// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016, Fuzhou Rockchip Electronics Co., Ltd * Copyright (C) 2019, STMicroelectronics - All Rights Reserved * Author(s): Philippe Cornu for STMicroelectronics. * Yannick Fertre for STMicroelectronics. * * This generic Synopsys DesignWare MIPI DSI host driver is inspired from * the Linux Kernel driver drivers/gpu/drm/bridge/synopsys/dw-mipi-dsi.c. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HWVER_131 0x31333100 /* IP version 1.31 */ #define DSI_VERSION 0x00 #define VERSION GENMASK(31, 8) #define DSI_PWR_UP 0x04 #define RESET 0 #define POWERUP BIT(0) #define DSI_CLKMGR_CFG 0x08 #define TO_CLK_DIVISION(div) (((div) & 0xff) << 8) #define TX_ESC_CLK_DIVISION(div) ((div) & 0xff) #define DSI_DPI_VCID 0x0c #define DPI_VCID(vcid) ((vcid) & 0x3) #define DSI_DPI_COLOR_CODING 0x10 #define LOOSELY18_EN BIT(8) #define DPI_COLOR_CODING_16BIT_1 0x0 #define DPI_COLOR_CODING_16BIT_2 0x1 #define DPI_COLOR_CODING_16BIT_3 0x2 #define DPI_COLOR_CODING_18BIT_1 0x3 #define DPI_COLOR_CODING_18BIT_2 0x4 #define DPI_COLOR_CODING_24BIT 0x5 #define DSI_DPI_CFG_POL 0x14 #define COLORM_ACTIVE_LOW BIT(4) #define SHUTD_ACTIVE_LOW BIT(3) #define HSYNC_ACTIVE_LOW BIT(2) #define VSYNC_ACTIVE_LOW BIT(1) #define DATAEN_ACTIVE_LOW BIT(0) #define DSI_DPI_LP_CMD_TIM 0x18 #define OUTVACT_LPCMD_TIME(p) (((p) & 0xff) << 16) #define INVACT_LPCMD_TIME(p) ((p) & 0xff) #define DSI_DBI_VCID 0x1c #define DSI_DBI_CFG 0x20 #define DSI_DBI_PARTITIONING_EN 0x24 #define DSI_DBI_CMDSIZE 0x28 #define DSI_PCKHDL_CFG 0x2c #define CRC_RX_EN BIT(4) #define ECC_RX_EN BIT(3) #define BTA_EN BIT(2) #define EOTP_RX_EN BIT(1) #define EOTP_TX_EN BIT(0) #define DSI_GEN_VCID 0x30 #define DSI_MODE_CFG 0x34 #define ENABLE_VIDEO_MODE 0 #define ENABLE_CMD_MODE BIT(0) #define DSI_VID_MODE_CFG 0x38 #define ENABLE_LOW_POWER (0x3f << 8) #define ENABLE_LOW_POWER_MASK (0x3f << 8) #define VID_MODE_TYPE_NON_BURST_SYNC_PULSES 0x0 #define VID_MODE_TYPE_NON_BURST_SYNC_EVENTS 0x1 #define VID_MODE_TYPE_BURST 0x2 #define VID_MODE_TYPE_MASK 0x3 #define DSI_VID_PKT_SIZE 0x3c #define VID_PKT_SIZE(p) ((p) & 0x3fff) #define DSI_VID_NUM_CHUNKS 0x40 #define VID_NUM_CHUNKS(c) ((c) & 0x1fff) #define DSI_VID_NULL_SIZE 0x44 #define VID_NULL_SIZE(b) ((b) & 0x1fff) #define DSI_VID_HSA_TIME 0x48 #define DSI_VID_HBP_TIME 0x4c #define DSI_VID_HLINE_TIME 0x50 #define DSI_VID_VSA_LINES 0x54 #define DSI_VID_VBP_LINES 0x58 #define DSI_VID_VFP_LINES 0x5c #define DSI_VID_VACTIVE_LINES 0x60 #define DSI_EDPI_CMD_SIZE 0x64 #define DSI_CMD_MODE_CFG 0x68 #define MAX_RD_PKT_SIZE_LP BIT(24) #define DCS_LW_TX_LP BIT(19) #define DCS_SR_0P_TX_LP BIT(18) #define DCS_SW_1P_TX_LP BIT(17) #define DCS_SW_0P_TX_LP BIT(16) #define GEN_LW_TX_LP BIT(14) #define GEN_SR_2P_TX_LP BIT(13) #define GEN_SR_1P_TX_LP BIT(12) #define GEN_SR_0P_TX_LP BIT(11) #define GEN_SW_2P_TX_LP BIT(10) #define GEN_SW_1P_TX_LP BIT(9) #define GEN_SW_0P_TX_LP BIT(8) #define ACK_RQST_EN BIT(1) #define TEAR_FX_EN BIT(0) #define CMD_MODE_ALL_LP (MAX_RD_PKT_SIZE_LP | \ DCS_LW_TX_LP | \ DCS_SR_0P_TX_LP | \ DCS_SW_1P_TX_LP | \ DCS_SW_0P_TX_LP | \ GEN_LW_TX_LP | \ GEN_SR_2P_TX_LP | \ GEN_SR_1P_TX_LP | \ GEN_SR_0P_TX_LP | \ GEN_SW_2P_TX_LP | \ GEN_SW_1P_TX_LP | \ GEN_SW_0P_TX_LP) #define DSI_GEN_HDR 0x6c #define DSI_GEN_PLD_DATA 0x70 #define DSI_CMD_PKT_STATUS 0x74 #define GEN_RD_CMD_BUSY BIT(6) #define GEN_PLD_R_FULL BIT(5) #define GEN_PLD_R_EMPTY BIT(4) #define GEN_PLD_W_FULL BIT(3) #define GEN_PLD_W_EMPTY BIT(2) #define GEN_CMD_FULL BIT(1) #define GEN_CMD_EMPTY BIT(0) #define DSI_TO_CNT_CFG 0x78 #define HSTX_TO_CNT(p) (((p) & 0xffff) << 16) #define LPRX_TO_CNT(p) ((p) & 0xffff) #define DSI_HS_RD_TO_CNT 0x7c #define DSI_LP_RD_TO_CNT 0x80 #define DSI_HS_WR_TO_CNT 0x84 #define DSI_LP_WR_TO_CNT 0x88 #define DSI_BTA_TO_CNT 0x8c #define DSI_LPCLK_CTRL 0x94 #define AUTO_CLKLANE_CTRL BIT(1) #define PHY_TXREQUESTCLKHS BIT(0) #define DSI_PHY_TMR_LPCLK_CFG 0x98 #define PHY_CLKHS2LP_TIME(lbcc) (((lbcc) & 0x3ff) << 16) #define PHY_CLKLP2HS_TIME(lbcc) ((lbcc) & 0x3ff) #define DSI_PHY_TMR_CFG 0x9c #define PHY_HS2LP_TIME(lbcc) (((lbcc) & 0xff) << 24) #define PHY_LP2HS_TIME(lbcc) (((lbcc) & 0xff) << 16) #define MAX_RD_TIME(lbcc) ((lbcc) & 0x7fff) #define PHY_HS2LP_TIME_V131(lbcc) (((lbcc) & 0x3ff) << 16) #define PHY_LP2HS_TIME_V131(lbcc) ((lbcc) & 0x3ff) #define DSI_PHY_RSTZ 0xa0 #define PHY_DISFORCEPLL 0 #define PHY_ENFORCEPLL BIT(3) #define PHY_DISABLECLK 0 #define PHY_ENABLECLK BIT(2) #define PHY_RSTZ 0 #define PHY_UNRSTZ BIT(1) #define PHY_SHUTDOWNZ 0 #define PHY_UNSHUTDOWNZ BIT(0) #define DSI_PHY_IF_CFG 0xa4 #define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8) #define N_LANES(n) (((n) - 1) & 0x3) #define DSI_PHY_ULPS_CTRL 0xa8 #define DSI_PHY_TX_TRIGGERS 0xac #define DSI_PHY_STATUS 0xb0 #define PHY_STOP_STATE_CLK_LANE BIT(2) #define PHY_LOCK BIT(0) #define DSI_PHY_TST_CTRL0 0xb4 #define PHY_TESTCLK BIT(1) #define PHY_UNTESTCLK 0 #define PHY_TESTCLR BIT(0) #define PHY_UNTESTCLR 0 #define DSI_PHY_TST_CTRL1 0xb8 #define PHY_TESTEN BIT(16) #define PHY_UNTESTEN 0 #define PHY_TESTDOUT(n) (((n) & 0xff) << 8) #define PHY_TESTDIN(n) ((n) & 0xff) #define DSI_INT_ST0 0xbc #define DSI_INT_ST1 0xc0 #define DSI_INT_MSK0 0xc4 #define DSI_INT_MSK1 0xc8 #define DSI_PHY_TMR_RD_CFG 0xf4 #define MAX_RD_TIME_V131(lbcc) ((lbcc) & 0x7fff) #define PHY_STATUS_TIMEOUT_US 10000 #define CMD_PKT_STATUS_TIMEOUT_US 20000 #define MSEC_PER_SEC 1000 struct dw_mipi_dsi { struct mipi_dsi_host dsi_host; struct mipi_dsi_device *device; void __iomem *base; unsigned int lane_mbps; /* per lane */ u32 channel; unsigned int max_data_lanes; const struct mipi_dsi_phy_ops *phy_ops; }; static int dsi_mode_vrefresh(struct display_timing *timings) { int refresh = 0; unsigned int calc_val; u32 htotal = timings->hactive.typ + timings->hfront_porch.typ + timings->hback_porch.typ + timings->hsync_len.typ; u32 vtotal = timings->vactive.typ + timings->vfront_porch.typ + timings->vback_porch.typ + timings->vsync_len.typ; if (htotal > 0 && vtotal > 0) { calc_val = timings->pixelclock.typ; calc_val /= htotal; refresh = (calc_val + vtotal / 2) / vtotal; } return refresh; } /* * The controller should