// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #define LOG_CATEGORY LOGC_ARCH #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * early TLB into the .data section so that it not get cleared * with 16kB allignment (see TTBR0_BASE_ADDR_MASK) */ u8 early_tlb[PGTABLE_SIZE] __section(".data") __aligned(0x4000); struct lmb lmb; u32 get_bootmode(void) { /* read bootmode from TAMP backup register */ return (readl(TAMP_BOOT_CONTEXT) & TAMP_BOOT_MODE_MASK) >> TAMP_BOOT_MODE_SHIFT; } /* * weak function overidde: set the DDR/SYSRAM executable before to enable the * MMU and configure DACR, for early early_enable_caches (SPL or pre-reloc) */ void dram_bank_mmu_setup(int bank) { struct bd_info *bd = gd->bd; int i; phys_addr_t start; phys_size_t size; bool use_lmb = false; enum dcache_option option; if (IS_ENABLED(CONFIG_SPL_BUILD)) { /* STM32_SYSRAM_BASE exist only when SPL is supported */ #ifdef CONFIG_SPL start = ALIGN_DOWN(STM32_SYSRAM_BASE, MMU_SECTION_SIZE); size = ALIGN(STM32_SYSRAM_SIZE, MMU_SECTION_SIZE); #endif } else if (gd->flags & GD_FLG_RELOC) { /* bd->bi_dram is available only after relocation */ start = bd->bi_dram[bank].start; size = bd->bi_dram[bank].size; use_lmb = true; } else { /* mark cacheable and executable the beggining of the DDR */ start = STM32_DDR_BASE; size = CONFIG_DDR_CACHEABLE_SIZE; } for (i = start >> MMU_SECTION_SHIFT; i < (start >> MMU_SECTION_SHIFT) + (size >> MMU_SECTION_SHIFT); i++) { option = DCACHE_DEFAULT_OPTION; if (use_lmb && lmb_is_reserved_flags(&lmb, i << MMU_SECTION_SHIFT, LMB_NOMAP)) option = 0; /* INVALID ENTRY in TLB */ set_section_dcache(i, option); } } /* * initialize the MMU and activate cache in SPL or in U-Boot pre-reloc stage * MMU/TLB is updated in enable_caches() for U-Boot after relocation * or is deactivated in U-Boot entry function start.S::cpu_init_cp15 */ static void early_enable_caches(void) { /* I-cache is already enabled in start.S: cpu_init_cp15 */ if (CONFIG_IS_ENABLED(SYS_DCACHE_OFF)) return; #if !(CONFIG_IS_ENABLED(SYS_ICACHE_OFF) && CONFIG_IS_ENABLED(SYS_DCACHE_OFF)) gd->arch.tlb_size = PGTABLE_SIZE; gd->arch.tlb_addr = (unsigned long)&early_tlb; #endif /* enable MMU (default configuration) */ dcache_enable(); } /* * Early system init */ int arch_cpu_init(void) { early_enable_caches(); /* early armv7 timer init: needed for polling */ timer_init(); return 0; } /* weak function for SOC specific initialization */ __weak void stm32mp_cpu_init(void) { } int mach_cpu_init(void) { u32 boot_mode; stm32mp_cpu_init(); boot_mode = get_bootmode(); if (IS_ENABLED(CONFIG_CMD_STM32PROG_SERIAL) && (boot_mode & TAMP_BOOT_DEVICE_MASK) == BOOT_SERIAL_UART) gd->flags |= GD_FLG_SILENT | GD_FLG_DISABLE_CONSOLE; else if (IS_ENABLED(CONFIG_DEBUG_UART) && IS_ENABLED(CONFIG_SPL_BUILD)) debug_uart_init(); return 0; } void enable_caches(void) { /* parse device tree when data cache is still activated */ lmb_init_and_reserve(&lmb, gd->bd, (void *)gd->fdt_blob); /* I-cache is already enabled in start.S: icache_enable() not needed */ /* deactivate the data cache, early enabled in arch_cpu_init() */ dcache_disable(); /* * update MMU after relocation and enable the data cache * warning: the TLB