// SPDX-License-Identifier: GPL-2.0+ /* * EFI device path from u-boot device-model mapping * * (C) Copyright 2017 Rob Clark */ #define LOG_CATEGORY LOGC_EFI #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* U16_MAX */ #ifdef CONFIG_SANDBOX const efi_guid_t efi_guid_host_dev = U_BOOT_HOST_DEV_GUID; #endif #ifdef CONFIG_VIRTIO_BLK const efi_guid_t efi_guid_virtio_dev = U_BOOT_VIRTIO_DEV_GUID; #endif /* template END node: */ static const struct efi_device_path END = { .type = DEVICE_PATH_TYPE_END, .sub_type = DEVICE_PATH_SUB_TYPE_END, .length = sizeof(END), }; /* template ROOT node: */ static const struct efi_device_path_vendor ROOT = { .dp = { .type = DEVICE_PATH_TYPE_HARDWARE_DEVICE, .sub_type = DEVICE_PATH_SUB_TYPE_VENDOR, .length = sizeof(ROOT), }, .guid = U_BOOT_GUID, }; #if defined(CONFIG_MMC) /* * Determine if an MMC device is an SD card. * * @desc block device descriptor * Return: true if the device is an SD card */ static bool is_sd(struct blk_desc *desc) { struct mmc *mmc = find_mmc_device(desc->devnum); if (!mmc) return false; return IS_SD(mmc) != 0U; } #endif static void *dp_alloc(size_t sz) { void *buf; if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, sz, &buf) != EFI_SUCCESS) { debug("EFI: ERROR: out of memory in %s\n", __func__); return NULL; } memset(buf, 0, sz); return buf; } /* * Iterate to next block in device-path, terminating (returning NULL) * at /End* node. */ struct efi_device_path *efi_dp_next(const struct efi_device_path *dp) { if (dp == NULL) return NULL; if (dp->type == DEVICE_PATH_TYPE_END) return NULL; dp = ((void *)dp) + dp->length; if (dp->type == DEVICE_PATH_TYPE_END) return NULL; return (struct efi_device_path *)dp; } /* * Compare two device-paths, stopping when the shorter of the two hits * an End* node. This is useful to, for example, compare a device-path * representing a device with one representing a file on the device, or * a device with a parent device. */ int efi_dp_match(const struct efi_device_path *a, const struct efi_device_path *b) { while (1) { int ret; ret = memcmp(&a->length, &b->length, sizeof(a->length)); if (ret) return ret; ret = memcmp(a, b, a->length); if (ret) return ret; a = efi_dp_next(a); b = efi_dp_next(b); if (!a || !b) return 0; } } /** * efi_dp_shorten() - shorten device-path * * We can have device paths that start with a USB WWID or a USB Class node, * and a few other cases which don't encode the full device path with bus * hierarchy: * * * MESSAGING:USB_WWID * * MESSAGING:USB_CLASS * * MEDIA:FILE_PATH * * MEDIA:HARD_DRIVE * * MESSAGING:URI * * See UEFI spec (section 3.1.2, about short-form device-paths) * * @dp: original device-path * @Return: shortened device-path or NULL */ struct efi_device_path *efi_dp_shorten(struct efi_device_path *dp) { while (dp) { /* * TODO: Add MESSAGING:USB_WWID and MESSAGING:URI.. * in practice fallback.efi just uses MEDIA:HARD_DRIVE * so not sure when we would see these other cases. */ if (EFI_DP_TYPE(dp, MESSAGING_DEVICE, MSG_USB_CLASS) || EFI_DP_TYPE(dp, MEDIA_DEVICE, HARD_DRIVE_PATH) || EFI_DP_TYPE(dp, MEDIA_DEVICE, FILE_PATH)) return dp; dp = efi_dp_next(dp); } return dp; } /** * find_handle() - find handle by device path and installed protocol * * If @rem is provided, the handle with the longest partial match is returned. * * @dp: device path to search * @guid: GUID of protocol that must be installed on path or NULL * @short_path: use short form device path for matching * @rem: pointer to receive remaining device path * Return: matching handle */ static efi_handle_t find_handle(struct efi_device_path *dp, const efi_guid_t *guid, bool short_path, struct efi_device_path **rem) { efi_handle_t handle, best_handle = NULL; efi_uintn_t len, best_len = 0; len = efi_dp_instance_size(dp); list_for_each_entry(handle, &efi_obj_list, link) { struct efi_handler *handler; struct efi_device_path *dp_current; efi_uintn_t len_current; efi_status_t ret; if (guid) { ret = efi_search_protocol(handle, guid, &handler); if (ret != EFI_SUCCESS) continue; } ret = efi_search_protocol(handle, &efi_guid_device_path, &handler); if (ret != EFI_SUCCESS) continue; dp_current = handler->protocol_interface; if (short_path) { dp_current = efi_dp_shorten(dp_current); if (!dp_current) continue; } len_current = efi_dp_instance_size(dp_current); if (rem) { if (len_current > len) continue; } else { if (len_current != len) continue; } if (memcmp(dp_current, dp, len_current)) continue; if (!rem) return handle; if (len_current > best_len) { best_len = len_current; best_handle = handle; *rem = (void*)((u8 *)dp + len_current); } } return best_handle; } /** * efi_dp_find_obj() - find handle by device path * * If @rem is provided, the handle with the longest partial match is returned. * * @dp: device path to search * @guid: GUID of protocol that must be installed on path or NULL * @rem: pointer to receive remaining device path * Return: matching handle */ efi_handle_t efi_dp_find_obj(struct efi_device_path *dp, const efi_guid_t *guid, struct efi_device_path **rem) { efi_handle_t handle; handle = find_handle(dp, guid, false, rem); if (!handle) /* Match short form device path */ handle = find_handle(dp, guid, true, rem); return handle; } /* * Determine the last device path node that is not the end node. * * @dp device path * Return: last node before the end node if it exists * otherwise NULL */ const struct efi_device_path *efi_dp_last_node(const struct efi_device_path *dp) { struct efi_device_path *ret; if (!dp || dp->type == DEVICE_PATH_TYPE_END) return NULL; while (dp) { ret = (struct efi_device_path *)dp; dp = efi_dp_next(dp); } return ret; } /* get size of the first device path instance excluding end node */ efi_uintn_t efi_dp_instance_size(const struct efi_device_path *dp) { efi_uintn_t sz = 0; if (!dp || dp->type == DEVICE_PATH_TYPE_END) return 0; while (dp) { sz += dp->length; dp = efi_dp_next(dp); } return sz; } /* get size of multi-instance device path excluding end node */ efi_uintn_t efi_dp_size(const struct efi_device_path *dp) { const struct efi_device_path *p = dp; if (!p) return 0; while (p->type != DEVICE_PATH_TYPE_END || p->sub_type != DEVICE_PATH_SUB_TYPE_END) p = (void *)p + p->length; return (void *)p - (void *)dp; } /* copy multi-instance device path */ struct efi_device_path *efi_dp_dup(const struct efi_device_path *dp) { struct efi_device_path *ndp; size_t sz = efi_dp_size(dp) + sizeof(END); if (!dp) return NULL; ndp = dp_alloc(sz); if (!ndp) return NULL; memcpy(ndp, dp, sz); return ndp; } /** * efi_dp_append_or_concatenate() - Append or concatenate two device paths. * Concatenated device path will be separated * by a sub-type 0xff end node * * @dp1: First device path * @dp2: Second device path * @concat: If true the two device paths will be concatenated and separated * by an end of entrire device path sub-type 0xff end node. * If true the second device path will be appended to the first and * terminated by an end node * * Return: * concatenated device path or NULL. Caller must free the returned value */ static struct efi_device_path *efi_dp_append_or_concatenate(const struct efi_device_path *dp1, const struct efi_device_path *dp2, bool concat) { struct efi_device_path *ret; size_t end_size = sizeof(END); if (concat) end_size = 2 * sizeof(END); if (!dp1 && !dp2) { /* return an end node */ ret = efi_dp_dup(&END); } else if (!dp1) { ret = efi_dp_dup(dp2); } else if (!dp2) { ret = efi_dp_dup(dp1); } else { /* both dp1 and dp2 are non-null */ unsigned sz1 = efi_dp_size(dp1); unsigned sz2 = efi_dp_size(dp2); void *p = dp_alloc(sz1 + sz2 + end_size); if (!p) return NULL; ret = p; memcpy(p, dp1, sz1); p += sz1; if (concat) { memcpy(p, &END, sizeof(END)); p += sizeof(END); } /* the end node of the second device path has to be retained */ memcpy(p, dp2, sz2); p += sz2; memcpy(p, &END, sizeof(END)); } return ret; } /** * efi_dp_append() - Append a device to an existing device path. * * @dp1: First device path * @dp2: Second device path * * Return: * concatenated device path or NULL. Caller must free the returned value */ struct efi_device_path *efi_dp_append(const struct efi_device_path *dp1, const struct efi_device_path *dp2) { return efi_dp_append_or_concatenate(dp1, dp2, false); } /** * efi_dp_concat() - Concatenate 2 device paths. The final device path will * contain two device paths separated by and end node (0xff). * * @dp1: First device path * @dp2: Second device path * * Return: * concatenated device path or NULL. Caller must free the returned value */ struct efi_device_path *efi_dp_concat(const struct efi_device_path *dp1, const struct efi_device_path *dp2) { return efi_dp_append_or_concatenate(dp1, dp2, true); } struct efi_device_path *efi_dp_append_node(const struct efi_device_path *dp, const struct efi_device_path *node) { struct efi_device_path *ret; if (!node && !dp) { ret = efi_dp_dup(&END); } else if (!node) { ret = efi_dp_dup(dp); } else if (!dp) { size_t sz = node->length; void *p = dp_alloc(sz + sizeof(END)); if (!p) return NULL; memcpy(p, node, sz); memcpy(p + sz, &END, sizeof(END)); ret = p; } else { /* both dp and node are non-null */ size_t sz = efi_dp_size(dp); void *p = dp_alloc(sz + node->length + sizeof(END)); if (!p) return NULL; memcpy(p, dp, sz); memcpy(p + sz, node, node->length); memcpy(p + sz + node->length, &END, sizeof(END)); ret = p; } return ret; } struct efi_device_path *efi_dp_create_device_node(const u8 type, const u8 sub_type, const u16 length) { struct efi_device_path *ret; if (length < sizeof(struct efi_device_path)) return NULL; ret = dp_alloc(length); if (!ret) return ret; ret->type = type; ret->sub_type = sub_type; ret->length = length; return ret; } struct efi_device_path *efi_dp_append_instance( const struct efi_device_path *dp, const struct efi_device_path *dpi) { size_t sz, szi; struct efi_device_path *p, *ret; if (!dpi) return NULL; if (!dp) return efi_dp_dup(dpi); sz = efi_dp_size(dp); szi = efi_dp_instance_size(dpi); p = dp_alloc(sz + szi + 2 * sizeof(END)); if (!p) return NULL; ret = p; memcpy(p, dp, sz + sizeof(END)); p = (void *)p + sz; p->sub_type = DEVICE_PATH_SUB_TYPE_INSTANCE_END; p = (void *)p + sizeof(END); memcpy(p, dpi, szi); p = (void *)p + szi; memcpy(p, &END, sizeof(END)); return ret; } struct efi_device_path *efi_dp_get_next_instance(struct efi_device_path **dp, efi_uintn_t *size) { size_t sz; struct efi_device_path *p; if (size) *size = 0; if (!dp || !*dp) return NULL; sz = efi_dp_instance_size(*dp); p = dp_alloc(sz + sizeof(END)); if (!p) return NULL; memcpy(p, *dp, sz + sizeof(END)); *dp = (void *)*dp + sz; if ((*dp)->sub_type == DEVICE_PATH_SUB_TYPE_INSTANCE_END) *dp = (void *)*dp + sizeof(END); else *dp = NULL; if (size) *size = sz + sizeof(END); return p; } bool efi_dp_is_multi_instance(const struct efi_device_path *dp) { const struct efi_device_path *p = dp; if (!p) return false; while (p->type != DEVICE_PATH_TYPE_END) p = (void *)p + p->length; return p->sub_type == DEVICE_PATH_SUB_TYPE_INSTANCE_END; } /* size of device-path not including END node for device and all parents * up to the root device. */ __maybe_unused static unsigned int dp_size(struct udevice *dev) { if (!dev || !dev->driver) return sizeof(ROOT); switch (device_get_uclass_id(dev)) { case UCLASS_ROOT: case UCLASS_SIMPLE_BUS: /* stop traversing parents at this point: */ return sizeof(ROOT); case UCLASS_ETH: return dp_size(dev->parent) + sizeof(struct efi_device_path_mac_addr); case UCLASS_BLK: switch (dev->parent->uclass->uc_drv->id) { #ifdef CONFIG_IDE case UCLASS_IDE: return dp_size(dev->parent) + sizeof(struct efi_device_path_atapi); #endif #if defined(CONFIG_SCSI) case UCLASS_SCSI: return dp_size(dev->parent) + sizeof(struct efi_device_path_scsi); #endif #if defined(CONFIG_MMC) case UCLASS_MMC: return dp_size(dev->parent) + sizeof(struct efi_device_path_sd_mmc_path); #endif #if defined(CONFIG_AHCI) || defined(CONFIG_SATA) case UCLASS_AHCI: return dp_size(dev->parent) + sizeof(struct efi_device_path_sata); #endif #if defined(CONFIG_NVME) case UCLASS_NVME: return dp_size(dev->parent) + sizeof(struct efi_device_path_nvme); #endif #ifdef CONFIG_SANDBOX case UCLASS_ROOT: /* * Sandbox's host device will be represented * as vendor device with extra one byte for * device number */ return dp_size(dev->parent) + sizeof(struct efi_device_path_vendor) + 1; #endif #ifdef CONFIG_VIRTIO_BLK case UCLASS_VIRTIO: /* * Virtio devices will be represented as a vendor * device node with an extra byte for the device * number. */ return dp_size(dev->parent) + sizeof(struct efi_device_path_vendor) + 1; #endif default: return dp_size(dev->parent); } #if defined(CONFIG_MMC) case UCLASS_MMC: return dp_size(dev->parent) + sizeof(struct efi_device_path_sd_mmc_path); #endif case UCLASS_MASS_STORAGE: case UCLASS_USB_HUB: return dp_size(dev->parent) + sizeof(struct efi_device_path_usb_class); default: /* just skip over unknown classes: */ return dp_size(dev->parent); } } /* * Recursively build a device path. * * @buf pointer to the end of the device path * @dev device * Return: pointer to the end of the device path */ __maybe_unused static void *dp_fill(void *buf, struct udevice *dev) { if (!dev || !dev->driver) return buf; switch (device_get_uclass_id(dev)) { case UCLASS_ROOT: case UCLASS_SIMPLE_BUS: { /* stop traversing parents at this point: */ struct efi_device_path_vendor *vdp = buf; *vdp = ROOT; return &vdp[1]; } #ifdef CONFIG_NET case UCLASS_ETH: { struct efi_device_path_mac_addr *dp = dp_fill(buf, dev->parent); struct eth_pdata *pdata = dev_get_plat(dev); dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_MAC_ADDR; dp->dp.length = sizeof(*dp); memset(&dp->mac, 0, sizeof(dp->mac)); /* We only support IPv4 */ memcpy(&dp->mac, &pdata->enetaddr, ARP_HLEN); /* Ethernet */ dp->if_type = 1; return &dp[1]; } #endif case UCLASS_BLK: switch (dev->parent->uclass->uc_drv->id) { #ifdef CONFIG_SANDBOX case UCLASS_ROOT: { /* stop traversing parents at this point: */ struct efi_device_path_vendor *dp; struct blk_desc *desc = dev_get_uclass_plat(dev); dp_fill(buf, dev->parent); dp = buf; ++dp; dp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE; dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_VENDOR; dp->dp.length = sizeof(*dp) + 1; memcpy(&dp->guid, &efi_guid_host_dev, sizeof(efi_guid_t)); dp->vendor_data[0] = desc->devnum; return &dp->vendor_data[1]; } #endif #ifdef CONFIG_VIRTIO_BLK case UCLASS_VIRTIO: { struct efi_device_path_vendor *dp; struct blk_desc *desc = dev_get_uclass_plat(dev); dp_fill(buf, dev->parent); dp = buf; ++dp; dp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE; dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_VENDOR; dp->dp.length = sizeof(*dp) + 1; memcpy(&dp->guid, &efi_guid_virtio_dev, sizeof(efi_guid_t)); dp->vendor_data[0] = desc->devnum; return &dp->vendor_data[1]; } #endif #ifdef CONFIG_IDE case UCLASS_IDE: { struct efi_device_path_atapi *dp = dp_fill(buf, dev->parent); struct blk_desc *desc = dev_get_uclass_plat(dev); dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_ATAPI; dp->dp.length = sizeof(*dp); dp->logical_unit_number = desc->devnum; dp->primary_secondary = IDE_BUS(desc->devnum); dp->slave_master = desc->devnum % (CONFIG_SYS_IDE_MAXDEVICE / CONFIG_SYS_IDE_MAXBUS); return &dp[1]; } #endif #if defined(CONFIG_SCSI) case UCLASS_SCSI: { struct efi_device_path_scsi *dp = dp_fill(buf, dev->parent); struct blk_desc *desc = dev_get_uclass_plat(dev); dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_SCSI; dp->dp.length = sizeof(*dp); dp->logical_unit_number = desc->lun; dp->target_id = desc->target; return &dp[1]; } #endif #if defined(CONFIG_MMC) case UCLASS_MMC: { struct efi_device_path_sd_mmc_path *sddp = dp_fill(buf, dev->parent); struct blk_desc *desc = dev_get_uclass_plat(dev); sddp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; sddp->dp.sub_type = is_sd(desc) ? DEVICE_PATH_SUB_TYPE_MSG_SD : DEVICE_PATH_SUB_TYPE_MSG_MMC; sddp->dp.length = sizeof(*sddp); sddp->slot_number = dev_seq(dev); return &sddp[1]; } #endif #if defined(CONFIG_AHCI) || defined(CONFIG_SATA) case UCLASS_AHCI: { struct efi_device_path_sata *dp = dp_fill(buf, dev->parent); struct blk_desc *desc = dev_get_uclass_plat(dev); dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_SATA; dp->dp.length = sizeof(*dp); dp->hba_port = desc->devnum; /* default 0xffff implies no port multiplier */ dp->port_multiplier_port = 0xffff; dp->logical_unit_number = desc->lun; return &dp[1]; } #endif #if defined(CONFIG_NVME) case UCLASS_NVME: { struct efi_device_path_nvme *dp = dp_fill(buf, dev->parent); u32 ns_id; dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_NVME; dp->dp.length = sizeof(*dp); nvme_get_namespace_id(dev, &ns_id, dp->eui64); memcpy(&dp->ns_id, &ns_id, sizeof(ns_id)); return &dp[1]; } #endif default: debug("%s(%u) %s: unhandled parent class: %s (%u)\n", __FILE__, __LINE__, __func__, dev->name, dev->parent->uclass->uc_drv->id); return dp_fill(buf, dev->parent); } #if defined(CONFIG_MMC) case UCLASS_MMC: { struct efi_device_path_sd_mmc_path *sddp = dp_fill(buf, dev->parent); struct mmc *mmc = mmc_get_mmc_dev(dev); struct blk_desc *desc = mmc_get_blk_desc(mmc); sddp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; sddp->dp.sub_type = is_sd(desc) ? DEVICE_PATH_SUB_TYPE_MSG_SD : DEVICE_PATH_SUB_TYPE_MSG_MMC; sddp->dp.length = sizeof(*sddp); sddp->slot_number = dev_seq(dev); return &sddp[1]; } #endif case UCLASS_MASS_STORAGE: case UCLASS_USB_HUB: { struct efi_device_path_usb_class *udp = dp_fill(buf, dev->parent); struct usb_device *udev = dev_get_parent_priv(dev); struct usb_device_descriptor *desc = &udev->descriptor; udp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; udp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_USB_CLASS; udp->dp.length = sizeof(*udp); udp->vendor_id = desc->idVendor; udp->product_id = desc->idProduct; udp->device_class = desc->bDeviceClass; udp->device_subclass = desc->bDeviceSubClass; udp->device_protocol = desc->bDeviceProtocol; return &udp[1]; } default: /* If the uclass driver is missing, this will show NULL */ log_debug("unhandled device class: %s (%s)\n", dev->name, dev_get_uclass_name(dev)); return dp_fill(buf, dev->parent); } } static unsigned dp_part_size(struct blk_desc *desc, int part) { unsigned dpsize; struct udevice *dev = desc->bdev; dpsize = dp_size(dev); if (part == 0) /* the actual disk, not a partition */ return dpsize; if (desc->part_type == PART_TYPE_ISO) dpsize += sizeof(struct efi_device_path_cdrom_path); else dpsize += sizeof(struct efi_device_path_hard_drive_path); return dpsize; } /* * Create a device node for a block device partition. * * @buf buffer to which the device path is written * @desc block device descriptor * @part partition number, 0 identifies a block device */ static void *dp_part_node(void *buf, struct blk_desc *desc, int part) { struct disk_partition