// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2011 The Chromium OS Authors. */ #ifndef USE_HOSTCC #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* * Here are the type we know about. One day we might allow drivers to * register. For now we just put them here. The COMPAT macro allows us to * turn this into a sparse list later, and keeps the ID with the name. * * NOTE: This list is basically a TODO list for things that need to be * converted to driver model. So don't add new things here unless there is a * good reason why driver-model conversion is infeasible. Examples include * things which are used before driver model is available. */ #define COMPAT(id, name) name static const char * const compat_names[COMPAT_COUNT] = { COMPAT(UNKNOWN, ""), COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"), COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"), COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"), COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"), COMPAT(NVIDIA_TEGRA210_XUSB_PADCTL, "nvidia,tegra210-xusb-padctl"), COMPAT(SMSC_LAN9215, "smsc,lan9215"), COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"), COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"), COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"), COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"), COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"), COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"), COMPAT(GENERIC_SPI_FLASH, "spi-flash"), COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"), COMPAT(INTEL_MICROCODE, "intel,microcode"), COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"), COMPAT(ALTERA_SOCFPGA_DWMAC, "altr,socfpga-stmmac"), COMPAT(ALTERA_SOCFPGA_DWMMC, "altr,socfpga-dw-mshc"), COMPAT(ALTERA_SOCFPGA_DWC2USB, "snps,dwc2"), COMPAT(INTEL_BAYTRAIL_FSP, "intel,baytrail-fsp"), COMPAT(INTEL_BAYTRAIL_FSP_MDP, "intel,baytrail-fsp-mdp"), COMPAT(INTEL_IVYBRIDGE_FSP, "intel,ivybridge-fsp"), COMPAT(COMPAT_SUNXI_NAND, "allwinner,sun4i-a10-nand"), COMPAT(ALTERA_SOCFPGA_CLK, "altr,clk-mgr"), COMPAT(ALTERA_SOCFPGA_PINCTRL_SINGLE, "pinctrl-single"), COMPAT(ALTERA_SOCFPGA_H2F_BRG, "altr,socfpga-hps2fpga-bridge"), COMPAT(ALTERA_SOCFPGA_LWH2F_BRG, "altr,socfpga-lwhps2fpga-bridge"), COMPAT(ALTERA_SOCFPGA_F2H_BRG, "altr,socfpga-fpga2hps-bridge"), COMPAT(ALTERA_SOCFPGA_F2SDR0, "altr,socfpga-fpga2sdram0-bridge"), COMPAT(ALTERA_SOCFPGA_F2SDR1, "altr,socfpga-fpga2sdram1-bridge"), COMPAT(ALTERA_SOCFPGA_F2SDR2, "altr,socfpga-fpga2sdram2-bridge"), COMPAT(ALTERA_SOCFPGA_FPGA0, "altr,socfpga-a10-fpga-mgr"), COMPAT(ALTERA_SOCFPGA_NOC, "altr,socfpga-a10-noc"), COMPAT(ALTERA_SOCFPGA_CLK_INIT, "altr,socfpga-a10-clk-init") }; const char *fdtdec_get_compatible(enum fdt_compat_id id) { /* We allow reading of the 'unknown' ID for testing purposes */ assert(id >= 0 && id < COMPAT_COUNT); return compat_names[id]; } fdt_addr_t fdtdec_get_addr_size_fixed(const void *blob, int node, const char *prop_name, int index, int na, int ns, fdt_size_t *sizep, bool translate) { const fdt32_t *prop, *prop_end; const fdt32_t *prop_addr, *prop_size, *prop_after_size; int len; fdt_addr_t addr; debug("%s: %s: ", __func__, prop_name); prop = fdt_getprop(blob, node, prop_name, &len); if (!prop) { debug("(not found)\n"); return FDT_ADDR_T_NONE; } prop_end = prop + (len / sizeof(*prop)); prop_addr = prop + (index * (na + ns)); prop_size = prop_addr + na; prop_after_size = prop_size + ns; if (prop_after_size > prop_end) { debug("(not enough data: expected >= %d cells, got %d cells)\n", (u32)(prop_after_size - prop), ((u32)(prop_end - prop))); return FDT_ADDR_T_NONE; } #if CONFIG_IS_ENABLED(OF_TRANSLATE) if (translate) addr = fdt_translate_address(blob, node, prop_addr); else #endif addr = fdtdec_get_number(prop_addr, na); if (sizep) { *sizep = fdtdec_get_number(prop_size, ns); debug("addr=%08llx, size=%llx\n", (unsigned long long)addr, (unsigned long long)*sizep); } else { debug("addr=%08llx\n", (unsigned long long)addr); } return addr; } fdt_addr_t fdtdec_get_addr_size_auto_parent(const void *blob, int parent, int node, const char *prop_name, int index, fdt_size_t *sizep, bool translate) { int na, ns; debug("%s: ", __func__); na = fdt_address_cells(blob, parent); if (na < 1) { debug("(bad #address-cells)\n"); return FDT_ADDR_T_NONE; } ns = fdt_size_cells(blob, parent); if (ns < 0) { debug("(bad #size-cells)\n"); return FDT_ADDR_T_NONE; } debug("na=%d, ns=%d, ", na, ns); return fdtdec_get_addr_size_fixed(blob, node, prop_name, index, na, ns, sizep, translate); } fdt_addr_t fdtdec_get_addr_size_auto_noparent(const void *blob, int node, const char *prop_name, int index, fdt_size_t *sizep, bool translate) { int parent; debug("%s: ", __func__); parent = fdt_parent_offset(blob, node); if (parent < 0) { debug("(no parent found)\n"); return