generate 2 frames before * preparing the peripheral. */ static void dw_mipi_dsi_wait_for_two_frames(struct display_timing *timings) { int refresh, two_frames; refresh = dsi_mode_vrefresh(timings); two_frames = DIV_ROUND_UP(MSEC_PER_SEC, refresh) * 2; mdelay(two_frames); } static inline struct dw_mipi_dsi *host_to_dsi(struct mipi_dsi_host *host) { return container_of(host, struct dw_mipi_dsi, dsi_host); } static inline void dsi_write(struct dw_mipi_dsi *dsi, u32 reg, u32 val) { writel(val, dsi->base + reg); } static inline u32 dsi_read(struct dw_mipi_dsi *dsi, u32 reg) { return readl(dsi->base + reg); } static int dw_mipi_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct dw_mipi_dsi *dsi = host_to_dsi(host); if (device->lanes > dsi->max_data_lanes) { dev_err(device->dev, "the number of data lanes(%u) is too many\n", device->lanes); return -EINVAL; } dsi->channel = device->channel; return 0; } static void dw_mipi_message_config(struct dw_mipi_dsi *dsi, const struct mipi_dsi_msg *msg) { bool lpm = msg->flags & MIPI_DSI_MSG_USE_LPM; u32 val = 0; if (msg->flags & MIPI_DSI_MSG_REQ_ACK) val |= ACK_RQST_EN; if (lpm) val |= CMD_MODE_ALL_LP; dsi_write(dsi, DSI_LPCLK_CTRL, lpm ? 0 : PHY_TXREQUESTCLKHS); dsi_write(dsi, DSI_CMD_MODE_CFG, val); } static int dw_mipi_dsi_gen_pkt_hdr_write(struct dw_mipi_dsi *dsi, u32 hdr_val) { int ret; u32 val, mask; ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_CMD_FULL), CMD_PKT_STATUS_TIMEOUT_US); if (ret) { dev_err(dsi->dsi_host.dev, "failed to get available command FIFO\n"); return ret; } dsi_write(dsi, DSI_GEN_HDR, hdr_val); mask = GEN_CMD_EMPTY | GEN_PLD_W_EMPTY; ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, (val & mask) == mask, CMD_PKT_STATUS_TIMEOUT_US); if (ret) { dev_err(dsi->dsi_host.dev, "failed to write command FIFO\n"); return ret; } return 0; } static int dw_mipi_dsi_write(struct dw_mipi_dsi *dsi, const struct mipi_dsi_packet *packet) { const u8 *tx_buf = packet->payload; int len = packet->payload_length, pld_data_bytes = sizeof(u32), ret; __le32 word; u32 val; while (len) { if (len < pld_data_bytes) { word = 0; memcpy(&word, tx_buf, len); dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word)); len = 0; } else { memcpy(&word, tx_buf, pld_data_bytes); dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word)); tx_buf += pld_data_bytes; len -= pld_data_bytes; } ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_PLD_W_FULL), CMD_PKT_STATUS_TIMEOUT_US); if (ret) { dev_err(dsi->dsi_host.dev, "failed to get available write payload FIFO\n"); return ret; } } word = 0; memcpy(&word, packet->header, sizeof(packet->header)); return dw_mipi_dsi_gen_pkt_hdr_write(dsi, le32_to_cpu(word)); } static int dw_mipi_dsi_read(struct dw_mipi_dsi *dsi, const struct mipi_dsi_msg *msg) { int i, j, ret, len = msg->rx_len; u8 *buf = msg->rx_buf; u32 val; /* Wait end of the read operation */ ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_RD_CMD_BUSY), CMD_PKT_STATUS_TIMEOUT_US); if (ret) { dev_err(dsi->dsi_host.dev, "Timeout during read operation\n"); return ret; } for (i = 