info; part_get_info(desc, part, &info); if (desc->part_type == PART_TYPE_ISO) { struct efi_device_path_cdrom_path *cddp = buf; cddp->boot_entry = part; cddp->dp.type = DEVICE_PATH_TYPE_MEDIA_DEVICE; cddp->dp.sub_type = DEVICE_PATH_SUB_TYPE_CDROM_PATH; cddp->dp.length = sizeof(*cddp); cddp->partition_start = info.start; cddp->partition_size = info.size; buf = &cddp[1]; } else { struct efi_device_path_hard_drive_path *hddp = buf; hddp->dp.type = DEVICE_PATH_TYPE_MEDIA_DEVICE; hddp->dp.sub_type = DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH; hddp->dp.length = sizeof(*hddp); hddp->partition_number = part; hddp->partition_start = info.start; hddp->partition_end = info.size; if (desc->part_type == PART_TYPE_EFI) hddp->partmap_type = 2; else hddp->partmap_type = 1; switch (desc->sig_type) { case SIG_TYPE_NONE: default: hddp->signature_type = 0; memset(hddp->partition_signature, 0, sizeof(hddp->partition_signature)); break; case SIG_TYPE_MBR: hddp->signature_type = 1; memset(hddp->partition_signature, 0, sizeof(hddp->partition_signature)); memcpy(hddp->partition_signature, &desc->mbr_sig, sizeof(desc->mbr_sig)); break; case SIG_TYPE_GUID: hddp->signature_type = 2; #if CONFIG_IS_ENABLED(PARTITION_UUIDS) /* info.uuid exists only with PARTITION_UUIDS */ if (uuid_str_to_bin(info.uuid, hddp->partition_signature, UUID_STR_FORMAT_GUID)) { log_warning( "Partition %d: invalid GUID %s\n", part, info.uuid); } #endif break; } buf = &hddp[1]; } return buf; } /* * Create a device path for a block device or one of its partitions. * * @buf buffer to which the device path is written * @desc block device descriptor * @part partition number, 0 identifies a block device */ static void *dp_part_fill(void *buf, struct blk_desc *desc, int part) { struct udevice *dev = desc->bdev; buf = dp_fill(buf, dev); if (part == 0) /* the actual disk, not a partition */ return buf; return dp_part_node(buf, desc, part); } /* Construct a device-path from a partition on a block device: */ struct efi_device_path *efi_dp_from_part(struct blk_desc *desc, int part) { void *buf, *start; start = buf = dp_alloc(dp_part_size(desc, part) + sizeof(END)); if (!buf) return NULL; buf = dp_part_fill(buf, desc, part); *((struct efi_device_path *)buf) = END; return start; } /* * Create a device node for a block device partition. * * @buf buffer to which the device path is written * @desc block device descriptor * @part partition number, 0 identifies a block device */ struct efi_device_path *efi_dp_part_node(struct blk_desc *desc, int part) { efi_uintn_t dpsize; void *buf; if (desc->part_type == PART_TYPE_ISO) dpsize = sizeof(struct efi_device_path_cdrom_path); else dpsize = sizeof(struct efi_device_path_hard_drive_path); buf = dp_alloc(dpsize); dp_part_node(buf, desc, part); return buf; } /** * path_to_uefi() - convert UTF-8 path to an UEFI style path * * Convert UTF-8 path to a UEFI style path (i.e. with backslashes as path * separators and UTF-16). * * @src: source buffer * @uefi: target buffer, possibly unaligned */ static void path_to_uefi(void *uefi, const char *src) { u16 *pos = uefi; /* * efi_set_bootdev() calls this routine indirectly before the UEFI * subsystem is initialized. So we cannot assume unaligned access to be * enabled. */ allow_unaligned(); while (*src) { s32 code = utf8_get(&src); if (code < 0) code = '?'; else if (code == '/') code = '\\'; utf16_put(code, &pos); } *pos = 0; } /** * efi_dp_from_file() - create device path for file * * The function creates a device path from the block descriptor @desc and the * partition number @part and appends a device path node created describing the * file path @path. * * If @desc is NULL, the device path will not contain nodes describing the * partition. * If @path is an empty string "", the device path will not