FDT_ADDR_T_NONE; } return fdtdec_get_addr_size_auto_parent(blob, parent, node, prop_name, index, sizep, translate); } fdt_addr_t fdtdec_get_addr_size(const void *blob, int node, const char *prop_name, fdt_size_t *sizep) { int ns = sizep ? (sizeof(fdt_size_t) / sizeof(fdt32_t)) : 0; return fdtdec_get_addr_size_fixed(blob, node, prop_name, 0, sizeof(fdt_addr_t) / sizeof(fdt32_t), ns, sizep, false); } fdt_addr_t fdtdec_get_addr(const void *blob, int node, const char *prop_name) { return fdtdec_get_addr_size(blob, node, prop_name, NULL); } #if CONFIG_IS_ENABLED(PCI) && defined(CONFIG_DM_PCI) int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type, const char *prop_name, struct fdt_pci_addr *addr) { const u32 *cell; int len; int ret = -ENOENT; debug("%s: %s: ", __func__, prop_name); /* * If we follow the pci bus bindings strictly, we should check * the value of the node's parent node's #address-cells and * #size-cells. They need to be 3 and 2 accordingly. However, * for simplicity we skip the check here. */ cell = fdt_getprop(blob, node, prop_name, &len); if (!cell) goto fail; if ((len % FDT_PCI_REG_SIZE) == 0) { int num = len / FDT_PCI_REG_SIZE; int i; for (i = 0; i < num; i++) { debug("pci address #%d: %08lx %08lx %08lx\n", i, (ulong)fdt32_to_cpu(cell[0]), (ulong)fdt32_to_cpu(cell[1]), (ulong)fdt32_to_cpu(cell[2])); if ((fdt32_to_cpu(*cell) & type) == type) { addr->phys_hi = fdt32_to_cpu(cell[0]); addr->phys_mid = fdt32_to_cpu(cell[1]); addr->phys_lo = fdt32_to_cpu(cell[1]); break; } cell += (FDT_PCI_ADDR_CELLS + FDT_PCI_SIZE_CELLS); } if (i == num) { ret = -ENXIO; goto fail; } return 0; } ret = -EINVAL; fail: debug("(not found)\n"); return ret; } int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device) { const char *list, *end; int len; list = fdt_getprop(blob, node, "compatible", &len); if (!list) return -ENOENT; end = list + len; while (list < end) { len = strlen(list); if (len >= strlen("pciVVVV,DDDD")) { char *s = strstr(list, "pci"); /* * check if the string is something like pciVVVV,DDDD.RR * or just pciVVVV,DDDD */ if (s && s[7] == ',' && (s[12] == '.' || s[12] == 0)) { s += 3; *vendor = simple_strtol(s, NULL, 16); s += 5; *device = simple_strtol(s, NULL, 16); return 0; } } list += (len + 1); } return -ENOENT; } int fdtdec_get_pci_bar32(struct udevice *dev, struct fdt_pci_addr *addr, u32 *bar) { int barnum; /* extract the bar number from fdt_pci_addr */ barnum = addr->phys_hi & 0xff; if (barnum < PCI_BASE_ADDRESS_0 || barnum > PCI_CARDBUS_CIS) return -EINVAL; barnum = (barnum - PCI_BASE_ADDRESS_0) / 4; *bar = dm_pci_read_bar32(dev, barnum); return 0; } #endif uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name, uint64_t default_val) { const uint64_t *cell64; int length; cell64 = fdt_getprop(blob, node, prop_name, &length); if (!cell64 || length < sizeof(*cell64)) return default_val; return fdt64_to_cpu(*cell64); } int fdtdec_get_is_enabled(const void *blob, int node) { const char *cell; /* * It should say "okay", so only allow that. Some fdts use "ok" but * this is a bug. Please fix your device tree source file. See here * for discussion: * * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html */ cell = fdt_getprop(blob, node, "status", NULL); if (cell) return strcmp(cell, "okay") == 0; return 1; } enum fdt_compat_id fdtdec_lookup(const void *blob, int node) { enum fdt_compat_id id; /* Search our drivers */ for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++) if (fdt_node_check_compatible(blob, node, compat_names[id]) == 0) return id; return COMPAT_UNKNOWN; } int fdtdec_next_compatible(const void *blob, int node, enum fdt_compat_id id) { return fdt_node_offset_by_compatible(blob, node, compat_names[id]); } int fdtdec_next_compatible_subnode(const void *blob, int node, enum fdt_compat_id id, int *depthp) { do { node = fdt_next_node(blob, node, depthp); } while (*depthp > 1); /* If this is a direct subnode, and compatible, return it */ if (*depthp == 1 && 0 == fdt_node_check_compatible( blob, node, compat_names[id])) return node; return -FDT_ERR_NOTFOUND; } int fdtdec_next_alias(const void *blob, const char *name, enum fdt_compat_id id, int *upto) { #define MAX_STR_LEN 20 char str[MAX_STR_LEN + 20]; int node, err; /* snprintf() is not available */ assert(strlen(name) < MAX_STR_LEN); sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto); node = fdt_path_offset(blob, str); if (node < 0) return node; err = fdt_node_check_compatible(blob, node, compat_names[id]); if (err < 0) return err; if (err) return -FDT_ERR_NOTFOUND; (*upto)++; return node; } int fdtdec_find_aliases_for_id(const void *blob, const char *name, enum fdt_compat_id id, int *node_list, int maxcount) { memset(node_list, '\0', sizeof(*node_list) * maxcount); return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount); } /* TODO: Can we tighten this code up a little? */ int fdtdec_add_aliases_for_id(const void *blob, const char *name, enum fdt_compat_id id, int *node_list, int maxcount) { int name_len = strlen(name); int nodes[maxcount]; int num_found = 0; int offset, node; int alias_node; int count; int i, j; /* find the alias node if present */ alias_node = fdt_path_offset(blob, "/aliases"); /* * start with nothing, and we can assume that the root node can't * match */ memset(nodes, '\0', sizeof(nodes)); /* First find all the compatible nodes */ for (node = count = 0; node >= 0 && count < maxcount;) { node = fdtdec_next_compatible(blob, node, id); if (node >= 0) nodes[count++] = node; } if (node >= 0) debug("%s: warning: maxcount exceeded with alias '%s'\n", __func__, name); /* Now find all the aliases */ for (offset = fdt_first_property_offset(blob, alias_node); offset > 0; offset = fdt_next_property_offset(blob, offset)) { const struct fdt_property *prop; const char *path; int number; int found; node = 0; prop = fdt_get_property_by_offset(blob, offset, NULL); path = fdt_string(blob, fdt32_to_cpu(prop->nameoff)); if (prop->len && 0 == strncmp(path, name, name_len)) node = fdt_path_offset(blob, prop->data); if (node <= 0) continue; /* Get the alias number */ number = simple_strtoul(path + name_len, NULL, 10); if (number < 0 || number >= maxcount) { debug("%s: warning: alias '%s' is out of range\n", __func__, path); continue; } /* Make sure the node we found is actually in our list! */ found = -1; for (j = 0; j < count; j++) if (nodes[j] == node) { found = j; break; } if (found == -1) { debug("%s: warning: alias '%s' points to a node " "'%s' that is missing or is not compatible " " with '%s'\n", __func__, path, fdt_get_name(blob, node, NULL), compat_names[id]); continue; } /* * Add this node to our list in the right place, and mark * it as done. */ if (fdtdec_get_is_enabled(blob, node)) { if (node_list[number]) { debug("%s: warning: alias '%s' requires that " "a node be placed in the list in a " "position which is already filled by " "node '%s'\n", __func__, path, fdt_get_name(blob, node, NULL)); continue; } node_list[number] = node; if (number >= num_found) num_found = number + 1; } nodes[found] = 0; } /* Add any nodes not mentioned by an alias */ for (i = j = 0; i < maxcount; i++) { if (!node_list[i]) { for (; j < maxcount; j++) if (nodes[j] && fdtdec_get_is_enabled(blob, nodes[j])) break; /* Have we run out of nodes to add? */ if (j == maxcount) break; assert(!node_list[i]); node_list[i] = nodes[j++]; if (i >= num_found) num_found = i + 1; } } return num_found; } int fdtdec_get_alias_seq(const void *blob, const char *base, int offset, int *seqp) { int base_len = strlen(base); const char *find_name; int find_namelen; int prop_offset; int aliases; find_name = fdt_get_name(blob, offset, &find_namelen); debug("Looking for '%s' at %d, name %s\n", base, offset, find_name); aliases = fdt_path_offset(blob, "/aliases"); for (prop_offset = fdt_first_property_offset(blob, aliases); prop_offset > 0; prop_offset = fdt_next_property_offset(blob, prop_offset)) { const char *prop; const char *name; const char *slash; int len, val; prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len); debug(" - %s, %s\n", name, prop); if (len < find_namelen || *prop != '/' || prop[len - 1] || strncmp(name, base, base_len)) continue; slash = strrchr(prop, '/'); if (strcmp(slash + 1, find_name)) continue; val = trailing_strtol(name); if (val != -1) { *seqp = val; debug("Found seq %d\n", *seqp); return 0; } } debug("Not found\n"); return -ENOENT; } int fdtdec_get_alias_highest_id(const void *blob, const char *base) { int base_len = strlen(base); int prop_offset; int aliases; int max = -1; debug("Looking for highest alias id for '%s'\n", base); aliases = fdt_path_offset(blob, "/aliases"); for (prop_offset = fdt_first_property_offset(blob, aliases); prop_offset > 0; prop_offset = fdt_next_property_offset(blob, prop_offset)) { const char *prop; const char *name; int len, val; prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len); debug(" - %s, %s\n", name, prop); if (*prop != '/' || prop[len - 1] || strncmp(name, base, base_len)) continue; val = trailing_strtol(name); if (val > max) { debug("Found seq %d\n", val); max = val; } } return max; } const char *fdtdec_get_chosen_prop(const void *blob, const char *name) { int chosen_node; if (!blob) return NULL; chosen_node = fdt_path_offset(blob, "/chosen"); return fdt_getprop(blob, chosen_node, name, NULL); } int fdtdec_get_chosen_node(const void *blob, const char *name) { const char *prop; prop = fdtdec_get_chosen_prop(blob, name); if (!prop) return -FDT_ERR_NOTFOUND; return fdt_path_offset(blob, prop); } int fdtdec_check_fdt(void) { /* * We must have an FDT, but we cannot panic() yet since the console * is not ready. So for now, just