location udpated in board_f.c::reserve_mmu */ dcache_enable(); } /* used when CONFIG_DISPLAY_CPUINFO is activated */ int print_cpuinfo(void) { char name[SOC_NAME_SIZE]; get_soc_name(name); printf("CPU: %s\n", name); return 0; } static void setup_boot_mode(void) { const u32 serial_addr[] = { STM32_USART1_BASE, STM32_USART2_BASE, STM32_USART3_BASE, STM32_UART4_BASE, STM32_UART5_BASE, STM32_USART6_BASE, STM32_UART7_BASE, STM32_UART8_BASE }; const u32 sdmmc_addr[] = { STM32_SDMMC1_BASE, STM32_SDMMC2_BASE, STM32_SDMMC3_BASE }; char cmd[60]; u32 boot_ctx = readl(TAMP_BOOT_CONTEXT); u32 boot_mode = (boot_ctx & TAMP_BOOT_MODE_MASK) >> TAMP_BOOT_MODE_SHIFT; unsigned int instance = (boot_mode & TAMP_BOOT_INSTANCE_MASK) - 1; u32 forced_mode = (boot_ctx & TAMP_BOOT_FORCED_MASK); struct udevice *dev; log_debug("%s: boot_ctx=0x%x => boot_mode=%x, instance=%d forced=%x\n", __func__, boot_ctx, boot_mode, instance, forced_mode); switch (boot_mode & TAMP_BOOT_DEVICE_MASK) { case BOOT_SERIAL_UART: if (instance >= ARRAY_SIZE(serial_addr)) break; /* serial : search associated node in devicetree */ sprintf(cmd, "serial@%x", serial_addr[instance]); if (uclass_get_device_by_name(UCLASS_SERIAL, cmd, &dev)) { /* restore console on error */ if (IS_ENABLED(CONFIG_CMD_STM32PROG_SERIAL)) gd->flags &= ~(GD_FLG_SILENT | GD_FLG_DISABLE_CONSOLE); log_err("uart%d = %s not found in device tree!\n", instance + 1, cmd); break; } sprintf(cmd, "%d", dev_seq(dev)); env_set("boot_device", "serial"); env_set("boot_instance", cmd); /* restore console on uart when not used */ if (IS_ENABLED(CONFIG_CMD_STM32PROG_SERIAL) && gd->cur_serial_dev != dev) { gd->flags &= ~(GD_FLG_SILENT | GD_FLG_DISABLE_CONSOLE); log_info("serial boot with console enabled!\n"); } break; case BOOT_SERIAL_USB: env_set("boot_device", "usb"); env_set("boot_instance", "0"); break; case BOOT_FLASH_SD: case BOOT_FLASH_EMMC: if (instance >= ARRAY_SIZE(sdmmc_addr)) break; /* search associated sdmmc node in devicetree */ sprintf(cmd, "mmc@%x", sdmmc_addr[instance]); if (uclass_get_device_by_name(UCLASS_MMC, cmd, &dev)) { printf("mmc%d = %s not found in device tree!\n", instance, cmd); break; } sprintf(cmd, "%d", dev_seq(dev)); env_set("boot_device", "mmc"); env_set("boot_instance", cmd); break; case BOOT_FLASH_NAND: env_set("boot_device", "nand"); env_set("boot_instance", "0"); break; case BOOT_FLASH_SPINAND: env_set("boot_device", "spi-nand"); env_set("boot_instance", "0"); break; case BOOT_FLASH_NOR: env_set("boot_device", "nor"); env_set("boot_instance", "0"); break; default: env_set("boot_device", "invalid"); env_set("boot_instance", ""); log_err("unexpected boot mode = %x\n", boot_mode); break; } switch (forced_mode) { case BOOT_FASTBOOT: log_info("Enter fastboot!\n"); env_set("preboot", "env set preboot; fastboot 0"); break; case BOOT_STM32PROG: env_set("boot_device", "usb"); env_set("boot_instance", "0"); break; case BOOT_UMS_MMC0: case BOOT_UMS_MMC1: case BOOT_UMS_MMC2: log_info("Enter UMS!