/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1994, 1995 Waldorf GmbH * Copyright (C) 1994 - 2000, 06 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. * Author: Maciej W. Rozycki */ #ifndef _ASM_IO_H #define _ASM_IO_H #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Raw operations are never swapped in software. OTOH values that raw * operations are working on may or may not have been swapped by the bus * hardware. An example use would be for flash memory that's used for * execute in place. */ # define __raw_ioswabb(a, x) (x) # define __raw_ioswabw(a, x) (x) # define __raw_ioswabl(a, x) (x) # define __raw_ioswabq(a, x) (x) # define ____raw_ioswabq(a, x) (x) /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ #define IO_SPACE_LIMIT 0xffff #ifdef CONFIG_DYNAMIC_IO_PORT_BASE static inline ulong mips_io_port_base(void) { DECLARE_GLOBAL_DATA_PTR; return gd->arch.io_port_base; } static inline void set_io_port_base(unsigned long base) { DECLARE_GLOBAL_DATA_PTR; gd->arch.io_port_base = base; barrier(); } #else /* !CONFIG_DYNAMIC_IO_PORT_BASE */ static inline ulong mips_io_port_base(void) { return 0; } static inline void set_io_port_base(unsigned long base) { BUG_ON(base); } #endif /* !CONFIG_DYNAMIC_IO_PORT_BASE */ /* * virt_to_phys - map virtual addresses to physical * @address: address to remap * * The returned physical address is the physical (CPU) mapping for * the memory address given. It is only valid to use this function on * addresses directly mapped or allocated via kmalloc. * * This function does not give bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline unsigned long virt_to_phys(volatile const void *address) { unsigned long addr = (unsigned long)address; /* this corresponds to kernel implementation of __pa() */ #ifdef CONFIG_64BIT if (addr < CKSEG0) return XPHYSADDR(addr); #endif return CPHYSADDR(addr); } #define virt_to_phys virt_to_phys /* * phys_to_virt - map physical address to virtual * @address: address to remap * * The returned virtual address is a current CPU mapping for * the memory address given. It is only valid to use this function on * addresses that have a kernel mapping * * This function does not handle bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline void *phys_to_virt(unsigned long address) { return (void *)(address + PAGE_OFFSET - PHYS_OFFSET); } #define phys_to_virt phys_to_virt /* * ISA I/O bus memory addresses are 1:1 with the physical address. */ static inline unsigned long isa_virt_to_bus(volatile void *address) { return (unsigned long)address - PAGE_OFFSET; } static inline void *isa_bus_to_virt(unsigned long address) { return (void *)(address + PAGE_OFFSET); } #define isa_page_to_bus page_to_phys /* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them for x86 for legacy drivers, though. */ #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt static inline void __iomem *__ioremap_mode(phys_addr_t offset, unsigned long size, unsigned long flags) { void __iomem *addr; phys_addr_t phys_addr; addr = plat_ioremap(offset, size, flags); if (addr) return addr; phys_addr = fixup_bigphys_addr(offset, size); return (void __iomem *)(unsigned long)CKSEG1ADDR(phys_addr); } /* * ioremap - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. */ #define ioremap(offset, size) \ __ioremap_mode((offset), (size), _CACHE_UNCACHED) /* * ioremap_nocache - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked uncachable * on the CPU as well as honouring existing caching rules from things like * the PCI bus. Note that there are other caches and buffers on many * busses. In particular driver authors should read up on PCI writes * * It's useful if some control registers are in such an area and * write combining or read caching is not desirable: */ #define ioremap_nocache(offset, size) \ __ioremap_mode((offset), (size), _CACHE_UNCACHED) #define ioremap_uc ioremap_nocache /* * ioremap_cachable - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked cachable by * the CPU. Also enables full write-combining. Useful for some * memory-like regions on I/O busses. */ #define ioremap_cachable(offset, size) \ __ioremap_mode((offset), (size), _page_cachable_default) /* * These two are MIPS specific ioremap variant. ioremap_cacheable_cow * requests a cachable mapping, ioremap_uncached_accelerated requests a * mapping using the uncached accelerated mode which isn't supported on * all processors. */ #define ioremap_cacheable_cow(offset, size) \ __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) #define