// SPDX-License-Identifier: GPL-2.0
/*
 * MediaTek SD/MMC Card Interface driver
 *
 * Copyright (C) 2018 MediaTek Inc.
 * Author: Weijie Gao <weijie.gao@mediatek.com>
 */

#include <clk.h>
#include <common.h>
#include <dm.h>
#include <mmc.h>
#include <errno.h>
#include <malloc.h>
#include <stdbool.h>
#include <watchdog.h>
#include <asm/gpio.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/iopoll.h>

/* MSDC_CFG */
#define MSDC_CFG_HS400_CK_MODE_EXT	BIT(22)
#define MSDC_CFG_CKMOD_EXT_M		0x300000
#define MSDC_CFG_CKMOD_EXT_S		20
#define MSDC_CFG_CKDIV_EXT_M		0xfff00
#define MSDC_CFG_CKDIV_EXT_S		8
#define MSDC_CFG_HS400_CK_MODE		BIT(18)
#define MSDC_CFG_CKMOD_M		0x30000
#define MSDC_CFG_CKMOD_S		16
#define MSDC_CFG_CKDIV_M		0xff00
#define MSDC_CFG_CKDIV_S		8
#define MSDC_CFG_CKSTB			BIT(7)
#define MSDC_CFG_PIO			BIT(3)
#define MSDC_CFG_RST			BIT(2)
#define MSDC_CFG_CKPDN			BIT(1)
#define MSDC_CFG_MODE			BIT(0)

/* MSDC_IOCON */
#define MSDC_IOCON_W_DSPL		BIT(8)
#define MSDC_IOCON_DSPL			BIT(2)
#define MSDC_IOCON_RSPL			BIT(1)

/* MSDC_PS */
#define MSDC_PS_DAT0			BIT(16)
#define MSDC_PS_CDDBCE_M		0xf000
#define MSDC_PS_CDDBCE_S		12
#define MSDC_PS_CDSTS			BIT(1)
#define MSDC_PS_CDEN			BIT(0)

/* #define MSDC_INT(EN) */
#define MSDC_INT_ACMDRDY		BIT(3)
#define MSDC_INT_ACMDTMO		BIT(4)
#define MSDC_INT_ACMDCRCERR		BIT(5)
#define MSDC_INT_CMDRDY			BIT(8)
#define MSDC_INT_CMDTMO			BIT(9)
#define MSDC_INT_RSPCRCERR		BIT(10)
#define MSDC_INT_XFER_COMPL		BIT(12)
#define MSDC_INT_DATTMO			BIT(14)
#define MSDC_INT_DATCRCERR		BIT(15)

/* MSDC_FIFOCS */
#define MSDC_FIFOCS_CLR			BIT(31)
#define MSDC_FIFOCS_TXCNT_M		0xff0000
#define MSDC_FIFOCS_TXCNT_S		16
#define MSDC_FIFOCS_RXCNT_M		0xff
#define MSDC_FIFOCS_RXCNT_S		0

/* #define SDC_CFG */
#define SDC_CFG_DTOC_M			0xff000000
#define SDC_CFG_DTOC_S			24
#define SDC_CFG_SDIOIDE			BIT(20)
#define SDC_CFG_SDIO			BIT(19)
#define SDC_CFG_BUSWIDTH_M		0x30000
#define SDC_CFG_BUSWIDTH_S		16

/* SDC_CMD */
#define SDC_CMD_BLK_LEN_M		0xfff0000
#define SDC_CMD_BLK_LEN_S		16
#define SDC_CMD_STOP			BIT(14)
#define SDC_CMD_WR			BIT(13)
#define SDC_CMD_DTYPE_M			0x1800
#define SDC_CMD_DTYPE_S			11
#define SDC_CMD_RSPTYP_M		0x380
#define SDC_CMD_RSPTYP_S		7
#define SDC_CMD_CMD_M			0x3f
#define SDC_CMD_CMD_S			0

/* SDC_STS */
#define SDC_STS_CMDBUSY			BIT(1)
#define SDC_STS_SDCBUSY			BIT(0)

/* SDC_ADV_CFG0 */
#define SDC_RX_ENHANCE_EN		BIT(20)

/* PATCH_BIT0 */
#define MSDC_INT_DAT_LATCH_CK_SEL_M	0x380
#define MSDC_INT_DAT_LATCH_CK_SEL_S	7

/* PATCH_BIT1 */
#define MSDC_PB1_STOP_DLY_M		0xf00
#define MSDC_PB1_STOP_DLY_S		8

/* PATCH_BIT2 */
#define MSDC_PB2_CRCSTSENSEL_M		0xe0000000
#define MSDC_PB2_CRCSTSENSEL_S		29
#define MSDC_PB2_CFGCRCSTS		BIT(28)
#define MSDC_PB2_RESPSTSENSEL_M		0x70000
#define MSDC_PB2_RESPSTSENSEL_S		16
#define MSDC_PB2_CFGRESP		BIT(15)
#define MSDC_PB2_RESPWAIT_M		0x0c
#define MSDC_PB2_RESPWAIT_S		2

