// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2015 Google, Inc * * EFI information obtained here: * http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES * * This file implements U-Boot running as an EFI application. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; int efi_info_get(enum efi_entry_t type, void **datap, int *sizep) { return -ENOSYS; } int efi_get_mmap(struct efi_mem_desc **descp, int *sizep, uint *keyp, int *desc_sizep, uint *versionp) { struct efi_priv *priv = efi_get_priv(); struct efi_boot_services *boot = priv->sys_table->boottime; efi_uintn_t size, desc_size, key; struct efi_mem_desc *desc; efi_status_t ret; u32 version; /* Get the memory map so we can switch off EFI */ size = 0; ret = boot->get_memory_map(&size, NULL, &key, &desc_size, &version); if (ret != EFI_BUFFER_TOO_SMALL) return log_msg_ret("get", -ENOMEM); desc = malloc(size); if (!desc) return log_msg_ret("mem", -ENOMEM); ret = boot->get_memory_map(&size, desc, &key, &desc_size, &version); if (ret) return log_msg_ret("get", -EINVAL); *descp = desc; *sizep = size; *desc_sizep = desc_size; *versionp = version; *keyp = key; return 0; } /** * efi_bind_block() - bind a new block device to an EFI device * * Binds a new top-level EFI_MEDIA device as well as a child block device so * that the block device can be accessed in U-Boot. * * The device can then be accessed using 'part list efi 0', 'fat ls efi 0:1', * for example, just like any other interface type. * * @handle: handle of the controller on which this driver is installed * @blkio: block io protocol proxied by this driver * @device_path: EFI device path structure for this * @len: Length of @device_path in bytes * @devp: Returns the bound device * @return 0 if OK, -ve on error */ int efi_bind_block(efi_handle_t handle, struct efi_block_io *blkio, struct efi_device_path *device_path, int len, struct udevice **devp) { struct efi_media_plat plat; struct udevice *dev; char name[18]; int ret; plat.handle = handle; plat.blkio = blkio; plat.device_path = malloc(device_path->length); if (!plat.device_path) return log_msg_ret("path", -ENOMEM); memcpy(plat.device_path, device_path, device_path->length); ret = device_bind(dm_root(), DM_DRIVER_GET(efi_media), "efi_media", &plat, ofnode_null(), &dev); if (ret) return log_msg_ret("bind", ret); snprintf(name, sizeof(name), "efi_media_%x", dev_seq(dev)); device_set_name(dev, name); *devp = dev; return 0; } static efi_status_t setup_memory(struct efi_priv *priv) { struct efi_boot_services *boot = priv->boot; efi_physical_addr_t addr; efi_status_t ret; int pages; /* * Use global_data_ptr instead of gd since it is an assignment. There * are very few assignments to global_data in U-Boot and this makes * it easier to find them. */ global_data_ptr = efi_malloc(priv, sizeof(struct global_data), &ret); if (!global_data_ptr) return ret; memset(gd, '\0', sizeof(*gd)); gd->malloc_base = (ulong)efi_malloc(priv, CONFIG_VAL(SYS_MALLOC_F_LEN), &ret); if (!gd->malloc_base) return ret; pages = CONFIG_EFI_RAM_SIZE >> 12; /* * Don't allocate any memory above 4GB. U-Boot is a 32-bit application * so we want it to load below 4GB. */ addr = 1ULL << 32; ret = boot->allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, priv->image_data_type, pages, &addr); if (ret) { log_info("(using pool %lx) ", ret); priv->ram_base = (ulong)efi_malloc(priv, CONFIG_EFI_RAM_SIZE, &ret); if (!priv->ram_base) return ret; priv->use_pool_for_malloc = true; } else { log_info("(using allocated RAM address %lx) ", (ulong)addr); priv->ram_base = addr; } gd->ram_size = pages << 12; return 0; } /** * free_memory() - Free memory used by the U-Boot app * * This frees memory allocated in setup_memory(), in preparation for returning * to UEFI. It also zeroes the global_data pointer. * * @priv: Private EFI data */ static void free_memory(struct efi_priv *priv) { struct efi_boot_services *boot = priv->boot; if (priv->use_pool_for_malloc) efi_free(priv, (void *)priv->ram_base); else boot->free_pages(priv->ram_base, gd->ram_size >> 12); efi_free(priv, (void *)gd->malloc_base); efi_free(priv, gd); global_data_ptr = NULL; } /** * devpath_is_partition() - Figure out if a device path is a partition * * Checks if a device path refers to a partition on some media device. This * works by checking for a valid partition number in a hard-driver media device * as the final component of the device path. * * @path: device path * Return: true if a partition, false if not * (e.g. it might be media which contains partitions) */ static bool devpath_is_partition(const struct efi_device_path *path) { const struct efi_device_path *p; bool was_part; for (p = path; p->type != DEVICE_PATH_TYPE_END; p = (void *)p + p->length) { was_part = false; if (p->type == DEVICE_PATH_TYPE_MEDIA_DEVICE && p->sub_type == DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH) { struct efi_device_path_hard_drive_path *hd = (void *)path; if (hd->partition_number) was_part = true; } } return was_part; } /** * setup_block() - Find all block devices and setup EFI devices for them * * Partitions are ignored, since U-Boot has partition handling. Errors with * particular devices produce a warning but execution continues to try to * find others. * * Return: 0 if found, -ENOSYS if there is no boot-services table, -ENOTSUPP * if a required protocol is not supported */ static int setup_block(void) { efi_guid_t efi_blkio_guid = EFI_BLOCK_IO_PROTOCOL_GUID; efi_guid_t efi_devpath_guid = EFI_DEVICE_PATH_PROTOCOL_GUID; efi_guid_t efi_pathutil_guid = EFI_DEVICE_PATH_UTILITIES_PROTOCOL_GUID; efi_guid_t efi_pathtext_guid = EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID; struct efi_boot_services *boot = efi_get_boot(); struct efi_device_path_utilities_protocol *util; struct efi_device_path_to_text_protocol *text; struct efi_device_path *path; struct efi_block_io *blkio; efi_uintn_t num_handles; efi_handle_t *handle; int ret, i; if (!boot) return log_msg_ret("sys", -ENOSYS); /* Find all devices which support the block I/O protocol */ ret = boot->locate_handle_buffer(BY_PROTOCOL, &efi_blkio_guid, NULL, &num_handles, &handle); if (ret) return log_msg_ret("loc", -ENOTSUPP); log_debug("Found %d handles:\n", (int)num_handles); /* We need to look up the path size and convert it to text */ ret = boot->locate_protocol(&efi_pathutil_guid, NULL, (void **)&util); if (ret) return log_msg_ret("util", -ENOTSUPP); ret = boot->locate_protocol(&efi_pathtext_guid, NULL, (void **)&text); if (ret) return log_msg_ret("text", -ENOTSUPP); for (i = 0; i < num_handles; i++) { struct udevice *dev; const u16 *name; bool is_part; int len; ret = boot->handle_protocol(handle[i], &efi_devpath_guid, (void **)&path); if (ret) { log_warning("- devpath %d failed (ret=%d)\n", i, ret); continue; } ret = boot->handle_protocol(handle[i], &efi_blkio_guid, (void **)&blkio); if (ret) { log_warning("- blkio %d failed (ret=%d)\n", i, ret); continue; } name = text->convert_device_path_to_text(path, true, false); is_part = devpath_is_partition(path); if (!is_part) { len = util->get_device_path_size(path); ret = efi_bind_block(handle[i], blkio, path, len, &dev); if (ret) { log_warning("- blkio bind %d failed (ret=%d)\n", i, ret); continue; } } else { dev = NULL; } /* * Show the device name if we created one. Otherwise indicate * that it is a partition. */ printf("%2d: %-12s %ls\n", i, dev ? dev->name : "", name); } boot->free_pool(handle); return 0; } /** * dm_scan_other() - Scan for UEFI devices that should be available to U-Boot * * This sets up block devices within U-Boot for those found in UEFI. With this, * U-Boot can access those devices * * @pre_reloc_only: true to only bind pre-relocation devices (ignored) * Returns: 0 on success, -ve on error */ int dm_scan_other(bool pre_reloc_only) { if (gd->flags & GD_FLG_RELOC) { int ret; ret = setup_block(); if (ret) return ret; } return 0; } /** * efi_main() - Start an EFI image * * This function is called by our EFI start-up code. It handles running * U-Boot. If it returns, EFI will continue. Another way to get back to EFI * is via reset_cpu(). */ efi_status_t EFIAPI efi_main(efi_handle_t image, struct efi_system_table *sys_table) { struct efi_priv local_priv, *priv = &local_priv; efi_status_t ret; /* Set up access to EFI data structures */ ret = efi_init(priv, "App", image, sys_table); if (ret) { printf("Failed to set up U-Boot: err=%lx\n", ret); return ret; } efi_set_priv(priv); /* * Set up the EFI debug UART so that printf() works. This is * implemented in the EFI serial driver, serial_efi.c. The application * can use printf() freely. */ debug_uart_init(); ret = setup_memory(priv); if (ret) { printf("Failed to set up memory: ret=%lx\n", ret); return ret; } /* * We could store the EFI memory map here, but it changes all the time, * so this is only useful for debugging. * * ret = efi_store_memory_map(priv); * if (ret) * return ret; */ printf("starting\n"); board_init_f(GD_FLG_SKIP_RELOC); board_init_r(NULL, 0); free_memory(priv); return EFI_SUCCESS; } static void efi_exit(void) { struct efi_priv *priv = efi_get_priv(); free_memory(priv); printf("U-Boot EFI exiting\n"); priv->boot->exit(priv->parent_image, EFI_SUCCESS, 0, NULL); } static int efi_sysreset_request(struct udevice *dev, enum sysreset_t type) { efi_exit(); return -EINPROGRESS; } static const struct udevice_id efi_sysreset_ids[] = { { .compatible = "efi,reset" }, { } }; static struct sysreset_ops efi_sysreset_ops = { .request = efi_sysreset_request, }; U_BOOT_DRIVER(efi_sysreset) = { .name = "efi-sysreset", .id = UCLASS_SYSRESET, .of_match = efi_sysreset_ids, .ops = &efi_sysreset_ops, };