assert(). Boards which need an early * FDT (prior to console ready) will need to make their own * arrangements and do their own checks. */ assert(!fdtdec_prepare_fdt()); return 0; } /* * This function is a little odd in that it accesses global data. At some * point if the architecture board.c files merge this will make more sense. * Even now, it is common code. */ int fdtdec_prepare_fdt(void) { if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) || fdt_check_header(gd->fdt_blob)) { #ifdef CONFIG_SPL_BUILD puts("Missing DTB\n"); #else puts("No valid device tree binary found - please append one to U-Boot binary, use u-boot-dtb.bin or define CONFIG_OF_EMBED. For sandbox, use -d \n"); # ifdef DEBUG if (gd->fdt_blob) { printf("fdt_blob=%p\n", gd->fdt_blob); print_buffer((ulong)gd->fdt_blob, gd->fdt_blob, 4, 32, 0); } # endif #endif return -1; } return 0; } int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name) { const u32 *phandle; int lookup; debug("%s: %s\n", __func__, prop_name); phandle = fdt_getprop(blob, node, prop_name, NULL); if (!phandle) return -FDT_ERR_NOTFOUND; lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle)); return lookup; } /** * Look up a property in a node and check that it has a minimum length. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param min_len minimum property length in bytes * @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not found, or -FDT_ERR_BADLAYOUT if not enough data * @return pointer to cell, which is only valid if err == 0 */ static const void *get_prop_check_min_len(const void *blob, int node, const char *prop_name, int min_len, int *err) { const void *cell; int len; debug("%s: %s\n", __func__, prop_name); cell = fdt_getprop(blob, node, prop_name, &len); if (!cell) *err = -FDT_ERR_NOTFOUND; else if (len < min_len) *err = -FDT_ERR_BADLAYOUT; else *err = 0; return cell; } int fdtdec_get_int_array(const void *blob, int node, const char *prop_name, u32 *array, int count) { const u32 *cell; int err = 0; debug("%s: %s\n", __func__, prop_name); cell = get_prop_check_min_len(blob, node, prop_name, sizeof(u32) * count, &err); if (!err) { int i; for (i = 0; i < count; i++) array[i] = fdt32_to_cpu(cell[i]); } return err; } int fdtdec_get_int_array_count(const void *blob, int node, const char *prop_name, u32 *array, int count) { const u32 *cell; int len, elems; int i; debug("%s: %s\n", __func__, prop_name); cell = fdt_getprop(blob, node, prop_name, &len); if (!cell) return -FDT_ERR_NOTFOUND; elems = len / sizeof(u32); if (count > elems) count = elems; for (i = 0; i < count; i++) array[i] = fdt32_to_cpu(cell[i]); return count; } const u32 *fdtdec_locate_array(const void *blob, int node, const char *prop_name, int count) { const u32 *cell; int err; cell = get_prop_check_min_len(blob, node, prop_name, sizeof(u32) * count, &err); return err ? NULL : cell; } int fdtdec_get_bool(const void *blob, int node, const char *prop_name) { const s32 *cell; int len; debug("%s: %s\n", __func__, prop_name); cell = fdt_getprop(blob, node, prop_name, &len); return cell != NULL; } int fdtdec_parse_phandle_with_args(const void *blob, int src_node, const char *list_name, const char *cells_name, int cell_count, int index, struct fdtdec_phandle_args *out_args) { const __be32 *list, *list_end; int rc = 0, size, cur_index = 0; uint32_t count = 0; int node = -1; int phandle; /* Retrieve the phandle list property */ list = fdt_getprop(blob, src_node, list_name, &size); if (!list) return -ENOENT; list_end = list + size / sizeof(*list); /* Loop over the phandles until all the requested entry is found */ while (list < list_end) { rc = -EINVAL; count = 0; /* * If phandle is 0, then it is an empty entry with no * arguments. Skip forward to the next entry. */ phandle = be32_to_cpup(list++); if (phandle) { /* * Find the provider node and parse the #*-cells * property to determine the argument length. * * This is not needed if the cell count is hard-coded * (i.e. cells_name not set, but cell_count is set), * except when we're going to return the found node * below. */ if (cells_name || cur_index == index) { node = fdt_node_offset_by_phandle(blob, phandle); if (!node) { debug("%s: could not find phandle\n", fdt_get_name(blob, src_node, NULL)); goto err; } } if (cells_name) { count = fdtdec_get_int(blob, node, cells_name, -1); if (count == -1) { debug("%s: could not get %s for %s\n", fdt_get_name(blob, src_node, NULL), cells_name, fdt_get_name(blob, node, NULL)); goto err; } } else { count = cell_count; } /* * Make sure that the arguments actually fit in the * remaining property data length */ if (list + count > list_end) { debug("%s: arguments longer than property\n", fdt_get_name(blob, src_node, NULL)); goto err; } } /* * All of the error cases above bail out of the loop, so at * this point, the parsing is