contain a node * for the file path. * * @desc: block device descriptor or NULL * @part: partition number * @path: file path on partition or "" * Return: device path or NULL in case of an error */ struct efi_device_path *efi_dp_from_file(struct blk_desc *desc, int part, const char *path) { struct efi_device_path_file_path *fp; void *buf, *start; size_t dpsize = 0, fpsize; if (desc) dpsize = dp_part_size(desc, part); fpsize = sizeof(struct efi_device_path) + 2 * (utf8_utf16_strlen(path) + 1); if (fpsize > U16_MAX) return NULL; dpsize += fpsize; start = buf = dp_alloc(dpsize + sizeof(END)); if (!buf) return NULL; if (desc) buf = dp_part_fill(buf, desc, part); /* add file-path: */ if (*path) { fp = buf; fp->dp.type = DEVICE_PATH_TYPE_MEDIA_DEVICE; fp->dp.sub_type = DEVICE_PATH_SUB_TYPE_FILE_PATH; fp->dp.length = (u16)fpsize; path_to_uefi(fp->str, path); buf += fpsize; } *((struct efi_device_path *)buf) = END; return start; } struct efi_device_path *efi_dp_from_uart(void) { void *buf, *pos; struct efi_device_path_uart *uart; size_t dpsize = sizeof(ROOT) + sizeof(*uart) + sizeof(END); buf = dp_alloc(dpsize); if (!buf) return NULL; pos = buf; memcpy(pos, &ROOT, sizeof(ROOT)); pos += sizeof(ROOT); uart = pos; uart->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE; uart->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_UART; uart->dp.length = sizeof(*uart); pos += sizeof(*uart); memcpy(pos, &END, sizeof(END)); return buf; } #ifdef CONFIG_NET struct efi_device_path *efi_dp_from_eth(void) { void *buf, *start; unsigned dpsize = 0; assert(eth_get_dev()); dpsize += dp_size(eth_get_dev()); start = buf = dp_alloc(dpsize + sizeof(END)); if (!buf) return NULL; buf = dp_fill(buf, eth_get_dev()); *((struct efi_device_path *)buf) = END; return start; } #endif /* Construct a device-path for memory-mapped image */ struct efi_device_path *efi_dp_from_mem(uint32_t memory_type, uint64_t start_address, uint64_t end_address) { struct efi_device_path_memory *mdp; void *buf, *start; start = buf = dp_alloc(sizeof(*mdp) + sizeof(END)); if (!buf) return NULL; mdp = buf; mdp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE; mdp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MEMORY; mdp->dp.length = sizeof(*mdp); mdp->memory_type = memory_type; mdp->start_address = start_address; mdp->end_address = end_address; buf = &mdp[1]; *((struct efi_device_path *)buf) = END; return start; } /** * efi_dp_split_file_path() - split of relative file path from device path * * Given a device path indicating a file on a device, separate the device * path in two: the device path of the actual device and the file path * relative to this device. * * @full_path: device path including device and file path * @device_path: path of the device * @file_path: relative path of the file or NULL if there is none * Return: status code */ efi_status_t efi_dp_split_file_path(struct efi_device_path *full_path, struct efi_device_path **device_path, struct efi_device_path **file_path) { struct efi_device_path *p, *dp, *fp = NULL; *device_path = NULL; *file_path = NULL; dp = efi_dp_dup(full_path); if (!dp) return EFI_OUT_OF_RESOURCES; p = dp; while (!EFI_DP_TYPE(p, MEDIA_DEVICE, FILE_PATH)) { p = efi_dp_next(p); if (!p) goto out; } fp = efi_dp_dup(p); if (!fp) return EFI_OUT_OF_RESOURCES; p->type = DEVICE_PATH_TYPE_END; p->sub_type = DEVICE_PATH_SUB_TYPE_END; p->length = sizeof(*p); out: *device_path = dp; *file_path = fp; return EFI_SUCCESS; } /** * efi_dp_from_name() - convert U-Boot device and file path to device path * * @dev: U-Boot device, e.g. 