// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2008 Semihalf * * (C) Copyright 2000-2006 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. */ #ifndef USE_HOSTCC #include #include #include #ifdef CONFIG_SHOW_BOOT_PROGRESS #include #endif #include #include #include #include #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CMD_BDI extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); #endif DECLARE_GLOBAL_DATA_PTR; #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, int verify); #endif #else #include "mkimage.h" #include #include #include #ifndef __maybe_unused # define __maybe_unused /* unimplemented */ #endif #endif /* !USE_HOSTCC*/ #include #ifndef CONFIG_SYS_BARGSIZE #define CONFIG_SYS_BARGSIZE 512 #endif static const table_entry_t uimage_arch[] = { { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, { IH_ARCH_ALPHA, "alpha", "Alpha", }, { IH_ARCH_ARM, "arm", "ARM", }, { IH_ARCH_I386, "x86", "Intel x86", }, { IH_ARCH_IA64, "ia64", "IA64", }, { IH_ARCH_M68K, "m68k", "M68K", }, { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, { IH_ARCH_MIPS, "mips", "MIPS", }, { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, { IH_ARCH_NIOS2, "nios2", "NIOS II", }, { IH_ARCH_PPC, "powerpc", "PowerPC", }, { IH_ARCH_PPC, "ppc", "PowerPC", }, { IH_ARCH_S390, "s390", "IBM S390", }, { IH_ARCH_SH, "sh", "SuperH", }, { IH_ARCH_SPARC, "sparc", "SPARC", }, { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, { IH_ARCH_AVR32, "avr32", "AVR32", }, { IH_ARCH_NDS32, "nds32", "NDS32", }, { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, { IH_ARCH_ARM64, "arm64", "AArch64", }, { IH_ARCH_ARC, "arc", "ARC", }, { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, { IH_ARCH_RISCV, "riscv", "RISC-V", }, { -1, "", "", }, }; static const table_entry_t uimage_os[] = { { IH_OS_INVALID, "invalid", "Invalid OS", }, { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" }, { IH_OS_LINUX, "linux", "Linux", }, #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) { IH_OS_LYNXOS, "lynxos", "LynxOS", }, #endif { IH_OS_NETBSD, "netbsd", "NetBSD", }, { IH_OS_OSE, "ose", "Enea OSE", }, { IH_OS_PLAN9, "plan9", "Plan 9", }, { IH_OS_RTEMS, "rtems", "RTEMS", }, { IH_OS_TEE, "tee", "Trusted Execution Environment" }, { IH_OS_U_BOOT, "u-boot", "U-Boot", }, { IH_OS_VXWORKS, "vxworks", "VxWorks", }, #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) { IH_OS_QNX, "qnx", "QNX", }, #endif #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, #endif #ifdef USE_HOSTCC { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, { IH_OS_DELL, "dell", "Dell", }, { IH_OS_ESIX, "esix", "Esix", }, { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, { IH_OS_IRIX, "irix", "Irix", }, { IH_OS_NCR, "ncr", "NCR", }, { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, { IH_OS_PSOS, "psos", "pSOS", }, { IH_OS_SCO, "sco", "SCO", }, { IH_OS_SOLARIS, "solaris", "Solaris", }, { IH_OS_SVR4, "svr4", "SVR4", }, #endif #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, #endif { IH_OS_OPENSBI, "opensbi", "RISC-V OpenSBI", }, { -1, "", "", }, }; static const table_entry_t uimage_type[] = { { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, { IH_TYPE_IMX8IMAGE, "imx8image", "NXP i.MX8 Boot Image",}, { IH_TYPE_IMX8MIMAGE, "imx8mimage", "NXP i.MX8M Boot Image",}, { IH_TYPE_INVALID, "invalid", "Invalid Image", }, { IH_TYPE_MULTI, "multi", "Multi-File Image", }, { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, { IH_TYPE_SCRIPT, "script", "Script", }, { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SoCFPGA CV/AV preloader",}, { IH_TYPE_SOCFPGAIMAGE_V1, "socfpgaimage_v1", "Altera SoCFPGA A10 preloader",}, { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", }, { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, { IH_TYPE_ZYNQMPBIF, "zynqmpbif", "Xilinx ZynqMP Boot Image (bif)" }, { IH_TYPE_FPGA, "fpga", "FPGA Image" }, { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",}, { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" }, { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",}, { IH_TYPE_STM32IMAGE, "stm32image", "STMicroelectronics STM32 Image" }, { IH_TYPE_MTKIMAGE, "mtk_image", "MediaTek BootROM loadable Image" }, { IH_TYPE_COPRO, "copro", "Coprocessor Image"}, { -1, "", "", }, }; static const table_entry_t uimage_comp[] = { { IH_COMP_NONE, "none", "uncompressed", }, { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, { IH_COMP_GZIP, "gzip", "gzip compressed", }, { IH_COMP_LZMA, "lzma", "lzma compressed", }, { IH_COMP_LZO, "lzo", "lzo compressed", }, { IH_COMP_LZ4, "lz4", "lz4 compressed", }, { -1, "", "", }, }; struct table_info { const char *desc; int count; const table_entry_t *table; }; static const struct table_info table_info[IH_COUNT] = { { "architecture", IH_ARCH_COUNT, uimage_arch }, { "compression", IH_COMP_COUNT, uimage_comp }, { "operating system", IH_OS_COUNT, uimage_os }, { "image type", IH_TYPE_COUNT, uimage_type }, }; /*****************************************************************************/ /* Legacy format routines */ /*****************************************************************************/ int image_check_hcrc(const image_header_t *hdr) { ulong hcrc; ulong len = image_get_header_size(); image_header_t header; /* Copy header so we can blank CRC field for re-calculation */ memmove(&header, (char *)hdr, image_get_header_size()); image_set_hcrc(&header, 0); hcrc = crc32(0, (unsigned char *)&header, len); return (hcrc == image_get_hcrc(hdr)); } int image_check_dcrc(const image_header_t *hdr) { ulong data = image_get_data(hdr); ulong len = image_get_data_size(hdr); ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); return (dcrc == image_get_dcrc(hdr)); } /** * image_multi_count - get component (sub-image) count * @hdr: pointer to the header of the multi component image * * image_multi_count() returns number of components in a multi * component image. * * Note: no checking of the image type is done, caller must pass * a valid multi component image. * * returns: * number of components */ ulong image_multi_count(const image_header_t *hdr) { ulong i, count = 0; uint32_t *size; /* get start of the image payload, which in case of multi * component images that points to a table of component sizes */ size = (uint32_t *)image_get_data(hdr); /* count non empty slots */ for (i = 0; size[i]; ++i) count++; return count; } /** * image_multi_getimg - get component data address and size * @hdr: pointer to the header of the multi component image * @idx: index of the requested component * @data: pointer to a ulong variable, will hold component data address * @len: pointer to a ulong variable, will hold component size * * image_multi_getimg() returns size and data address for the requested * component in a multi component image. * * Note: no checking of the image type is done, caller must pass * a valid multi component image. * * returns: * data address and size of the component, if idx is valid * 0 in data and len, if idx is out of range */ void image_multi_getimg(const image_header_t *hdr, ulong idx, ulong *data, ulong *len) { int i; uint32_t *size; ulong offset, count, img_data; /* get number of component */ count = image_multi_count(hdr); /* get start of the image payload, which in case of multi * component images that points to a table of component sizes */ size = (uint32_t *)image_get_data(hdr); /* get address of the proper component data start, which means * skipping sizes table (add 1 for last, null entry) */ img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); if (idx < count) { *len = uimage_to_cpu(size[idx]); offset = 0; /* go over all indices preceding requested component idx */ for (i = 0; i < idx; i++) { /* add up i-th component size, rounding up to 4 bytes */ offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; } /* calculate idx-th component data address */ *data = img_data + offset; } else { *len = 0; *data = 0; } } static void image_print_type(const image_header_t *hdr) { const char __maybe_unused *os, *arch, *type, *comp; os = genimg_get_os_name(image_get_os(hdr)); arch = genimg_get_arch_name(image_get_arch(hdr)); type = genimg_get_type_name(image_get_type(hdr)); comp = genimg_get_comp_name(image_get_comp(hdr)); printf("%s %s %s (%s)\n", arch, os, type, comp); } /** * image_print_contents - prints out the contents of the legacy format image * @ptr: pointer to the legacy format image header * @p: pointer to prefix string * * image_print_contents() formats a multi line legacy image contents description. * The routine prints out all header fields followed by the size/offset data * for MULTI/SCRIPT images. * * returns: * no returned results */ void image_print_contents(const void *ptr) { const image_header_t *hdr = (const image_header_t *)ptr; const char __maybe_unused *p; p = IMAGE_INDENT_STRING; printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); if (IMAGE_ENABLE_TIMESTAMP) { printf("%sCreated: ", p); genimg_print_time((time_t)image_get_time(hdr)); } printf("%sImage Type: ", p); image_print_type(hdr); printf("%sData Size: ", p); genimg_print_size(image_get_data_size(hdr)); printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); if (image_check_type(hdr, IH_TYPE_MULTI) || image_check_type(hdr, IH_TYPE_SCRIPT)) { int i; ulong data, len; ulong count = image_multi_count(hdr); printf("%sContents:\n", p); for (i = 0; i < count; i++) { image_multi_getimg(hdr, i, &data, &len); printf("%s Image %d: ", p, i); genimg_print_size(len); if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { /* * the user may need to know offsets * if planning to do something with * multiple files */ printf("%s Offset = 0x%08lx\n", p, data); } } } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) { printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n", image_get_load(hdr) - image_get_header_size(), image_get_size(hdr) + image_get_header_size() - 