successful. If the requested * index matches, then fill the out_args structure and return, * or return -ENOENT for an empty entry. */ rc = -ENOENT; if (cur_index == index) { if (!phandle) goto err; if (out_args) { int i; if (count > MAX_PHANDLE_ARGS) { debug("%s: too many arguments %d\n", fdt_get_name(blob, src_node, NULL), count); count = MAX_PHANDLE_ARGS; } out_args->node = node; out_args->args_count = count; for (i = 0; i < count; i++) { out_args->args[i] = be32_to_cpup(list++); } } /* Found it! return success */ return 0; } node = -1; list += count; cur_index++; } /* * Result will be one of: * -ENOENT : index is for empty phandle * -EINVAL : parsing error on data * [1..n] : Number of phandle (count mode; when index = -1) */ rc = index < 0 ? cur_index : -ENOENT; err: return rc; } int fdtdec_get_child_count(const void *blob, int node) { int subnode; int num = 0; fdt_for_each_subnode(subnode, blob, node) num++; return num; } int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name, u8 *array, int count) { const u8 *cell; int err; cell = get_prop_check_min_len(blob, node, prop_name, count, &err); if (!err) memcpy(array, cell, count); return err; } const u8 *fdtdec_locate_byte_array(const void *blob, int node, const char *prop_name, int count) { const u8 *cell; int err; cell = get_prop_check_min_len(blob, node, prop_name, count, &err); if (err) return NULL; return cell; } int fdtdec_get_config_int(const void *blob, const char *prop_name, int default_val) { int config_node; debug("%s: %s\n", __func__, prop_name); config_node = fdt_path_offset(blob, "/config"); if (config_node < 0) return default_val; return fdtdec_get_int(blob, config_node, prop_name, default_val); } int fdtdec_get_config_bool(const void *blob, const char *prop_name) { int config_node; const void *prop; debug("%s: %s\n", __func__, prop_name); config_node = fdt_path_offset(blob, "/config"); if (config_node < 0) return 0; prop = fdt_get_property(blob, config_node, prop_name, NULL); return prop != NULL; } char *fdtdec_get_config_string(const void *blob, const char *prop_name) { const char *nodep; int nodeoffset; int len; debug("%s: %s\n", __func__, prop_name); nodeoffset = fdt_path_offset(blob, "/config"); if (nodeoffset < 0) return NULL; nodep = fdt_getprop(blob, nodeoffset, prop_name, &len); if (!nodep) return NULL; return (char *)nodep; } u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells) { u64 number = 0; while (cells--) number = (number << 32) | fdt32_to_cpu(*ptr++); return number; } int fdt_get_resource(const void *fdt, int node, const char *property, unsigned int index, struct fdt_resource *res) { const fdt32_t *ptr, *end; int na, ns, len, parent; unsigned int i = 0; parent = fdt_parent_offset(fdt, node); if (parent < 0) return parent; na = fdt_address_cells(fdt, parent); ns = fdt_size_cells(fdt, parent); ptr = fdt_getprop(fdt, node, property, &len); if (!ptr) return len; end = ptr + len / sizeof(*ptr); while (ptr + na + ns <= end) { if (i == index) { res->start = fdtdec_get_number(ptr, na); res->end = res->start; res->end += fdtdec_get_number(&ptr[na], ns) - 1; return 0; } ptr += na + ns; i++; } return -FDT_ERR_NOTFOUND; } int fdt_get_named_resource(const void *fdt, int node, const char *property, const char *prop_names, const char *name, struct fdt_resource *res) { int index; index = fdt_stringlist_search(fdt, node, prop_names, name); if (index < 0) return index; return fdt_get_resource(fdt, node, property, index, res); } static int decode_timing_property(const void *blob, int node, const char *name, struct timing_entry *result) { int length, ret = 0; const u32 *prop; prop = fdt_getprop(blob, node, name, &length); if (!prop) { debug("%s: could not find property %s\n", fdt_get_name(blob, node, NULL), name); return length; } if (length == sizeof(u32)) { result->typ = fdtdec_get_int(blob, node, name, 0); result->min = result->typ; result->max = result->typ; } else { ret = fdtdec_get_int_array(blob, node, name, &result->min, 3); } return ret; } int fdtdec_decode_display_timing(const void *blob, int parent, int index, struct display_timing *dt) { int i, node, timings_node; u32 val = 0; int ret = 0; timings_node = fdt_subnode_offset(blob, parent, "display-timings"); if (timings_node < 0) return timings_node; for (i = 0, node = fdt_first_subnode(blob, timings_node); node > 0 && i != index; node = fdt_next_subnode(blob, node)) i++; if (node < 0) return node; memset(dt, 0, sizeof(*dt)); ret |= decode_timing_property(blob, node, "hback-porch", &dt->hback_porch); ret |= decode_timing_property(blob, node, "hfront-porch", &dt->hfront_porch); ret |= decode_timing_property(blob, node, "hactive", &dt->hactive); ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len); ret |= decode_timing_property(blob, node, "vback-porch", &dt->vback_porch); ret |= decode_timing_property(blob, node, "vfront-porch", &dt->vfront_porch); ret |= decode_timing_property(blob, node, "vactive", &dt->vactive); ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len); ret |= decode_timing_property(blob, node, "clock-frequency", &dt->pixelclock); dt->flags = 0; val = fdtdec_get_int(blob, node, "vsync-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH : DISPLAY_FLAGS_VSYNC_LOW; } val = fdtdec_get_int(blob, node, "hsync-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH : DISPLAY_FLAGS_HSYNC_LOW; } val = fdtdec_get_int(blob, node, "de-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH : DISPLAY_FLAGS_DE_LOW; } val = fdtdec_get_int(blob, node, "pixelclk-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE : DISPLAY_FLAGS_PIXDATA_NEGEDGE; } if (fdtdec_get_bool(blob, node, "interlaced")) dt->flags |= DISPLAY_FLAGS_INTERLACED; if (fdtdec_get_bool(blob, node, "doublescan")) dt->flags |= DISPLAY_FLAGS_DOUBLESCAN; if (fdtdec_get_bool(blob, node, "doubleclk")) dt->flags |= DISPLAY_FLAGS_DOUBLECLK; return ret; } int fdtdec_setup_mem_size_base_fdt(const void *blob) { int ret, mem; struct fdt_resource res; mem = fdt_path_offset(blob, "/memory"); if (mem < 0) { debug("%s: Missing /memory node\n", __func__); return -EINVAL; } ret = fdt_get_resource(blob, mem, "reg", 0, &res); if (ret != 0) { debug("%s: Unable to decode first memory bank\n", __func__); return -EINVAL; } gd->ram_size = (phys_size_t)(res.end - res.start + 1); gd->ram_base = (unsigned long)res.start; debug("%s: Initial DRAM size %llx\n", __func__, (unsigned long long)gd->ram_size); return 0; } int fdtdec_setup_mem_size_base(void) { return fdtdec_setup_mem_size_base_fdt(gd->fdt_blob); } #if defined(CONFIG_NR_DRAM_BANKS) static int get_next_memory_node(const void *blob, int mem) { do { mem = fdt_node_offset_by_prop_value(blob, mem, "device_type", "memory", 7); } while (!fdtdec_get_is_enabled(blob, mem)); return mem; } int fdtdec_setup_memory_banksize_fdt(const void *blob) { int bank, ret, mem, reg = 0; struct fdt_resource res; mem = get_next_memory_node(blob, -1); if (mem < 0) { debug("%s: Missing /memory node\n", __func__); return -EINVAL; } for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { ret = fdt_get_resource(blob, mem, "reg", reg++, &res); if (ret == -FDT_ERR_NOTFOUND) { reg = 0; mem = get_next_memory_node(blob, mem); if (mem == -FDT_ERR_NOTFOUND) break; ret = fdt_get_resource(blob, mem, "reg", reg++, &res); if (ret == -FDT_ERR_NOTFOUND) break; } if (ret != 0) { return -EINVAL; } gd->bd->bi_dram[bank].start = (phys_addr_t)res.start; gd->bd->bi_dram[bank].size = (phys_size_t)(res.end - res.start + 1); debug("%s: DRAM Bank #%d: start = 0x%llx, size = 0x%llx\n", __func__, bank, (unsigned long long)gd->bd->bi_dram[bank].start, (unsigned long long)gd->bd->bi_dram[bank].size); } return 0; } int fdtdec_setup_memory_banksize(void) { return fdtdec_setup_memory_banksize_fdt(gd->fdt_blob); } #endif #if CONFIG_IS_ENABLED(MULTI_DTB_FIT) # if CONFIG_IS_ENABLED(MULTI_DTB_FIT_GZIP) ||\ CONFIG_IS_ENABLED(MULTI_DTB_FIT_LZO) static int uncompress_blob(const void *src, ulong sz_src, void **dstp) { size_t sz_out = CONFIG_VAL(MULTI_DTB_FIT_UNCOMPRESS_SZ); bool gzip = 0, lzo = 0; ulong sz_in = sz_src; void *dst; int rc; if (CONFIG_IS_ENABLED(GZIP)) if (gzip_parse_header(src, sz_in) >= 0) gzip = 1; if (CONFIG_IS_ENABLED(LZO)) if (!gzip && lzop_is_valid_header(src)) lzo = 1; if (!gzip && !lzo) return -EBADMSG; if (CONFIG_IS_ENABLED(MULTI_DTB_FIT_DYN_ALLOC)) { dst = malloc(sz_out); if (!dst) { puts("uncompress_blob: Unable to allocate memory\n"); return -ENOMEM; } } else { # if CONFIG_IS_ENABLED(MULTI_DTB_FIT_USER_DEFINED_AREA) dst = (void *)CONFIG_VAL(MULTI_DTB_FIT_USER_DEF_ADDR); # else return -ENOTSUPP; # endif } if (CONFIG_IS_ENABLED(GZIP) && gzip) rc = gunzip(dst, sz_out, (u8 *)src, &sz_in); else if (CONFIG_IS_ENABLED(LZO) && lzo) rc = lzop_decompress(src, sz_in, dst, &sz_out); else hang(); if (rc < 0) { /* not a valid compressed blob */ puts("uncompress_blob: Unable to uncompress\n"); if (CONFIG_IS_ENABLED(MULTI_DTB_FIT_DYN_ALLOC)) free(dst); return -EBADMSG; } *dstp = dst; return 0; } # else static int uncompress_blob(const void *src, ulong sz_src, void **dstp) { *dstp = (void *)src; return 0; } # endif #endif #if defined(CONFIG_OF_BOARD) || defined(CONFIG_OF_SEPARATE) /* * For CONFIG_OF_SEPARATE, the board may optionally implement this to * provide and/or fixup the fdt. */ __weak void *board_fdt_blob_setup(void) { void *fdt_blob = NULL; #ifdef CONFIG_SPL_BUILD /* FDT is at end of BSS unless it is in a different memory region */ if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) fdt_blob = (ulong *)&_image_binary_end; else fdt_blob = (ulong *)&__bss_end; #else /* FDT is at end of image */ fdt_blob = (ulong *)&_end; #endif return fdt_blob; } #endif int