\n"); instance = forced_mode - BOOT_UMS_MMC0; sprintf(cmd, "env set preboot; ums 0 mmc %d", instance); env_set("preboot", cmd); break; case BOOT_RECOVERY: env_set("preboot", "env set preboot; run altbootcmd"); break; case BOOT_NORMAL: break; default: log_debug("unexpected forced boot mode = %x\n", forced_mode); break; } /* clear TAMP for next reboot */ clrsetbits_le32(TAMP_BOOT_CONTEXT, TAMP_BOOT_FORCED_MASK, BOOT_NORMAL); } /* * If there is no MAC address in the environment, then it will be initialized * (silently) from the value in the OTP. */ __weak int setup_mac_address(void) { int ret; int i; u32 otp[3]; uchar enetaddr[6]; struct udevice *dev; int nb_eth, nb_otp, index; if (!IS_ENABLED(CONFIG_NET)) return 0; nb_eth = get_eth_nb(); /* 6 bytes for each MAC addr and 4 bytes for each OTP */ nb_otp = DIV_ROUND_UP(6 * nb_eth, 4); ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret) return ret; ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_MAC), otp, 4 * nb_otp); if (ret < 0) return ret; for (index = 0; index < nb_eth; index++) { /* MAC already in environment */ if (eth_env_get_enetaddr_by_index("eth", index, enetaddr)) continue; for (i = 0; i < 6; i++) enetaddr[i] = ((uint8_t *)&otp)[i + 6 * index]; if (!is_valid_ethaddr(enetaddr)) { log_err("invalid MAC address %d in OTP %pM\n", index, enetaddr); return -EINVAL; } log_debug("OTP MAC address %d = %pM\n", index, enetaddr); ret = eth_env_set_enetaddr_by_index("eth", index, enetaddr); if (ret) { log_err("Failed to set mac address %pM from OTP: %d\n", enetaddr, ret); return ret; } } return 0; } static int setup_serial_number(void) { char serial_string[25]; u32 otp[3] = {0, 0, 0 }; struct udevice *dev; int ret; if (env_get("serial#")) return 0; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret) return ret; ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_SERIAL), otp, sizeof(otp)); if (ret < 0) return ret; sprintf(serial_string, "%08X%08X%08X", otp[0], otp[1], otp[2]); env_set("serial#", serial_string); return 0; } __weak void stm32mp_misc_init(void) { } int arch_misc_init(void) { setup_boot_mode(); setup_mac_address(); setup_serial_number(); stm32mp_misc_init(); return 0; } /* * Without forcing the ".data" section, this would get saved in ".bss". BSS * will be cleared soon after, so it's not suitable. */ static uintptr_t rom_api_table __section(".data"); static uintptr_t nt_fw_dtb __section(".data"); /* * The ROM gives us the API location in r0 when starting. This is only available * during SPL, as there isn't (yet) a mechanism to pass this on to u-boot. Save * the FDT address provided by TF-A in r2 at boot time. This function is called * from start.S */ void save_boot_params(unsigned long r0, unsigned long r1, unsigned long r2, unsigned long r3) { if (IS_ENABLED(CONFIG_STM32_ECDSA_VERIFY)) rom_api_table = r0; if (IS_ENABLED(CONFIG_TFABOOT)) nt_fw_dtb = r2; save_boot_params_ret(); } uintptr_t get_stm32mp_rom_api_table(void) { return rom_api_table; } uintptr_t get_stm32mp_bl2_dtb(void) { return nt_fw_dtb; } #ifdef CONFIG_SPL_BUILD void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image) { typedef void __noreturn (*image_entry_stm32_t)(u32 romapi); uintptr_t romapi = get_stm32mp_rom_api_table(); image_entry_stm32_t image_entry = (image_entry_stm32_t)spl_image->entry_point; printf("image entry point: 0x%lx\n", spl_image->entry_point); image_entry(romapi); } #endif