0x1FE0); } } /** * print_decomp_msg() - Print a suitable decompression/loading message * * @type: OS type (IH_OS_...) * @comp_type: Compression type being used (IH_COMP_...) * @is_xip: true if the load address matches the image start */ static void print_decomp_msg(int comp_type, int type, bool is_xip) { const char *name = genimg_get_type_name(type); if (comp_type == IH_COMP_NONE) printf(" %s %s\n", is_xip ? "XIP" : "Loading", name); else printf(" Uncompressing %s\n", name); } int image_decomp(int comp, ulong load, ulong image_start, int type, void *load_buf, void *image_buf, ulong image_len, uint unc_len, ulong *load_end) { int ret = 0; *load_end = load; print_decomp_msg(comp, type, load == image_start); /* * Load the image to the right place, decompressing if needed. After * this, image_len will be set to the number of uncompressed bytes * loaded, ret will be non-zero on error. */ switch (comp) { case IH_COMP_NONE: if (load == image_start) break; if (image_len <= unc_len) memmove_wd(load_buf, image_buf, image_len, CHUNKSZ); else ret = -ENOSPC; break; #ifdef CONFIG_GZIP case IH_COMP_GZIP: { ret = gunzip(load_buf, unc_len, image_buf, &image_len); break; } #endif /* CONFIG_GZIP */ #ifdef CONFIG_BZIP2 case IH_COMP_BZIP2: { uint size = unc_len; /* * If we've got less than 4 MB of malloc() space, * use slower decompression algorithm which requires * at most 2300 KB of memory. */ ret = BZ2_bzBuffToBuffDecompress(load_buf, &size, image_buf, image_len, CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0); image_len = size; break; } #endif /* CONFIG_BZIP2 */ #ifdef CONFIG_LZMA case IH_COMP_LZMA: { SizeT lzma_len = unc_len; ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len, image_buf, image_len); image_len = lzma_len; break; } #endif /* CONFIG_LZMA */ #ifdef CONFIG_LZO case IH_COMP_LZO: { size_t size = unc_len; ret = lzop_decompress(image_buf, image_len, load_buf, &size); image_len = size; break; } #endif /* CONFIG_LZO */ #ifdef CONFIG_LZ4 case IH_COMP_LZ4: { size_t size = unc_len; ret = ulz4fn(image_buf, image_len, load_buf, &size); image_len = size; break; } #endif /* CONFIG_LZ4 */ default: printf("Unimplemented compression type %d\n", comp); return -ENOSYS; } *load_end = load + image_len; return ret; } #ifndef USE_HOSTCC #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) /** * image_get_ramdisk - get and verify ramdisk image * @rd_addr: ramdisk image start address * @arch: expected ramdisk architecture * @verify: checksum verification flag * * image_get_ramdisk() returns a pointer to the verified ramdisk image * header. Routine receives image start address and expected architecture * flag. Verification done covers data and header integrity and os/type/arch * fields checking. * * returns: * pointer to a ramdisk image header, if image was found and valid * otherwise, return NULL */ static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, int verify) { const image_header_t *rd_hdr = (const image_header_t *)rd_addr; if (!image_check_magic(rd_hdr)) { puts("Bad Magic Number\n"); bootstage_error(BOOTSTAGE_ID_RD_MAGIC); return NULL; } if (!image_check_hcrc(rd_hdr)) { puts("Bad Header Checksum\n"); bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); return NULL; } bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); image_print_contents(rd_hdr); if (verify) { puts(" Verifying Checksum ... "); if (!image_check_dcrc(rd_hdr)) { puts("Bad Data CRC\n"); bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); return NULL; } puts("OK\n"); } bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); if (!image_check_os(rd_hdr, IH_OS_LINUX) || !image_check_arch(rd_hdr, arch) || !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { printf("No Linux %s Ramdisk Image\n", genimg_get_arch_name(arch)); bootstage_error(BOOTSTAGE_ID_RAMDISK); return NULL; } return rd_hdr; } #endif #endif /* !USE_HOSTCC */ /*****************************************************************************/ /* Shared dual-format routines */ /*****************************************************************************/ #ifndef USE_HOSTCC ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ ulong save_addr; /* Default Save Address */ ulong save_size; /* Default Save Size (in bytes) */ static int on_loadaddr(const char *name, const char *value, enum env_op op, int flags) { switch (op) { case env_op_create: case env_op_overwrite: load_addr = simple_strtoul(value, NULL, 16); break; default: break; } return 0; } U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); ulong env_get_bootm_low(void) { char *s = env_get("bootm_low"); if (s) { ulong tmp = simple_strtoul(s, NULL, 16); return tmp; } #if defined(CONFIG_SYS_SDRAM_BASE) return CONFIG_SYS_SDRAM_BASE; #elif defined(CONFIG_ARM) || defined(CONFIG_MICROBLAZE) return gd->bd->bi_dram[0].start; #else return 0; #endif } phys_size_t env_get_bootm_size(void) { phys_size_t tmp, size; phys_addr_t start; char *s = env_get("bootm_size"); if (s) { tmp = (phys_size_t)simple_strtoull(s, NULL, 16); return tmp; } #if (defined(CONFIG_ARM) || defined(CONFIG_MICROBLAZE)) && \ defined(CONFIG_NR_DRAM_BANKS) start = gd->bd->bi_dram[0].start; size = gd->bd->bi_dram[0].size; #else start = gd->bd->bi_memstart; size = gd->bd->bi_memsize; #endif s = env_get("bootm_low"); if (s) tmp = (phys_size_t)simple_strtoull(s, NULL, 16); else tmp = start; return size - (tmp - start); } phys_size_t env_get_bootm_mapsize(void) { phys_size_t tmp; char *s = env_get("bootm_mapsize"); if (s) { tmp = (phys_size_t)simple_strtoull(s, NULL, 16); return tmp; } #if defined(CONFIG_SYS_BOOTMAPSZ) return CONFIG_SYS_BOOTMAPSZ; #else return env_get_bootm_size(); #endif } void memmove_wd(void *to, void *from, size_t len, ulong chunksz) { if (to == from) return; #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) if (to > from) { from += len; to += len; } while (len > 0) { size_t tail = (len > chunksz) ? chunksz : len; WATCHDOG_RESET(); if (to > from) { to -= tail; from -= tail; } memmove(to, from, tail); if (to < from) { to += tail; from += tail; } len -= tail; } #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ memmove(to, from, len); #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ } #else /* USE_HOSTCC */ void memmove_wd(void *to, void *from, size_t len, ulong chunksz) { memmove(to, from, len); } #endif /* !USE_HOSTCC */ void genimg_print_size(uint32_t size) { #ifndef USE_HOSTCC printf("%d Bytes = ", size); print_size(size, "\n"); #else printf("%d Bytes = %.2f KiB = %.2f MiB\n", size, (double)size / 1.024e3, (double)size / 1.048576e6); #endif } #if IMAGE_ENABLE_TIMESTAMP void genimg_print_time(time_t timestamp) { #ifndef USE_HOSTCC struct rtc_time tm; rtc_to_tm(timestamp, &tm); printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); #else printf("%s", ctime(×tamp)); #endif } #endif const table_entry_t *get_table_entry(const table_entry_t *table, int id) { for (; table->id >= 0; ++table) { if (table->id == id) return table; } return NULL; } static const char *unknown_msg(enum ih_category category) { static const char unknown_str[] = "Unknown "; static char msg[30]; strcpy(msg, unknown_str); strncat(msg, table_info[category].desc, sizeof(msg) - sizeof(unknown_str)); return msg; } /** * get_cat_table_entry_name - translate entry id to long name * @category: category to look up (enum ih_category) * @id: entry id to be translated * * This will scan the translation table trying to find the entry that matches * the given id. * * @retur long entry name if translation succeeds; error string on failure */ const char *genimg_get_cat_name(enum ih_category category, uint id) { const table_entry_t *entry; entry = get_table_entry(table_info[category].table, id); if (!entry) return unknown_msg(category); #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) return entry->lname; #else return entry->lname + gd->reloc_off; #endif } /** * get_cat_table_entry_short_name - translate entry id to short name * @category: category to look up (enum ih_category) * @id: entry id to be translated * * This will scan the translation table trying to find the entry that matches * the given id. * * @retur short entry name if translation succeeds; error string on failure */ const char *genimg_get_cat_short_name(enum ih_category category, uint id) { const table_entry_t *entry; entry = get_table_entry(table_info[category].table, id); if (!entry) return unknown_msg(category); #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) return entry->sname; #else return entry->sname + gd->reloc_off; #endif } int genimg_get_cat_count(enum ih_category category) { return table_info[category].count; } const char *genimg_get_cat_desc(enum ih_category category) { return table_info[category].desc; } /** * get_table_entry_name - translate entry id to long name * @table: pointer to a translation table for entries of a specific type * @msg: message to be returned when translation fails * @id: entry id to be translated * * get_table_entry_name() will go over translation table trying to find * entry that matches given id. If matching entry is found, its long * name is returned to the caller. * * returns: * long entry name if translation succeeds * msg otherwise */ char *get_table_entry_name(const table_entry_t *table, char *msg, int id) { table = get_table_entry(table, id); if (!table) return msg; #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) return table->lname; #else return table->lname + gd->reloc_off; #endif } const char *genimg_get_os_name(uint8_t os) { return (get_table_entry_name(uimage_os, "Unknown OS", os)); } const char *genimg_get_arch_name(uint8_t arch) { return (get_table_entry_name(uimage_arch, "Unknown Architecture", arch)); } const char *genimg_get_type_name(uint8_t type) { return (get_table_entry_name(uimage_type, "Unknown Image", type)); } static const char *genimg_get_short_name(const table_entry_t *table, int val) { table = get_table_entry(table, val); if (!table) return "unknown"; #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) return table->sname; #else return table->sname + gd->reloc_off; #endif } const char *genimg_get_type_short_name(uint8_t type) { return genimg_get_short_name(uimage_type, type); } const char *genimg_get_comp_name(uint8_t comp) { return (get_table_entry_name(uimage_comp, "Unknown Compression", comp)); } const char *genimg_get_comp_short_name(uint8_t comp) { return genimg_get_short_name(uimage_comp, comp); } const char *genimg_get_os_short_name(uint8_t os) { return genimg_get_short_name(uimage_os, os); } const char *genimg_get_arch_short_name(uint8_t arch) { return genimg_get_short_name(uimage_arch, arch); } /** * get_table_entry_id - translate short entry name to id * @table: pointer to a translation table for entries of a specific type * @table_name: to be used in case of error * @name: entry short name to be translated * * get_table_entry_id() will go over translation table trying to find * entry that matches given short name. If matching entry is found, * its id returned to the caller. * * returns: * entry id if translation succeeds * -1 otherwise */ int get_table_entry_id(const table_entry_t *table, const char *table_name, const char *name) { const table_entry_t *t; for (t = table; t->id >= 0; ++t) { #ifdef CONFIG_NEEDS_MANUAL_RELOC if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) #else if (t->sname && strcasecmp(t->sname, name) == 0) #endif return (t->id); } debug("Invalid %s Type: %s\n", table_name, name); return -1; } int genimg_get_os_id(const char *name) { return (get_table_entry_id(uimage_os, "OS", name)); } int genimg_get_arch_id(const char *name) { return (get_table_entry_id(uimage_arch, "CPU", name)); } int genimg_get_type_id(const char *name) { return (get_table_entry_id(uimage_type, "Image", name)); } int genimg_get_comp_id(const char *name) { return (get_table_entry_id(uimage_comp, "Compression", name)); } #ifndef USE_HOSTCC /** * genimg_get_kernel_addr_fit - get the real kernel address and return 2 * FIT strings * @img_addr: a string might contain real image address * @fit_uname_config: double pointer to a char, will hold pointer to a * configuration unit name * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage * name * * genimg_get_kernel_addr_fit get the real kernel start address from a string * which is normally the first argv of bootm/bootz * * returns: * kernel start address */ ulong genimg_get_kernel_addr_fit(char * const img_addr, const char **fit_uname_config, const char **fit_uname_kernel) { ulong kernel_addr; /* find out kernel image address */ if (!img_addr) { kernel_addr = load_addr; debug("* kernel: default image load address = 0x%08lx\n", load_addr); #if CONFIG_IS_ENABLED(FIT) } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, fit_uname_config)) { debug("* kernel: config '%s' from image at 0x%08lx\n", *fit_uname_config, kernel_addr); } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, fit_uname_kernel)) { debug("* kernel: subimage '%s' from image at 0x%08lx\n", *fit_uname_kernel, kernel_addr); #endif } else { kernel_addr = simple_strtoul(img_addr, NULL, 16); debug("* kernel: cmdline image address = 0x%08lx\n", kernel_addr); } return kernel_addr; } /** * genimg_get_kernel_addr() is the simple version of * genimg_get_kernel_addr_fit(). It ignores those return FIT strings */ ulong genimg_get_kernel_addr(char * const img_addr) { const char *fit_uname_config = NULL; const char *fit_uname_kernel = NULL; return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, &fit_uname_kernel); } /** * genimg_get_format - get image format type * @img_addr: image start address * * genimg_get_format() checks whether provided address points to a valid * legacy or FIT image. * * New uImage format and FDT blob are based on a libfdt. FDT blob * may be passed directly or embedded in a FIT image. In both situations * genimg_get_format() must be able to dectect libfdt header. * * returns: * image format type or IMAGE_FORMAT_INVALID if no image is present */ int genimg_get_format(const void *img_addr) { #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) const image_header_t *hdr; hdr = (const image_header_t *)img_addr; if (image_check_magic(hdr)) return IMAGE_FORMAT_LEGACY; #endif #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT if (fdt_check_header(img_addr) == 0) return IMAGE_FORMAT_FIT; #endif #ifdef CONFIG_ANDROID_BOOT_IMAGE if (android_image_check_header(img_addr) == 0) return IMAGE_FORMAT_ANDROID; #endif return IMAGE_FORMAT_INVALID; } /** * fit_has_config - check if there is a valid FIT configuration * @images: pointer to the bootm command headers structure * * fit_has_config() checks if there is a FIT configuration in use * (if FTI support is present). * * returns: * 0, no FIT support or no configuration found * 1, configuration found */ int genimg_has_config(bootm_headers_t *images) { #if