0; i < len; i += 4) { /* Read fifo must not be empty before all bytes are read */ ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_PLD_R_EMPTY), CMD_PKT_STATUS_TIMEOUT_US); if (ret) { dev_err(dsi->dsi_host.dev, "Read payload FIFO is empty\n"); return ret; } val = dsi_read(dsi, DSI_GEN_PLD_DATA); for (j = 0; j < 4 && j + i < len; j++) buf[i + j] = val >> (8 * j); } return ret; } static ssize_t dw_mipi_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct dw_mipi_dsi *dsi = host_to_dsi(host); struct mipi_dsi_packet packet; int ret, nb_bytes; ret = mipi_dsi_create_packet(&packet, msg); if (ret) { dev_err(host->dev, "failed to create packet: %d\n", ret); return ret; } dw_mipi_message_config(dsi, msg); ret = dw_mipi_dsi_write(dsi, &packet); if (ret) return ret; if (msg->rx_buf && msg->rx_len) { ret = dw_mipi_dsi_read(dsi, msg); if (ret) return ret; nb_bytes = msg->rx_len; } else { nb_bytes = packet.size; } return nb_bytes; } static const struct mipi_dsi_host_ops dw_mipi_dsi_host_ops = { .attach = dw_mipi_dsi_host_attach, .transfer = dw_mipi_dsi_host_transfer, }; static void dw_mipi_dsi_video_mode_config(struct dw_mipi_dsi *dsi) { struct mipi_dsi_device *device = dsi->device; u32 val; /* * TODO dw drv improvements * enabling low power is panel-dependent, we should use the * panel configuration here... */ val = ENABLE_LOW_POWER; if (device->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) val |= VID_MODE_TYPE_BURST; else if (device->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) val |= VID_MODE_TYPE_NON_BURST_SYNC_PULSES; else val |= VID_MODE_TYPE_NON_BURST_SYNC_EVENTS; dsi_write(dsi, DSI_VID_MODE_CFG, val); } static void dw_mipi_dsi_set_mode(struct dw_mipi_dsi *dsi, unsigned long mode_flags) { const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops; dsi_write(dsi, DSI_PWR_UP, RESET); if (mode_flags & MIPI_DSI_MODE_VIDEO) { dsi_write(dsi, DSI_MODE_CFG, ENABLE_VIDEO_MODE); dw_mipi_dsi_video_mode_config(dsi); dsi_write(dsi, DSI_LPCLK_CTRL, PHY_TXREQUESTCLKHS); } else { dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE); } if (phy_ops->post_set_mode) phy_ops->post_set_mode(dsi->device, mode_flags); dsi_write(dsi, DSI_PWR_UP, POWERUP); } static void dw_mipi_dsi_init_pll(struct dw_mipi_dsi *dsi) { const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops; unsigned int esc_rate; u32 esc_clk_division; /* * The maximum permitted escape clock is 20MHz and it is derived from * lanebyteclk, which is running at "lane_mbps / 8". */ if (phy_ops->get_esc_clk_rate) phy_ops->get_esc_clk_rate(dsi->device, &esc_rate); else esc_rate = 20; /* Default to 20MHz */ /* * We want: * * (lane_mbps >> 3) / esc_clk_division < X * which is: * (lane_mbps >> 3) / X > esc_clk_division */ esc_clk_division = (dsi->lane_mbps >> 3) / esc_rate + 1; dsi_write(dsi, DSI_PWR_UP, RESET); /* * TODO dw drv improvements * timeout clock division should be computed with the * high speed transmission counter timeout and byte lane... */ dsi_write(dsi, DSI_CLKMGR_CFG, TO_CLK_DIVISION(10) | TX_ESC_CLK_DIVISION(esc_clk_division)); } static void