// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2020 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define PLL_USB_EN_USB_CLKS_MASK (0x01 << 6) #define PLL_USB_PWR_MASK (0x01 << 12) #define PLL_USB_ENABLE_MASK (0x01 << 13) #define PLL_USB_BYPASS_MASK (0x01 << 16) #define PLL_USB_REG_ENABLE_MASK (0x01 << 21) #define PLL_USB_DIV_SEL_MASK (0x07 << 22) #define PLL_USB_LOCK_MASK (0x01 << 31) #define PCC5_LPDDR4_ADDR 0x2da70108 static void lpuart_set_clk(u32 index, enum cgc_clk clk) { const u32 lpuart_pcc_slots[] = { LPUART4_PCC3_SLOT, LPUART5_PCC3_SLOT, LPUART6_PCC4_SLOT, LPUART7_PCC4_SLOT, }; const u32 lpuart_pcc[] = { 3, 3, 4, 4, }; if (index > 3) return; pcc_clock_enable(lpuart_pcc[index], lpuart_pcc_slots[index], false); pcc_clock_sel(lpuart_pcc[index], lpuart_pcc_slots[index], clk); pcc_clock_enable(lpuart_pcc[index], lpuart_pcc_slots[index], true); pcc_reset_peripheral(lpuart_pcc[index], lpuart_pcc_slots[index], false); } static void init_clk_lpuart(void) { u32 index = 0, i; const u32 lpuart_array[] = { LPUART4_RBASE, LPUART5_RBASE, LPUART6_RBASE, LPUART7_RBASE, }; for (i = 0; i < 4; i++) { if (lpuart_array[i] == LPUART_BASE) { index = i; break; } } lpuart_set_clk(index, SOSC_DIV2); } void init_clk_fspi(int index) { pcc_clock_enable(4, FLEXSPI2_PCC4_SLOT, false); pcc_clock_sel(4, FLEXSPI2_PCC4_SLOT, PLL3_PFD2_DIV1); pcc_clock_div_config(4, FLEXSPI2_PCC4_SLOT, false, 8); pcc_clock_enable(4, FLEXSPI2_PCC4_SLOT, true); pcc_reset_peripheral(4, FLEXSPI2_PCC4_SLOT, false); } void setclkout_ddr(void) { writel(0x12800000, 0x2DA60020); writel(0xa00, 0x298C0000); /* PTD0 */ } void ddrphy_pll_lock(void) { writel(0x00011542, 0x2E065964); writel(0x00011542, 0x2E06586C); writel(0x00000B01, 0x2E062000); writel(0x00000B01, 0x2E060000); } void init_clk_ddr(void) { /* disable the ddr pcc */ writel(0xc0000000, PCC5_LPDDR4_ADDR); /* enable pll4 and ddrclk*/ cgc2_pll4_init(); cgc2_ddrclk_config(1, 1); /* enable ddr pcc */ writel(0xd0000000, PCC5_LPDDR4_ADDR); /* Wait until ddrclk reg lock bit is cleared, so that the div update is finished */ cgc2_ddrclk_wait_unlock(); /* for debug */ /* setclkout_ddr(); */ } int set_ddr_clk(u32 phy_freq_mhz) { debug("%s %u\n", __func__, phy_freq_mhz); if (phy_freq_mhz == 48) { writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */ cgc2_ddrclk_config(2, 0); /* 24Mhz DDR clock */ writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */ } else if (phy_freq_mhz == 384) { writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */ cgc2_ddrclk_config(0, 0); /* 192Mhz DDR clock */ writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */ } else if (phy_freq_mhz == 528) { writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */ cgc2_ddrclk_config(4, 1); /* 264Mhz DDR clock */ writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */ } else if (phy_freq_mhz == 264) { writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */ cgc2_ddrclk_config(4, 3); /* 132Mhz DDR clock */ writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */ } else if (phy_freq_mhz == 192) { writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */ cgc2_ddrclk_config(0, 1); /* 96Mhz DDR clock */ writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */ } else if (phy_freq_mhz == 96) { writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */ cgc2_ddrclk_config(0, 3); /* 48Mhz DDR clock */ writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */ } else { printf("ddr phy clk %uMhz is not supported\n", phy_freq_mhz); return -EINVAL; } /* Wait until ddrclk reg lock bit is cleared, so that the div update is finished */ cgc2_ddrclk_wait_unlock(); return 0; } void clock_init(void) { cgc1_soscdiv_init(); cgc1_init_core_clk(); init_clk_lpuart(); pcc_clock_enable(4, SDHC0_PCC4_SLOT, false); pcc_clock_sel(4, SDHC0_PCC4_SLOT, PLL3_PFD1_DIV2); pcc_clock_enable(4, SDHC0_PCC4_SLOT, true); pcc_reset_peripheral(4, SDHC0_PCC4_SLOT, false); pcc_clock_enable(4, SDHC1_PCC4_SLOT, false); pcc_clock_sel(4, SDHC1_PCC4_SLOT, PLL3_PFD2_DIV1); pcc_clock_enable(4, SDHC1_PCC4_SLOT, true); pcc_reset_peripheral(4, SDHC1_PCC4_SLOT, false); pcc_clock_enable(4, SDHC2_PCC4_SLOT, false); pcc_clock_sel(4, SDHC2_PCC4_SLOT, PLL3_PFD2_DIV1); pcc_clock_enable(4, SDHC2_PCC4_SLOT, true); pcc_reset_peripheral(4, SDHC2_PCC4_SLOT, false); /* Enable upower mu1 clk */ pcc_clock_enable(3, UPOWER_PCC3_SLOT, true); /* * Enable clock division * TODO: may not needed after ROM ready. */ } #if IS_ENABLED(CONFIG_SYS_I2C_IMX_LPI2C) int enable_i2c_clk(unsigned char enable, u32 i2c_num) { /* Set parent to FIRC DIV2 clock */ const u32 lpi2c_pcc_clks[] = { LPI2C4_PCC3_SLOT << 8 | 3, LPI2C5_PCC3_SLOT << 8 | 3, LPI2C6_PCC4_SLOT << 8 | 4, LPI2C7_PCC4_SLOT << 8 | 4, }; if (i2c_num == 0) return 0; if (i2c_num < 4 || i2c_num > 7) return -EINVAL; if (enable) { pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff, lpi2c_pcc_clks[i2c_num - 4] >> 8, false); pcc_clock_sel(lpi2c_pcc_clks[i2c_num - 4] & 0xff, lpi2c_pcc_clks[i2c_num - 4] >> 8, SOSC_DIV2); pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff, lpi2c_pcc_clks[i2c_num - 4] >> 8, true); pcc_reset_peripheral(lpi2c_pcc_clks[i2c_num - 4] & 0xff, lpi2c_pcc_clks[i2c_num - 4] >> 8, false); } else { pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff, lpi2c_pcc_clks[i2c_num - 4] >> 8, false); } return 0; } u32 imx_get_i2cclk(u32 i2c_num) { const u32 lpi2c_pcc_clks[] = { LPI2C4_PCC3_SLOT << 8 | 3, LPI2C5_PCC3_SLOT << 8 | 3, LPI2C6_PCC4_SLOT << 8 | 4, LPI2C7_PCC4_SLOT << 8 | 4, }; if (i2c_num == 0) return 24000000; if (i2c_num < 4 || i2c_num > 7) return 0; return pcc_clock_get_rate(lpi2c_pcc_clks[i2c_num - 4] & 0xff, lpi2c_pcc_clks[i2c_num - 4] >> 8); } #endif void enable_usboh3_clk(unsigned char enable) { if (enable) { pcc_clock_enable(4, USB0_PCC4_SLOT, true); pcc_clock_enable(4, USBPHY_PCC4_SLOT, true); pcc_reset_peripheral(4, USB0_PCC4_SLOT, false); pcc_reset_peripheral(4, USBPHY_PCC4_SLOT, false); #ifdef CONFIG_USB_MAX_CONTROLLER_COUNT if (CONFIG_USB_MAX_CONTROLLER_COUNT > 1) { pcc_clock_enable(4, USB1_PCC4_SLOT, true); pcc_clock_enable(4, USB1PHY_PCC4_SLOT, true); pcc_reset_peripheral(4, USB1_PCC4_SLOT, false); pcc_reset_peripheral(4, USB1PHY_PCC4_SLOT, false); } #endif pcc_clock_enable(4, USB_XBAR_PCC4_SLOT, true); } else { pcc_clock_enable(4, USB0_PCC4_SLOT, false); pcc_clock_enable(4, USB1_PCC4_SLOT, false); pcc_clock_enable(4, USBPHY_PCC4_SLOT, false); pcc_clock_enable(4, USB1PHY_PCC4_SLOT, false); pcc_clock_enable(4, USB_XBAR_PCC4_SLOT, false); } } int enable_usb_pll(ulong usb_phy_base) { u32 sosc_rate; s32 timeout = 1000000; struct usbphy_regs *usbphy = (struct usbphy_regs *)usb_phy_base; sosc_rate = cgc1_sosc_div(SOSC); if (!sosc_rate) return -EPERM; if (!