IMAGE_ENABLE_FIT if (images->fit_uname_cfg) return 1; #endif return 0; } /** * boot_get_ramdisk - main ramdisk handling routine * @argc: command argument count * @argv: command argument list * @images: pointer to the bootm images structure * @arch: expected ramdisk architecture * @rd_start: pointer to a ulong variable, will hold ramdisk start address * @rd_end: pointer to a ulong variable, will hold ramdisk end * * boot_get_ramdisk() is responsible for finding a valid ramdisk image. * Curently supported are the following ramdisk sources: * - multicomponent kernel/ramdisk image, * - commandline provided address of decicated ramdisk image. * * returns: * 0, if ramdisk image was found and valid, or skiped * rd_start and rd_end are set to ramdisk start/end addresses if * ramdisk image is found and valid * * 1, if ramdisk image is found but corrupted, or invalid * rd_start and rd_end are set to 0 if no ramdisk exists */ int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, uint8_t arch, ulong *rd_start, ulong *rd_end) { ulong rd_addr, rd_load; ulong rd_data, rd_len; #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) const image_header_t *rd_hdr; #endif void *buf; #ifdef CONFIG_SUPPORT_RAW_INITRD char *end; #endif #if IMAGE_ENABLE_FIT const char *fit_uname_config = images->fit_uname_cfg; const char *fit_uname_ramdisk = NULL; ulong default_addr; int rd_noffset; #endif const char *select = NULL; *rd_start = 0; *rd_end = 0; #ifdef CONFIG_ANDROID_BOOT_IMAGE /* * Look for an Android boot image. */ buf = map_sysmem(images->os.start, 0); if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) select = (argc == 0) ? env_get("loadaddr") : argv[0]; #endif if (argc >= 2) select = argv[1]; /* * Look for a '-' which indicates to ignore the * ramdisk argument */ if (select && strcmp(select, "-") == 0) { debug("## Skipping init Ramdisk\n"); rd_len = rd_data = 0; } else if (select || genimg_has_config(images)) { #if IMAGE_ENABLE_FIT if (select) { /* * If the init ramdisk comes from the FIT image and * the FIT image address is omitted in the command * line argument, try to use os FIT image address or * default load address. */ if (images->fit_uname_os) default_addr = (ulong)images->fit_hdr_os; else default_addr = load_addr; if (fit_parse_conf(select, default_addr, &rd_addr, &fit_uname_config)) { debug("* ramdisk: config '%s' from image at " "0x%08lx\n", fit_uname_config, rd_addr); } else if (fit_parse_subimage(select, default_addr, &rd_addr, &fit_uname_ramdisk)) { debug("* ramdisk: subimage '%s' from image at " "0x%08lx\n", fit_uname_ramdisk, rd_addr); } else #endif { rd_addr = simple_strtoul(select, NULL, 16); debug("* ramdisk: cmdline image address = " "0x%08lx\n", rd_addr); } #if IMAGE_ENABLE_FIT } else { /* use FIT configuration provided in first bootm * command argument. If the property is not defined, * quit silently. */ rd_addr = map_to_sysmem(images->fit_hdr_os); rd_noffset = fit_get_node_from_config(images, FIT_RAMDISK_PROP, rd_addr); if (rd_noffset == -ENOENT) return 0; else if (rd_noffset < 0) return 1; } #endif /* * Check if there is an initrd image at the * address provided in the second bootm argument * check image type, for FIT images get FIT node. */ buf = map_sysmem(rd_addr, 0); switch (genimg_get_format(buf)) { #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) case IMAGE_FORMAT_LEGACY: printf("## Loading init Ramdisk from Legacy " "Image at %08lx ...\n", rd_addr); bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); rd_hdr = image_get_ramdisk(rd_addr, arch, images->verify); if (rd_hdr == NULL) return 1; rd_data = image_get_data(rd_hdr); rd_len = image_get_data_size(rd_hdr); rd_load = image_get_load(rd_hdr); break; #endif #if IMAGE_ENABLE_FIT case IMAGE_FORMAT_FIT: rd_noffset = fit_image_load(images, rd_addr, &fit_uname_ramdisk, &fit_uname_config, arch, IH_TYPE_RAMDISK, BOOTSTAGE_ID_FIT_RD_START, FIT_LOAD_OPTIONAL_NON_ZERO, &rd_data, &rd_len); if (rd_noffset < 0) return 1; images->fit_hdr_rd = map_sysmem(rd_addr, 0); images->fit_uname_rd = fit_uname_ramdisk; images->fit_noffset_rd = rd_noffset; break; #endif #ifdef CONFIG_ANDROID_BOOT_IMAGE case IMAGE_FORMAT_ANDROID: android_image_get_ramdisk((void *)images->os.start, &rd_data, &rd_len); break; #endif default: #ifdef CONFIG_SUPPORT_RAW_INITRD end = NULL; if (select) end = strchr(select, ':'); if (end) { rd_len = simple_strtoul(++end, NULL, 16); rd_data = rd_addr; } else #endif { puts("Wrong Ramdisk Image Format\n"); rd_data = rd_len = rd_load = 0; return 1; } } } else if (images->legacy_hdr_valid && image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) { /* * Now check if we have a legacy mult-component image, * get second entry data start address and len. */ bootstage_mark(BOOTSTAGE_ID_RAMDISK); printf("## Loading init Ramdisk from multi component " "Legacy Image at %08lx ...