dw_mipi_dsi_dpi_config(struct dw_mipi_dsi *dsi, struct display_timing *timings) { struct mipi_dsi_device *device = dsi->device; u32 val = 0, color = 0; switch (device->format) { case MIPI_DSI_FMT_RGB888: color = DPI_COLOR_CODING_24BIT; break; case MIPI_DSI_FMT_RGB666: color = DPI_COLOR_CODING_18BIT_2 | LOOSELY18_EN; break; case MIPI_DSI_FMT_RGB666_PACKED: color = DPI_COLOR_CODING_18BIT_1; break; case MIPI_DSI_FMT_RGB565: color = DPI_COLOR_CODING_16BIT_1; break; } if (device->mode_flags & DISPLAY_FLAGS_VSYNC_HIGH) val |= VSYNC_ACTIVE_LOW; if (device->mode_flags & DISPLAY_FLAGS_HSYNC_HIGH) val |= HSYNC_ACTIVE_LOW; dsi_write(dsi, DSI_DPI_VCID, DPI_VCID(dsi->channel)); dsi_write(dsi, DSI_DPI_COLOR_CODING, color); dsi_write(dsi, DSI_DPI_CFG_POL, val); /* * TODO dw drv improvements * largest packet sizes during hfp or during vsa/vpb/vfp * should be computed according to byte lane, lane number and only * if sending lp cmds in high speed is enable (PHY_TXREQUESTCLKHS) */ dsi_write(dsi, DSI_DPI_LP_CMD_TIM, OUTVACT_LPCMD_TIME(4) | INVACT_LPCMD_TIME(4)); } static void dw_mipi_dsi_packet_handler_config(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_PCKHDL_CFG, CRC_RX_EN | ECC_RX_EN | BTA_EN); } static void dw_mipi_dsi_video_packet_config(struct dw_mipi_dsi *dsi, struct display_timing *timings) { /* * TODO dw drv improvements * only burst mode is supported here. For non-burst video modes, * we should compute DSI_VID_PKT_SIZE, DSI_VCCR.NUMC & * DSI_VNPCR.NPSIZE... especially because this driver supports * non-burst video modes, see dw_mipi_dsi_video_mode_config()... */ dsi_write(dsi, DSI_VID_PKT_SIZE, VID_PKT_SIZE(timings->hactive.typ)); } static void dw_mipi_dsi_command_mode_config(struct dw_mipi_dsi *dsi) { const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops; /* * TODO dw drv improvements * compute high speed transmission counter timeout according * to the timeout clock division (TO_CLK_DIVISION) and byte lane... */ dsi_write(dsi, DSI_TO_CNT_CFG, HSTX_TO_CNT(1000) | LPRX_TO_CNT(1000)); /* * TODO dw drv improvements * the Bus-Turn-Around Timeout Counter should be computed * according to byte lane... */ dsi_write(dsi, DSI_BTA_TO_CNT, 0xd00); dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE); if (phy_ops->post_set_mode) phy_ops->post_set_mode(dsi->device, 0); } /* Get lane byte clock cycles. */ static u32 dw_mipi_dsi_get_hcomponent_lbcc(struct dw_mipi_dsi *dsi, struct display_timing *timings, u32 hcomponent) { u32 frac, lbcc; lbcc = hcomponent * dsi->lane_mbps * MSEC_PER_SEC / 8; frac = lbcc % (timings->pixelclock.typ / 1000); lbcc = lbcc / (timings->pixelclock.typ / 1000); if (frac) lbcc++; return lbcc; } static void dw_mipi_dsi_line_timer_config(struct dw_mipi_dsi *dsi, struct display_timing *timings) { u32 htotal, hsa, hbp, lbcc; htotal = timings->hactive.typ + timings->hfront_porch.typ + timings->hback_porch.typ + timings->hsync_len.typ; hsa = timings->hsync_len.typ; hbp = timings->hback_porch.typ; /* * TODO dw drv improvements * computations below may be improved... */ lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, timings, htotal); dsi_write(dsi, DSI_VID_HLINE_TIME, lbcc); lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, timings, hsa); dsi_write(dsi, DSI_VID_HSA_TIME, lbcc); lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, timings, hbp); dsi_write(dsi, DSI_VID_HBP_TIME, lbcc); } static void dw_mipi_dsi_vertical_timing_config(struct dw_mipi_dsi *dsi, struct display_timing *timings) { u32 vactive, vsa, vfp, vbp; vactive = timings->vactive.typ; vsa = timings->vsync_len.typ; vfp = timings->vfront_porch.typ; vbp = timings->vback_porch.typ; dsi_write(dsi, DSI_VID_VACTIVE_LINES, vactive); dsi_write(dsi, DSI_VID_VSA_LINES, vsa); dsi_write(dsi, DSI_VID_VFP_LINES, vfp); dsi_write(dsi, DSI_VID_VBP_LINES, vbp); } static void dw_mipi_dsi_dphy_timing_config(struct dw_mipi_dsi *dsi) { const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops; struct mipi_dsi_phy_timing timing = {0x40, 0x40, 0x40, 0x40}; u32 hw_version; if (phy_ops->get_timing) phy_ops->get_timing(dsi->device, dsi->lane_mbps, &timing); /* * TODO dw drv improvements * data & clock lane timers should be computed according to panel * blankings and to the automatic clock lane control mode... * note: DSI_PHY_TMR_CFG.MAX_RD_TIME should be in line with * DSI_CMD_MODE_CFG.MAX_RD_PKT_SIZE_LP (see CMD_MODE_ALL_LP) */ hw_version = dsi_read(dsi, DSI_VERSION) & VERSION; if (hw_version >= HWVER_131) { dsi_write(dsi, DSI_PHY_TMR_CFG, PHY_HS2LP_TIME_V131(timing.data_hs2lp) | PHY_LP2HS_TIME_V131(timing.data_lp2hs)); dsi_write(dsi, DSI_PHY_TMR_RD_CFG, MAX_RD_TIME_V131(10000)); } else { dsi_write(dsi, DSI_PHY_TMR_CFG, PHY_HS2LP_TIME(timing.data_hs2lp) | PHY_LP2HS_TIME(timing.data_lp2hs) | MAX_RD_TIME(10000)); } dsi_write(dsi, DSI_PHY_TMR_LPCLK_CFG, PHY_CLKHS2LP_TIME(timing.clk_hs2lp) | PHY_CLKLP2HS_TIME(timing.clk_lp2hs)); } static void dw_mipi_dsi_dphy_interface_config(struct dw_mipi_dsi *dsi) { struct mipi_dsi_device *device = dsi->device; /* * TODO dw drv improvements * stop wait time should be the maximum between host dsi * and panel stop wait times */ dsi_write(dsi, DSI_PHY_IF_CFG, PHY_STOP_WAIT_TIME(0x20) | N_LANES(device->lanes)); } static void dw_mipi_dsi_dphy_init(struct dw_mipi_dsi *dsi) { /* Clear PHY state */ dsi_write(dsi, DSI_PHY_RSTZ, PHY_DISFORCEPLL | PHY_DISABLECLK | PHY_RSTZ | PHY_SHUTDOWNZ); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR); } static void dw_mipi_dsi_dphy_enable(struct dw_mipi_dsi *dsi) { u32 val; int ret; dsi_write(dsi, DSI_PHY_RSTZ, PHY_ENFORCEPLL | PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ); ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val, val & PHY_LOCK, PHY_STATUS_TIMEOUT_US); if (ret) dev_dbg(dsi->dsi_host.dev, "failed to wait phy lock state\n"); ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val, val & PHY_STOP_STATE_CLK_LANE, PHY_STATUS_TIMEOUT_US); if (ret) dev_dbg(dsi->dsi_host.dev, "failed to wait phy clk lane stop state\n"); } static void dw_mipi_dsi_clear_err(struct dw_mipi_dsi *dsi) { dsi_read(dsi, DSI_INT_ST0); dsi_read(dsi, DSI_INT_ST1); dsi_write(dsi, DSI_INT_MSK0, 0); dsi_write(dsi, DSI_INT_MSK1, 