(readl(&usbphy->usb1_pll_480_ctrl) & PLL_USB_LOCK_MASK)) { writel(0x1c00000, &usbphy->usb1_pll_480_ctrl_clr); switch (sosc_rate) { case 24000000: writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set); break; case 30000000: writel(0x800000, &usbphy->usb1_pll_480_ctrl_set); break; case 19200000: writel(0x1400000, &usbphy->usb1_pll_480_ctrl_set); break; default: writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set); break; } /* Enable the regulator first */ writel(PLL_USB_REG_ENABLE_MASK, &usbphy->usb1_pll_480_ctrl_set); /* Wait at least 15us */ udelay(15); /* Enable the power */ writel(PLL_USB_PWR_MASK, &usbphy->usb1_pll_480_ctrl_set); /* Wait lock */ while (timeout--) { if (readl(&usbphy->usb1_pll_480_ctrl) & PLL_USB_LOCK_MASK) break; } if (timeout <= 0) { /* If timeout, we power down the pll */ writel(PLL_USB_PWR_MASK, &usbphy->usb1_pll_480_ctrl_clr); return -ETIME; } } /* Clear the bypass */ writel(PLL_USB_BYPASS_MASK, &usbphy->usb1_pll_480_ctrl_clr); /* Enable the PLL clock out to USB */ writel((PLL_USB_EN_USB_CLKS_MASK | PLL_USB_ENABLE_MASK), &usbphy->usb1_pll_480_ctrl_set); return 0; } void enable_mipi_dsi_clk(unsigned char enable) { if (enable) { pcc_clock_enable(5, DSI_PCC5_SLOT, false); pcc_reset_peripheral(5, DSI_PCC5_SLOT, true); pcc_clock_sel(5, DSI_PCC5_SLOT, PLL4_PFD3_DIV2); pcc_clock_div_config(5, DSI_PCC5_SLOT, 0, 6); pcc_clock_enable(5, DSI_PCC5_SLOT, true); pcc_reset_peripheral(5, DSI_PCC5_SLOT, false); } else { pcc_clock_enable(5, DSI_PCC5_SLOT, false); pcc_reset_peripheral(5, DSI_PCC5_SLOT, true); } } void enable_adc1_clk(bool enable) { if (enable) { pcc_clock_enable(1, ADC1_PCC1_SLOT, false); pcc_clock_sel(1, ADC1_PCC1_SLOT, CM33_BUSCLK); pcc_clock_enable(1, ADC1_PCC1_SLOT, true); pcc_reset_peripheral(1, ADC1_PCC1_SLOT, false); } else { pcc_clock_enable(1, ADC1_PCC1_SLOT, false); } } void reset_lcdclk(void) { /* Disable clock and reset dcnano*/ pcc_clock_enable(5, DCNANO_PCC5_SLOT, false); pcc_reset_peripheral(5, DCNANO_PCC5_SLOT, true); } void mxs_set_lcdclk(u32 base_addr, u32 freq_in_khz) { u8 pcd, best_pcd = 0; u32 frac, rate, parent_rate, pfd, div; u32 best_pfd = 0, best_frac = 0, best = 0, best_div = 0; u32 pll4_rate; pcc_clock_enable(5, DCNANO_PCC5_SLOT, false); pll4_rate = cgc_clk_get_rate(PLL4); pll4_rate = pll4_rate / 1000; /* Change to khz*/ debug("PLL4 rate %ukhz\n", pll4_rate); for (pfd = 12; pfd <= 35; pfd++) { parent_rate = pll4_rate; parent_rate = parent_rate * 18 / pfd; for (div = 1; div <= 64; div++) { parent_rate = parent_rate / div; for (pcd = 0; pcd < 8; pcd++) { for (frac = 0; frac < 2; frac++) { if (pcd == 0 && frac == 1) continue; rate = parent_rate * (frac + 1) / (pcd + 1); if (rate > freq_in_khz) continue; if (best == 0 || rate > best) { best = rate; best_pfd = pfd; best_frac = frac; best_pcd = pcd; best_div = div; } } } } } if (best == 0) { printf("Can't find parent clock for LCDIF, target freq: %u\n", freq_in_khz); return; } debug("LCD target rate %ukhz, best rate %ukhz, frac %u, pcd %u, best_pfd %u, best_div %u\n", freq_in_khz, best, best_frac, best_pcd, best_pfd, best_div); cgc2_pll4_pfd_config(PLL4_PFD0, best_pfd); cgc2_pll4_pfddiv_config(PLL4_PFD0_DIV1, best_div - 1); pcc_clock_sel(5, DCNANO_PCC5_SLOT, PLL4_PFD0_DIV1); pcc_clock_div_config(5, DCNANO_PCC5_SLOT, best_frac, best_pcd + 1); pcc_clock_enable(5, DCNANO_PCC5_SLOT, true); pcc_reset_peripheral(5, DCNANO_PCC5_SLOT, false); } u32 mxc_get_clock(enum mxc_clock clk) { switch (clk) { case MXC_ESDHC_CLK: return pcc_clock_get_rate(4, SDHC0_PCC4_SLOT); case MXC_ESDHC2_CLK: return pcc_clock_get_rate(4, SDHC1_PCC4_SLOT); case