fdtdec_set_phandle(void *blob, int node, uint32_t phandle) { fdt32_t value = cpu_to_fdt32(phandle); return fdt_setprop(blob, node, "phandle", &value, sizeof(value)); } static int fdtdec_init_reserved_memory(void *blob) { int na, ns, node, err; fdt32_t value; /* inherit #address-cells and #size-cells from the root node */ na = fdt_address_cells(blob, 0); ns = fdt_size_cells(blob, 0); node = fdt_add_subnode(blob, 0, "reserved-memory"); if (node < 0) return node; err = fdt_setprop(blob, node, "ranges", NULL, 0); if (err < 0) return err; value = cpu_to_fdt32(ns); err = fdt_setprop(blob, node, "#size-cells", &value, sizeof(value)); if (err < 0) return err; value = cpu_to_fdt32(na); err = fdt_setprop(blob, node, "#address-cells", &value, sizeof(value)); if (err < 0) return err; return node; } int fdtdec_add_reserved_memory(void *blob, const char *basename, const struct fdt_memory *carveout, uint32_t *phandlep) { fdt32_t cells[4] = {}, *ptr = cells; uint32_t upper, lower, phandle; int parent, node, na, ns, err; char name[64]; /* create an empty /reserved-memory node if one doesn't exist */ parent = fdt_path_offset(blob, "/reserved-memory"); if (parent < 0) { parent = fdtdec_init_reserved_memory(blob); if (parent < 0) return parent; } /* only 1 or 2 #address-cells and #size-cells are supported */ na = fdt_address_cells(blob, parent); if (na < 1 || na > 2) return -FDT_ERR_BADNCELLS; ns = fdt_size_cells(blob, parent); if (ns < 1 || ns > 2) return -FDT_ERR_BADNCELLS; /* find a matching node and return the phandle to that */ fdt_for_each_subnode(node, blob, parent) { const char *name = fdt_get_name(blob, node, NULL); phys_addr_t addr, size; addr = fdtdec_get_addr_size(blob, node, "reg", &size); if (addr == FDT_ADDR_T_NONE) { debug("failed to read address/size for %s\n", name); continue; } if (addr == carveout->start && (addr + size) == carveout->end) { *phandlep = fdt_get_phandle(blob, node); return 0; } } /* * Unpack the start address and generate the name of the new node * base on the basename and the unit-address. */ lower = fdt_addr_unpack(carveout->start, &upper); if (na > 1 && upper > 0) snprintf(name, sizeof(name), "%s@%x,%x", basename, upper, lower); else { if (upper > 0) { debug("address %08x:%08x exceeds addressable space\n", upper, lower); return -FDT_ERR_BADVALUE; } snprintf(name, sizeof(name), "%s@%x", basename, lower); } node = fdt_add_subnode(blob, parent, name); if (node < 0) return node; err = fdt_generate_phandle(blob, &phandle); if (err < 0) return err; err = fdtdec_set_phandle(blob, node, phandle); if (err < 0) return err; /* store one or two address cells */ if (na > 1) *ptr++ = cpu_to_fdt32(upper); *ptr++ = cpu_to_fdt32(lower); /* store one or two size cells */ lower = fdt_size_unpack(carveout->end - carveout->start + 1, &upper); if (ns > 1) *ptr++ = cpu_to_fdt32(upper); *ptr++ = cpu_to_fdt32(lower); err = fdt_setprop(blob, node, "reg", cells, (na + ns) * sizeof(*cells)); if (err < 0) return err; /* return the phandle for the new node for the caller to use */ if (phandlep) *phandlep = phandle; return 0; } int fdtdec_get_carveout(const void *blob, const char *node, const char *name, unsigned int index, struct fdt_memory *carveout) { const fdt32_t *prop; uint32_t phandle; int offset, len; fdt_size_t size; offset = fdt_path_offset(blob, node); if (offset < 0) return offset; prop = fdt_getprop(blob, offset, name, &len); if (!prop) { debug("failed to get %s for %s\n", name, node); return -FDT_ERR_NOTFOUND; } if ((len % sizeof(phandle)) != 0) { debug("invalid phandle property\n"); return -FDT_ERR_BADPHANDLE; } if (len < (sizeof(phandle) * (index + 1))) { debug("invalid phandle index\n"); return -FDT_ERR_BADPHANDLE; } phandle = fdt32_to_cpu(prop[index]); offset = fdt_node_offset_by_phandle(blob, phandle); if (offset < 0) { debug("failed to find node for phandle %u\n", phandle); return offset; } carveout->start = fdtdec_get_addr_size_auto_noparent(blob, offset, "reg", 0, &size, true); if (carveout->start == FDT_ADDR_T_NONE) { debug("failed to read address/size from \"reg\" property\n"); return -FDT_ERR_NOTFOUND; } carveout->end = carveout->start + size - 1; return 0; } int fdtdec_set_carveout(void *blob, const char *node, const char *prop_name, unsigned int index, const char *name, const struct fdt_memory *carveout) { uint32_t phandle; int err, offset; fdt32_t value; /* XXX implement support for multiple phandles */ if (index > 0) { debug("invalid index %u\n", index); return -FDT_ERR_BADOFFSET; } err = fdtdec_add_reserved_memory(blob, name, carveout, &phandle); if (err < 0) { debug("failed to add reserved memory: %d\n", err); return err; } offset = fdt_path_offset(blob, node); if (offset < 0) { debug("failed to find offset for node %s: %d\n", node, offset); return offset; } value = cpu_to_fdt32(phandle); err = fdt_setprop(blob, offset, prop_name, &value, sizeof(value)); if (err < 0) { debug("failed to set %s property for node %s: %d\n", prop_name, node, err); return err; } return 0; } int fdtdec_setup(void) { #if CONFIG_IS_ENABLED(OF_CONTROL) # if CONFIG_IS_ENABLED(MULTI_DTB_FIT) void *fdt_blob; # endif # ifdef CONFIG_OF_EMBED /* Get a pointer to the FDT */ # ifdef CONFIG_SPL_BUILD gd->fdt_blob = __dtb_dt_spl_begin; # else gd->fdt_blob = __dtb_dt_begin; # endif # elif defined(CONFIG_OF_BOARD) || defined(CONFIG_OF_SEPARATE) /* Allow the board to override the fdt address. */ gd->fdt_blob = board_fdt_blob_setup(); # elif defined(CONFIG_OF_HOSTFILE) if (sandbox_read_fdt_from_file()) { puts("Failed to read control FDT\n"); return -1; } # endif # ifndef CONFIG_SPL_BUILD /* Allow the early environment to override the fdt address */ # if CONFIG_IS_ENABLED(OF_PRIOR_STAGE) gd->fdt_blob = (void *)prior_stage_fdt_address; # else gd->fdt_blob = map_sysmem (env_get_ulong("fdtcontroladdr", 16, (unsigned long)map_to_sysmem(gd->fdt_blob)), 0); # endif # endif # if CONFIG_IS_ENABLED(MULTI_DTB_FIT) /* * Try and uncompress the blob. * Unfortunately there is no way to know how big the input blob really * is. So let us set the maximum input size arbitrarily high. 16MB * ought to be more than enough for packed DTBs. */ if (uncompress_blob(gd->fdt_blob, 0x1000000, &fdt_blob) == 0) gd->fdt_blob = fdt_blob; /* * Check if blob is a FIT images containings DTBs. * If so, pick the most relevant */ fdt_blob = locate_dtb_in_fit(gd->fdt_blob); if (fdt_blob) { gd->multi_dtb_fit = gd->fdt_blob; gd->fdt_blob = fdt_blob; } # endif #endif return fdtdec_prepare_fdt(); } #if CONFIG_IS_ENABLED(MULTI_DTB_FIT) int fdtdec_resetup(int *rescan) { void *fdt_blob; /* * If the current DTB is part of a compressed FIT image, * try to locate the best match from the uncompressed * FIT image stillpresent there. Save the time and space * required to uncompress it again. */ if (gd->multi_dtb_fit) { fdt_blob = locate_dtb_in_fit(gd->multi_dtb_fit); if (fdt_blob == gd->fdt_blob) { /* * The best match did not change. no need to tear down * the DM and rescan the fdt. */ *rescan = 0; return 0; } *rescan = 1; gd->fdt_blob = fdt_blob; return fdtdec_prepare_fdt(); } /* * If multi_dtb_fit is NULL, it means that blob appended to u-boot is * not a FIT image containings DTB, but a single DTB. There is no need * to teard down DM and rescan the DT in this case. */ *rescan = 0; return 0; } #endif #ifdef CONFIG_NR_DRAM_BANKS int fdtdec_decode_ram_size(const void *blob, const char *area, int board_id, phys_addr_t *basep, phys_size_t *sizep, bd_t *bd) { int addr_cells, size_cells; const u32 *cell, *end; u64 total_size, size, addr; int node, child; bool auto_size; int bank; int len; debug("%s: board_id=%d\n", __func__, board_id); if (!area) area = "/memory"; node = fdt_path_offset(blob, area); if (node < 0) { debug("No %s node found\n", area); return -ENOENT; } cell = fdt_getprop(blob, node, "reg", &len); if (!cell) { debug("No reg property found\n"); return -ENOENT; } addr_cells = fdt_address_cells(blob, node); size_cells = fdt_size_cells(blob, node); /* Check the board id and mask */ for (child = fdt_first_subnode(blob, node); child >= 0; child = fdt_next_subnode(blob, child)) { int match_mask, match_value; match_mask = fdtdec_get_int(blob, child, "match-mask", -1); match_value = fdtdec_get_int(blob, child, "match-value", -1); if (match_value >= 0 && ((board_id & match_mask) == match_value)) { /* Found matching mask */ debug("Found matching mask %d\n", match_mask); node = child; cell = fdt_getprop(blob, node, "reg", &len); if (!cell) { debug("No memory-banks property found\n"); return -EINVAL; } break; } } /* Note: if no matching subnode was found we use the parent node */ if (bd) { memset(bd->bi_dram, '\0', sizeof(bd->bi_dram[0]) * CONFIG_NR_DRAM_BANKS); } auto_size = fdtdec_get_bool(blob, node, "auto-size"); total_size = 0; end = cell + len / 4 - addr_cells - size_cells; debug("cell at %p, end %p\n", cell, end); for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { if (cell > end) break; addr = 0; if (addr_cells == 2) addr += (u64)fdt32_to_cpu(*cell++) << 32UL; addr += fdt32_to_cpu(*cell++); if (bd) bd->bi_dram[bank].start = addr; if (basep && !bank) *basep = (phys_addr_t)addr; size = 0; if (size_cells == 2) size += (u64)fdt32_to_cpu(*cell++) << 32UL; size += fdt32_to_cpu(*cell++); if (auto_size) { u64 new_size; debug("Auto-sizing %llx, size %llx: ", addr, size); new_size = get_ram_size((long *)(uintptr_t)addr, size); if (new_size == size) { debug("OK\n"); } else { debug("sized to %llx\n", new_size); size = new_size; } } if (bd) bd->bi_dram[bank].size = size; total_size += size; } debug("Memory size %llu\n", total_size); if (sizep) *sizep = (phys_size_t)total_size; return 0; } #endif /* CONFIG_NR_DRAM_BANKS */ #endif /* !USE_HOSTCC */