\n", (ulong)images->legacy_hdr_os); image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); } else { /* * no initrd image */ bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); rd_len = rd_data = 0; } if (!rd_data) { debug("## No init Ramdisk\n"); } else { *rd_start = rd_data; *rd_end = rd_data + rd_len; } debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", *rd_start, *rd_end); return 0; } #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH /** * boot_ramdisk_high - relocate init ramdisk * @lmb: pointer to lmb handle, will be used for memory mgmt * @rd_data: ramdisk data start address * @rd_len: ramdisk data length * @initrd_start: pointer to a ulong variable, will hold final init ramdisk * start address (after possible relocation) * @initrd_end: pointer to a ulong variable, will hold final init ramdisk * end address (after possible relocation) * * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment * variable and if requested ramdisk data is moved to a specified location. * * Initrd_start and initrd_end are set to final (after relocation) ramdisk * start/end addresses if ramdisk image start and len were provided, * otherwise set initrd_start and initrd_end set to zeros. * * returns: * 0 - success * -1 - failure */ int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, ulong *initrd_start, ulong *initrd_end) { char *s; ulong initrd_high; int initrd_copy_to_ram = 1; s = env_get("initrd_high"); if (s) { /* a value of "no" or a similar string will act like 0, * turning the "load high" feature off. This is intentional. */ initrd_high = simple_strtoul(s, NULL, 16); if (initrd_high == ~0) initrd_copy_to_ram = 0; } else { initrd_high = env_get_bootm_mapsize() + env_get_bootm_low(); } debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", initrd_high, initrd_copy_to_ram); if (rd_data) { if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ debug(" in-place initrd\n"); *initrd_start = rd_data; *initrd_end = rd_data + rd_len; lmb_reserve(lmb, rd_data, rd_len); } else { if (initrd_high) *initrd_start = (ulong)lmb_alloc_base(lmb, rd_len, 0x1000, initrd_high); else *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 0x1000); if (*initrd_start == 0) { puts("ramdisk - allocation error\n"); goto error; } bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); *initrd_end = *initrd_start + rd_len; printf(" Loading Ramdisk to %08lx, end %08lx ... ", *initrd_start, *initrd_end); memmove_wd((void *)*initrd_start, (void *)rd_data, rd_len, CHUNKSZ); #ifdef CONFIG_MP /* * Ensure the image is flushed to memory to handle * AMP boot scenarios in which we might not be * HW cache coherent */ flush_cache((unsigned long)*initrd_start, ALIGN(rd_len, ARCH_DMA_MINALIGN)); #endif puts("OK\n"); } } else { *initrd_start = 0; *initrd_end = 0; } debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", *initrd_start, *initrd_end); return 0; error: return -1; } #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ int boot_get_setup(bootm_headers_t *images, uint8_t arch, ulong *setup_start, ulong *setup_len) { #if IMAGE_ENABLE_FIT return boot_get_setup_fit(images, arch, setup_start, setup_len); #else return -ENOENT; #endif } #if IMAGE_ENABLE_FIT #if defined(CONFIG_FPGA) int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, uint8_t arch, const ulong *ld_start, ulong * const ld_len) { ulong tmp_img_addr, img_data, img_len; void *buf; int conf_noffset; int fit_img_result; const char *uname, *name; int err; int devnum = 0; /* TODO support multi fpga platforms */ /* Check to see if the images struct has a FIT configuration */ if (!genimg_has_config(images)) { debug("## FIT configuration was not specified\n"); return 0; } /* * Obtain the os FIT header from the images struct */ tmp_img_addr = map_to_sysmem(images->fit_hdr_os); buf = map_sysmem(tmp_img_addr, 0); /* * Check image type. For FIT images get FIT node * and attempt to locate a generic binary. */ switch (genimg_get_format(buf)) { case IMAGE_FORMAT_FIT: conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0, NULL); if (!uname) { debug("## FPGA image is not specified\n"); return 0; } fit_img_result = fit_image_load(images, tmp_img_addr, (const char **)&uname, &(images->fit_uname_cfg), arch, IH_TYPE_FPGA, BOOTSTAGE_ID_FPGA_INIT, FIT_LOAD_OPTIONAL_NON_ZERO, &img_data, &img_len); debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", uname, img_data, img_len); if (fit_img_result < 0) { /* Something went wrong! */ return fit_img_result; } if (!fpga_is_partial_data(devnum, img_len)) { name = "full"; err = fpga_loadbitstream(devnum, (char *)img_data, img_len, BIT_FULL); if (err) err = fpga_load(devnum, (const void *)img_data, img_len, BIT_FULL); } else { name = "partial"; err = fpga_loadbitstream(devnum, (char *)img_data, img_len, BIT_PARTIAL); if (err) err = fpga_load(devnum, (const void *)img_data, img_len, BIT_PARTIAL); } if (err) return err; printf(" Programming %s bitstream... OK\n", name); break; default: printf("The given image format is not supported (corrupt?)