MXC_ESDHC3_CLK: return pcc_clock_get_rate(4, SDHC2_PCC4_SLOT); case MXC_ARM_CLK: return cgc_clk_get_rate(PLL2); default: return 0; } } u32 get_lpuart_clk(void) { int index = 0; const u32 lpuart_array[] = { LPUART4_RBASE, LPUART5_RBASE, LPUART6_RBASE, LPUART7_RBASE, }; const u32 lpuart_pcc_slots[] = { LPUART4_PCC3_SLOT, LPUART5_PCC3_SLOT, LPUART6_PCC4_SLOT, LPUART7_PCC4_SLOT, }; const u32 lpuart_pcc[] = { 3, 3, 4, 4, }; for (index = 0; index < 4; index++) { if (lpuart_array[index] == LPUART_BASE) break; } if (index > 3) return 0; return pcc_clock_get_rate(lpuart_pcc[index], lpuart_pcc_slots[index]); } #ifndef CONFIG_SPL_BUILD /* * Dump some core clockes. */ int do_mx8ulp_showclocks(struct cmd_tbl *cmdtp, int flag, int argc, char * const argv[]) { printf("SDHC0 %8d MHz\n", pcc_clock_get_rate(4, SDHC0_PCC4_SLOT) / 1000000); printf("SDHC1 %8d MHz\n", pcc_clock_get_rate(4, SDHC1_PCC4_SLOT) / 1000000); printf("SDHC2 %8d MHz\n", pcc_clock_get_rate(4, SDHC2_PCC4_SLOT) / 1000000); printf("SOSC %8d MHz\n", cgc_clk_get_rate(SOSC) / 1000000); printf("FRO %8d MHz\n", cgc_clk_get_rate(FRO) / 1000000); printf("PLL2 %8d MHz\n", cgc_clk_get_rate(PLL2) / 1000000); printf("PLL3 %8d MHz\n", cgc_clk_get_rate(PLL3) / 1000000); printf("PLL3_VCODIV %8d MHz\n", cgc_clk_get_rate(PLL3_VCODIV) / 1000000); printf("PLL3_PFD0 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD0) / 1000000); printf("PLL3_PFD1 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD1) / 1000000); printf("PLL3_PFD2 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD2) / 1000000); printf("PLL3_PFD3 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD3) / 1000000); printf("PLL4_PFD0 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0) / 1000000); printf("PLL4_PFD1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1) / 1000000); printf("PLL4_PFD2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2) / 1000000); printf("PLL4_PFD3 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3) / 1000000); printf("PLL4_PFD0_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0_DIV1) / 1000000); printf("PLL4_PFD0_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0_DIV2) / 1000000); printf("PLL4_PFD1_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1_DIV1) / 1000000); printf("PLL4_PFD1_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1_DIV2) / 1000000); printf("PLL4_PFD2_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2_DIV1) / 1000000); printf("PLL4_PFD2_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2_DIV2) / 1000000); printf("PLL4_PFD3_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3_DIV1) / 1000000); printf("PLL4_PFD3_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3_DIV2) / 1000000); printf("LPAV_AXICLK %8d MHz\n", cgc_clk_get_rate(LPAV_AXICLK) / 1000000); printf("LPAV_AHBCLK %8d MHz\n", cgc_clk_get_rate(LPAV_AHBCLK) / 1000000); printf("LPAV_BUSCLK %8d MHz\n", cgc_clk_get_rate(LPAV_BUSCLK) / 1000000); printf("NIC_APCLK %8d MHz\n", cgc_clk_get_rate(NIC_APCLK) / 1000000); printf("NIC_PERCLK %8d MHz\n", cgc_clk_get_rate(NIC_PERCLK) / 1000000); printf("XBAR_APCLK %8d MHz\n", cgc_clk_get_rate(XBAR_APCLK) / 1000000); printf("XBAR_BUSCLK %8d MHz\n", cgc_clk_get_rate(XBAR_BUSCLK) / 1000000); printf("AD_SLOWCLK %8d MHz\n", cgc_clk_get_rate(AD_SLOWCLK) / 1000000); return 0; } U_BOOT_CMD( clocks, CONFIG_SYS_MAXARGS, 1, do_mx8ulp_showclocks, "display clocks", "" ); #endif