'mmc' * @devnr: U-Boot device number, e.g. 1 for 'mmc:1' * @path: file path relative to U-Boot device, may be NULL * @device: pointer to receive device path of the device * @file: pointer to receive device path for the file * Return: status code */ efi_status_t efi_dp_from_name(const char *dev, const char *devnr, const char *path, struct efi_device_path **device, struct efi_device_path **file) { struct blk_desc *desc = NULL; struct disk_partition fs_partition; size_t image_size; void *image_addr; int part = 0; char *filename; char *s; if (path && !file) return EFI_INVALID_PARAMETER; if (!strcmp(dev, "Net")) { #ifdef CONFIG_NET if (device) *device = efi_dp_from_eth(); #endif } else if (!strcmp(dev, "Uart")) { if (device) *device = efi_dp_from_uart(); } else if (!strcmp(dev, "Mem")) { efi_get_image_parameters(&image_addr, &image_size); if (device) *device = efi_dp_from_mem(EFI_RESERVED_MEMORY_TYPE, (uintptr_t)image_addr, image_size); } else { part = blk_get_device_part_str(dev, devnr, &desc, &fs_partition, 1); if (part < 0 || !desc) return EFI_INVALID_PARAMETER; if (device) *device = efi_dp_from_part(desc, part); } if (!path) return EFI_SUCCESS; filename = calloc(1, strlen(path) + 1); if (!filename) return EFI_OUT_OF_RESOURCES; sprintf(filename, "%s", path); /* DOS style file path: */ s = filename; while ((s = strchr(s, '/'))) *s++ = '\\'; *file = efi_dp_from_file(desc, part, filename); free(filename); if (!*file) return EFI_INVALID_PARAMETER; return EFI_SUCCESS; } /** * efi_dp_check_length() - check length of a device path * * @dp: pointer to device path * @maxlen: maximum length of the device path * Return: * * length of the device path if it is less or equal @maxlen * * -1 if the device path is longer then @maxlen * * -1 if a device path node has a length of less than 4 * * -EINVAL if maxlen exceeds SSIZE_MAX */ ssize_t efi_dp_check_length(const struct efi_device_path *dp, const size_t maxlen) { ssize_t ret = 0; u16 len; if (maxlen > SSIZE_MAX) return -EINVAL; for (;;) { len = dp->length; if (len < 4) return -1; ret += len; if (ret > maxlen) return -1; if (dp->type == DEVICE_PATH_TYPE_END && dp->sub_type == DEVICE_PATH_SUB_TYPE_END) return ret; dp = (const struct efi_device_path *)((const u8 *)dp + len); } } /** * efi_dp_from_lo() - Get the instance of a VenMedia node in a * multi-instance device path that matches * a specific GUID. This kind of device paths * is found in Boot#### options describing an * initrd location * * @lo: EFI_LOAD_OPTION containing a valid device path * @guid: guid to search for * * Return: * device path including the VenMedia node or NULL. * Caller must free the returned value. */ struct efi_device_path *efi_dp_from_lo(struct efi_load_option *lo, const efi_guid_t *guid) { struct efi_device_path *fp = lo->file_path; struct efi_device_path_vendor *vendor; int lo_len = lo->file_path_length; for (; lo_len >= sizeof(struct efi_device_path); lo_len -= fp->length, fp = (void *)fp + fp->length) { if (lo_len < 0 || efi_dp_check_length(fp, lo_len) < 0) break; if (fp->type != DEVICE_PATH_TYPE_MEDIA_DEVICE || fp->sub_type != DEVICE_PATH_SUB_TYPE_VENDOR_PATH) continue; vendor = (struct efi_device_path_vendor *)fp; if (!guidcmp(&vendor->guid, guid)) return efi_dp_dup(efi_dp_next(fp)); } log_debug("VenMedia(%pUl) not found in %ls\n", &guid, lo->label); return NULL; } /** * search_gpt_dp_node() - search gpt device path node * * @device_path: device path * * Return: pointer to the gpt device path node */ struct efi_device_path *search_gpt_dp_node(struct efi_device_path *device_path) { struct efi_device_path *dp = device_path; while (dp) { if (dp->type == DEVICE_PATH_TYPE_MEDIA_DEVICE && dp->sub_type == DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH) { struct efi_device_path_hard_drive_path *hd_dp = (struct efi_device_path_hard_drive_path *)dp; if (hd_dp->partmap_type == PART_FORMAT_GPT && hd_dp->signature_type == SIG_TYPE_GUID) return dp; } dp = efi_dp_next(dp); } return NULL; }