\n"); return 1; } return 0; } #endif static void fit_loadable_process(uint8_t img_type, ulong img_data, ulong img_len) { int i; const unsigned int count = ll_entry_count(struct fit_loadable_tbl, fit_loadable); struct fit_loadable_tbl *fit_loadable_handler = ll_entry_start(struct fit_loadable_tbl, fit_loadable); /* For each loadable handler */ for (i = 0; i < count; i++, fit_loadable_handler++) /* matching this type */ if (fit_loadable_handler->type == img_type) /* call that handler with this image data */ fit_loadable_handler->handler(img_data, img_len); } int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, uint8_t arch, const ulong *ld_start, ulong * const ld_len) { /* * These variables are used to hold the current image location * in system memory. */ ulong tmp_img_addr; /* * These two variables are requirements for fit_image_load, but * their values are not used */ ulong img_data, img_len; void *buf; int loadables_index; int conf_noffset; int fit_img_result; const char *uname; uint8_t img_type; /* Check to see if the images struct has a FIT configuration */ if (!genimg_has_config(images)) { debug("## FIT configuration was not specified\n"); return 0; } /* * Obtain the os FIT header from the images struct */ tmp_img_addr = map_to_sysmem(images->fit_hdr_os); buf = map_sysmem(tmp_img_addr, 0); /* * Check image type. For FIT images get FIT node * and attempt to locate a generic binary. */ switch (genimg_get_format(buf)) { case IMAGE_FORMAT_FIT: conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); for (loadables_index = 0; uname = fdt_stringlist_get(buf, conf_noffset, FIT_LOADABLE_PROP, loadables_index, NULL), uname; loadables_index++) { fit_img_result = fit_image_load(images, tmp_img_addr, &uname, &(images->fit_uname_cfg), arch, IH_TYPE_LOADABLE, BOOTSTAGE_ID_FIT_LOADABLE_START, FIT_LOAD_OPTIONAL_NON_ZERO, &img_data, &img_len); if (fit_img_result < 0) { /* Something went wrong! */ return fit_img_result; } fit_img_result = fit_image_get_node(buf, uname); if (fit_img_result < 0) { /* Something went wrong! */ return fit_img_result; } fit_img_result = fit_image_get_type(buf, fit_img_result, &img_type); if (fit_img_result < 0) { /* Something went wrong! */ return fit_img_result; } fit_loadable_process(img_type, img_data, img_len); } break; default: printf("The given image format is not supported (corrupt?)\n"); return 1; } return 0; } #endif #ifdef CONFIG_SYS_BOOT_GET_CMDLINE /** * boot_get_cmdline - allocate and initialize kernel cmdline * @lmb: pointer to lmb handle, will be used for memory mgmt * @cmd_start: pointer to a ulong variable, will hold cmdline start * @cmd_end: pointer to a ulong variable, will hold cmdline end * * boot_get_cmdline() allocates space for kernel command line below * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environment * variable is present its contents is copied to allocated kernel * command line. * * returns: * 0 - success * -1 - failure */ int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) { char *cmdline; char *s; cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, env_get_bootm_mapsize() + env_get_bootm_low()); if (cmdline == NULL) return -1; s = env_get("bootargs"); if (!s) s = ""; strcpy(cmdline, s); *cmd_start = (ulong) & cmdline[0]; *cmd_end = *cmd_start + strlen(cmdline); debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); return 0; } #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ #ifdef CONFIG_SYS_BOOT_GET_KBD /** * boot_get_kbd - allocate and initialize kernel copy of board info * @lmb: pointer to lmb handle, will be used for memory mgmt * @kbd: double pointer to board info data * * boot_get_kbd() allocates space for kernel copy of board info data below * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized * with the current u-boot board info data. * * returns: * 0 - success * -1 - failure */ int boot_get_kbd(struct lmb *lmb, bd_t **kbd) { *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, env_get_bootm_mapsize() + env_get_bootm_low()); if (*kbd == NULL) return -1; **kbd = *(gd->bd); debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); #if defined(DEBUG) && defined(CONFIG_CMD_BDI) do_bdinfo(NULL, 0, 0, NULL); #endif return 0; } #endif /* CONFIG_SYS_BOOT_GET_KBD */ #ifdef CONFIG_LMB int image_setup_linux(bootm_headers_t *images) { ulong of_size = images->ft_len; char **of_flat_tree = &images->ft_addr; struct lmb *lmb = &images->lmb; int ret; if (IMAGE_ENABLE_OF_LIBFDT) boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); if (IMAGE_BOOT_GET_CMDLINE) { ret = boot_get_cmdline(lmb, &images->cmdline_start, &images->cmdline_end); if (ret) { puts("ERROR with allocation of cmdline\n"); return ret; } } if (IMAGE_ENABLE_OF_LIBFDT) { ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); if (ret) return ret; } if (IMAGE_ENABLE_OF_LIBFDT && of_size) { ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); if (ret) return ret; } return 0; } #endif /* CONFIG_LMB */ #endif /* !USE_HOSTCC */