ioremap_uncached_accelerated(offset, size) \ __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) static inline void iounmap(const volatile void __iomem *addr) { plat_iounmap(addr); } #ifdef CONFIG_CPU_CAVIUM_OCTEON #define war_octeon_io_reorder_wmb() wmb() #else #define war_octeon_io_reorder_wmb() do { } while (0) #endif #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \ \ static inline void pfx##write##bwlq(type val, \ volatile void __iomem *mem) \ { \ volatile type *__mem; \ type __val; \ \ war_octeon_io_reorder_wmb(); \ \ __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ \ __val = pfx##ioswab##bwlq(__mem, val); \ \ if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ *__mem = __val; \ else if (cpu_has_64bits) { \ type __tmp; \ \ __asm__ __volatile__( \ ".set arch=r4000" "\t\t# __writeq""\n\t" \ "dsll32 %L0, %L0, 0" "\n\t" \ "dsrl32 %L0, %L0, 0" "\n\t" \ "dsll32 %M0, %M0, 0" "\n\t" \ "or %L0, %L0, %M0" "\n\t" \ "sd %L0, %2" "\n\t" \ ".set mips0" "\n" \ : "=r" (__tmp) \ : "0" (__val), "m" (*__mem)); \ } else \ BUG(); \ } \ \ static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ { \ volatile type *__mem; \ type __val; \ \ __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ \ if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ __val = *__mem; \ else if (cpu_has_64bits) { \ __asm__ __volatile__( \ ".set arch=r4000" "\t\t# __readq" "\n\t" \ "ld %L0, %1" "\n\t" \ "dsra32 %M0, %L0, 0" "\n\t" \ "sll %L0, %L0, 0" "\n\t" \ ".set mips0" "\n" \ : "=r" (__val) \ : "m" (*__mem)); \ } else { \ __val = 0; \ BUG(); \ } \ \ return pfx##ioswab##bwlq(__mem, __val); \ } #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p) \ \ static inline void pfx##out##bwlq##p(type val, unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ war_octeon_io_reorder_wmb(); \ \ __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base() + port); \ \ __val = pfx##ioswab##bwlq(__addr, val); \ \ /* Really, we want this to be atomic */ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ *__addr = __val; \ } \ \ static inline type pfx##in##bwlq##p(unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base() + port); \ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ __val = *__addr; \ \ return pfx##ioswab##bwlq(__addr, __val); \ } #define __BUILD_MEMORY_PFX(bus, bwlq, type) \ \ __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) #define BUILDIO_MEM(bwlq, type) \ \ __BUILD_MEMORY_PFX(__raw_, bwlq, type) \ __BUILD_MEMORY_PFX(, bwlq, type) \ __BUILD_MEMORY_PFX(__mem_, bwlq, type) \ BUILDIO_MEM(b, u8) BUILDIO_MEM(w, u16) BUILDIO_MEM(l, u32) BUILDIO_MEM(q, u64) #define __raw_readb __raw_readb #define __raw_readw __raw_readw #define __raw_readl __raw_readl #define __raw_readq __raw_readq #define __raw_writeb __raw_writeb #define __raw_writew __raw_writew #define __raw_writel __raw_writel #define __raw_writeq __raw_writeq #define readb readb #define readw readw #define readl readl #define readq readq #define writeb writeb #define writew writew #define writel writel #define writeq writeq #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ __BUILD_IOPORT_SINGLE(bus, bwlq, type, ) \ __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p) #define BUILDIO_IOPORT(bwlq, type) \ __BUILD_IOPORT_PFX(, bwlq, type) \ __BUILD_IOPORT_PFX(__mem_, bwlq, type) BUILDIO_IOPORT(b, u8) BUILDIO_IOPORT(w, u16) BUILDIO_IOPORT(l, u32) #ifdef CONFIG_64BIT BUILDIO_IOPORT(q, u64) #endif #define __BUILDIO(bwlq, type) \ \ __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0) __BUILDIO(q, u64) #define readb_relaxed readb #define readw_relaxed readw #define readl_relaxed readl #define readq_relaxed readq #define writeb_relaxed writeb #define writew_relaxed writew #define writel_relaxed writel #define writeq_relaxed writeq #define readb_be(addr) \ __raw_readb((__force unsigned *)(addr)) #define readw_be(addr) \ be16_to_cpu(__raw_readw((__force unsigned *)(addr))) #define readl_be(addr) \ be32_to_cpu(__raw_readl((__force unsigned *)(addr))) #define readq_be(addr) \ be64_to_cpu(__raw_readq((__force unsigned *)(addr))) #define writeb_be(val, addr) \ __raw_writeb((val), (__force unsigned *)(addr)) #define writew_be(val, addr) \ __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) #define writel_be(val, addr) \ __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) #define writeq_be(val, addr) \ __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) /* * Some code tests for these symbols */ #define readq readq #define writeq writeq #define __BUILD_MEMORY_STRING(bwlq, type) \ \ static inline void