnode node) { nanddev_set_ofnode(&spinand->base, node); } #endif /* __UBOOT__ */ int spinand_match_and_init(struct spinand_device *spinand, const struct spinand_info *table, unsigned int table_size, enum spinand_readid_method rdid_method); int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); int spinand_select_target(struct spinand_device *spinand, unsigned int target); #endif /* __LINUX_MTD_SPINAND_H */