0); } static void dw_mipi_dsi_bridge_set(struct dw_mipi_dsi *dsi, struct display_timing *timings) { const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops; struct mipi_dsi_device *device = dsi->device; int ret; ret = phy_ops->get_lane_mbps(dsi->device, timings, device->lanes, device->format, &dsi->lane_mbps); if (ret) dev_warn(dsi->dsi_host.dev, "Phy get_lane_mbps() failed\n"); dw_mipi_dsi_init_pll(dsi); dw_mipi_dsi_dpi_config(dsi, timings); dw_mipi_dsi_packet_handler_config(dsi); dw_mipi_dsi_video_mode_config(dsi); dw_mipi_dsi_video_packet_config(dsi, timings); dw_mipi_dsi_command_mode_config(dsi); dw_mipi_dsi_line_timer_config(dsi, timings); dw_mipi_dsi_vertical_timing_config(dsi, timings); dw_mipi_dsi_dphy_init(dsi); dw_mipi_dsi_dphy_timing_config(dsi); dw_mipi_dsi_dphy_interface_config(dsi); dw_mipi_dsi_clear_err(dsi); ret = phy_ops->init(dsi->device); if (ret) dev_warn(dsi->dsi_host.dev, "Phy init() failed\n"); dw_mipi_dsi_dphy_enable(dsi); dw_mipi_dsi_wait_for_two_frames(timings); /* Switch to cmd mode for panel-bridge pre_enable & panel prepare */ dw_mipi_dsi_set_mode(dsi, 0); } static int dw_mipi_dsi_init(struct udevice *dev, struct mipi_dsi_device *device, struct display_timing *timings, unsigned int max_data_lanes, const struct mipi_dsi_phy_ops *phy_ops) { struct dw_mipi_dsi *dsi = dev_get_priv(dev); struct clk clk; int ret; if (!phy_ops->init || !phy_ops->get_lane_mbps) { dev_err(device->dev, "Phy not properly configured\n"); return -ENODEV; } dsi->phy_ops = phy_ops; dsi->max_data_lanes = max_data_lanes; dsi->device = device; dsi->dsi_host.dev = (struct device *)dev; dsi->dsi_host.ops = &dw_mipi_dsi_host_ops; device->host = &dsi->dsi_host; dsi->base = dev_read_addr_ptr(device->dev); if (!dsi->base) { dev_err(device->dev, "dsi dt register address error\n"); return -EINVAL; } /* * The Rockchip based devices don't have px_clk, so simply move * on. */ if (IS_ENABLED(CONFIG_DISPLAY_ROCKCHIP_DW_MIPI)) { dw_mipi_dsi_bridge_set(dsi, timings); return 0; } ret = clk_get_by_name(device->dev, "px_clk", &clk); if (ret) { dev_err(device->dev, "peripheral clock get error %d\n", ret); return ret; } /* get the pixel clock set by the clock framework */ timings->pixelclock.typ = clk_get_rate(&clk); dw_mipi_dsi_bridge_set(dsi, timings); return 0; } static int dw_mipi_dsi_enable(struct udevice *dev) { struct dw_mipi_dsi *dsi = dev_get_priv(dev); /* Switch to video mode for panel-bridge enable & panel enable */ dw_mipi_dsi_set_mode(dsi, MIPI_DSI_MODE_VIDEO); return 0; } struct dsi_host_ops dw_mipi_dsi_ops = { .init = dw_mipi_dsi_init, .enable = dw_mipi_dsi_enable, }; static int dw_mipi_dsi_probe(struct udevice *dev) { return 0; } U_BOOT_DRIVER(dw_mipi_dsi) = { .name = "dw_mipi_dsi", .id = UCLASS_DSI_HOST, .probe = dw_mipi_dsi_probe, .ops = &dw_mipi_dsi_ops, .priv_auto = sizeof(struct dw_mipi_dsi), }; MODULE_AUTHOR("Chris Zhong "); MODULE_AUTHOR("Philippe Cornu "); MODULE_AUTHOR("Yannick Fertré "); MODULE_DESCRIPTION("DW MIPI DSI host controller driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dw-mipi-dsi");