writes##bwlq(volatile void __iomem *mem, \ const void *addr, unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __mem_write##bwlq(*__addr, mem); \ __addr++; \ } \ } \ \ static inline void reads##bwlq(const volatile void __iomem *mem, \ void *addr, \ unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __mem_read##bwlq(mem); \ __addr++; \ } \ } #define __BUILD_IOPORT_STRING(bwlq, type) \ \ static inline void outs##bwlq(unsigned long port, const void *addr, \ unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __mem_out##bwlq(*__addr, port); \ __addr++; \ } \ } \ \ static inline void ins##bwlq(unsigned long port, void *addr, \ unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __mem_in##bwlq(port); \ __addr++; \ } \ } #define BUILDSTRING(bwlq, type) \ \ __BUILD_MEMORY_STRING(bwlq, type) \ __BUILD_IOPORT_STRING(bwlq, type) BUILDSTRING(b, u8) BUILDSTRING(w, u16) BUILDSTRING(l, u32) #define readsb readsb #define readsw readsw #define readsl readsl #define writesb writesb #define writesw writesw #define writesl writesl #define outsb outsb #define outsw outsw #define outsl outsl #define insb insb #define insw insw #define insl insl #ifdef CONFIG_64BIT BUILDSTRING(q, u64) #define readsq readsq #define writesq writesq #define insq insq #define outsq outsq #endif #ifdef CONFIG_CPU_CAVIUM_OCTEON #define mmiowb() wmb() #else /* Depends on MIPS II instruction set */ #define mmiowb() asm volatile ("sync" ::: "memory") #endif static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) { memset((void __force *)addr, val, count); } static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) { memcpy(dst, (void __force *)src, count); } static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) { memcpy((void __force *)dst, src, count); } /* * Read a 32-bit register that requires a 64-bit read cycle on the bus. * Avoid interrupt mucking, just adjust the address for 4-byte access. * Assume the addresses are 8-byte aligned. */ #ifdef __MIPSEB__ #define __CSR_32_ADJUST 4 #else #define __CSR_32_ADJUST 0 #endif #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) /* * U-Boot specific */ #define sync() mmiowb() #define MAP_NOCACHE 1 static inline void * map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags) { if (flags == MAP_NOCACHE) return ioremap(paddr, len); return (void *)CKSEG0ADDR(paddr); } #define map_physmem map_physmem #define __BUILD_CLRBITS(bwlq, sfx, end, type) \ \ static inline void clrbits_##sfx(volatile void __iomem *mem, type clr) \ { \ type __val = __raw_read##bwlq(mem); \ __val = end##_to_cpu(__val); \ __val &= ~clr; \ __val = cpu_to_##end(__val); \ __raw_write##bwlq(__val, mem); \ } #define __BUILD_SETBITS(bwlq, sfx, end, type) \ \ static inline void setbits_##sfx(volatile void __iomem *mem, type set) \ { \ type __val = __raw_read##bwlq(mem); \ __val = end##_to_cpu(__val); \ __val |= set; \ __val = cpu_to_##end(__val); \ __raw_write##bwlq(__val, mem); \ } #define __BUILD_CLRSETBITS(bwlq, sfx, end, type) \ \ static inline void clrsetbits_##sfx(volatile void __iomem *mem, \ type clr, type set) \ { \ type __val = __raw_read##bwlq(mem); \ __val = end##_to_cpu(__val); \ __val &= ~clr; \ __val |= set; \ __val = cpu_to_##end(__val); \ __raw_write##bwlq(__val, mem); \ } #define BUILD_CLRSETBITS(bwlq, sfx, end, type) \ \ __BUILD_CLRBITS(bwlq, sfx, end, type) \ __BUILD_SETBITS(bwlq, sfx, end, type) \ __BUILD_CLRSETBITS(bwlq, sfx, end, type) #define __to_cpu(v) (v) #define cpu_to__(v) (v) #define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v),a) #define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a)) #define out_le64(a, v) out_arch(q, le64, a, v) #define out_le32(a, v) out_arch(l, le32, a, v) #define out_le16(a, v) out_arch(w, le16, a, v) #define in_le64(a) in_arch(q, le64, a) #define in_le32(a) in_arch(l, le32, a) #define in_le16(a) in_arch(w, le16, a) #define out_be64(a, v) out_arch(q, be64, a, v) #define out_be32(a, v) out_arch(l, be32, a, v) #define out_be16(a, v) out_arch(w, be16, a, v) #define in_be64(a) in_arch(q, be64, a) #define in_be32(a) in_arch(l, be32, a) #define in_be16(a) in_arch(w, be16, a) #define out_8(a, v) __raw_writeb(v, a) #define in_8(a) __raw_readb(a) BUILD_CLRSETBITS(b, 8, _, u8) BUILD_CLRSETBITS(w, le16, le16, u16) BUILD_CLRSETBITS(w, be16, be16, u16) BUILD_CLRSETBITS(w, 16, _, u16) BUILD_CLRSETBITS(l, le32, le32, u32) BUILD_CLRSETBITS(l, be32, be32, u32) BUILD_CLRSETBITS(l, 32, _, u32) BUILD_CLRSETBITS(q, le64, le64, u64) BUILD_CLRSETBITS(q, be64, be64, u64) BUILD_CLRSETBITS(q, 64, _, u64) #include #endif /* _ASM_IO_H */