/* PAD_TUNE */
#define MSDC_PAD_TUNE_CMDRRDLY_M	0x7c00000
#define MSDC_PAD_TUNE_CMDRRDLY_S	22
#define MSDC_PAD_TUNE_CMD_SEL		BIT(21)
#define MSDC_PAD_TUNE_CMDRDLY_M		0x1f0000
#define MSDC_PAD_TUNE_CMDRDLY_S		16
#define MSDC_PAD_TUNE_RXDLYSEL		BIT(15)
#define MSDC_PAD_TUNE_RD_SEL		BIT(13)
#define MSDC_PAD_TUNE_DATRRDLY_M	0x1f00
#define MSDC_PAD_TUNE_DATRRDLY_S	8
#define MSDC_PAD_TUNE_DATWRDLY_M	0x1f
#define MSDC_PAD_TUNE_DATWRDLY_S	0

#define PAD_CMD_TUNE_RX_DLY3		0x3E
#define PAD_CMD_TUNE_RX_DLY3_S		1

/* EMMC50_CFG0 */
#define EMMC50_CFG_CFCSTS_SEL		BIT(4)

/* SDC_FIFO_CFG */
#define SDC_FIFO_CFG_WRVALIDSEL		BIT(24)
#define SDC_FIFO_CFG_RDVALIDSEL		BIT(25)

/* SDC_CFG_BUSWIDTH */
#define MSDC_BUS_1BITS			0x0
#define MSDC_BUS_4BITS			0x1
#define MSDC_BUS_8BITS			0x2

#define MSDC_FIFO_SIZE			128

#define PAD_DELAY_MAX			32

#define DEFAULT_CD_DEBOUNCE		8

#define CMD_INTS_MASK	\
	(MSDC_INT_CMDRDY | MSDC_INT_RSPCRCERR | MSDC_INT_CMDTMO)

#define DATA_INTS_MASK	\
	(MSDC_INT_XFER_COMPL | MSDC_INT_DATTMO | MSDC_INT_DATCRCERR)

/* Register offset */
struct mtk_sd_regs {
	u32 msdc_cfg;
	u32 msdc_iocon;
	u32 msdc_ps;
	u32 msdc_int;
	u32 msdc_inten;
	u32 msdc_fifocs;
	u32 msdc_txdata;
	u32 msdc_rxdata;
	u32 reserved0[4];
	u32 sdc_cfg;
	u32 sdc_cmd;
	u32 sdc_arg;
	u32 sdc_sts;
	u32 sdc_resp[4];
	u32 sdc_blk_num;
	u32 sdc_vol_chg;
	u32 sdc_csts;
	u32 sdc_csts_en;
	u32 sdc_datcrc_sts;
	u32 sdc_adv_cfg0;
	u32 reserved1[2];
	u32 emmc_cfg0;
	u32 emmc_cfg1;
	u32 emmc_sts;
	u32 emmc_iocon;
	u32 sd_acmd_resp;
	u32 sd_acmd19_trg;
	u32 sd_acmd19_sts;
	u32 dma_sa_high4bit;
	u32 dma_sa;
	u32 dma_ca;
	u32 dma_ctrl;
	u32 dma_cfg;
	u32 sw_dbg_sel;
	u32 sw_dbg_out;
	u32 dma_length;
	u32 reserved2;
	u32 patch_bit0;
	u32 patch_bit1;
	u32 patch_bit2;
	u32 reserved3;
	u32 dat0_tune_crc;
	u32 dat1_tune_crc;
	u32 dat2_tune_crc;
	u32 dat3_tune_crc;
	u32 cmd_tune_crc;
	u32 sdio_tune_wind;
	u32 reserved4[5];
	u32 pad_tune;
	u32 pad_tune0;
	u32 pad_tune1;
	u32 dat_rd_dly[4];
	u32 reserved5[2];
	u32 hw_dbg_sel;
	u32 main_ver;
	u32 eco_ver;
	u32 reserved6[27];
	u32 pad_ds_tune;
	u32 pad_cmd_tune;
	u32 reserved7[30];
	u32 emmc50_cfg0;
	u32 reserved8[7];
	u32 sdc_fifo_cfg;
};

struct msdc_compatible {
	u8 clk_div_bits;
	u8 sclk_cycle_shift;
	bool pad_tune0;
	bool async_fifo;
	bool data_tune;
	bool busy_check;
	bool stop_clk_fix;
	bool enhance_rx;
};

struct msdc_delay_phase {
	u8 maxlen;
	u8 start;
	u8 final_phase;
};

struct msdc_plat {
	struct mmc_config cfg;
	struct mmc mmc;
};

struct msdc_tune_para {
	u32 iocon;
	u32 pad_tune;
	u32 pad_cmd_tune;
};

struct msdc_host {
	struct mtk_sd_regs *base;
	struct mmc *mmc;

	struct msdc_compatible *dev_comp;

	struct clk src_clk;	/* for SD/MMC bus clock */
	struct clk src_clk_cg;	/* optional, MSDC source clock control gate */
	struct clk h_clk;	/* MSDC core clock */

	u32 src_clk_freq;	/* source clock */
	u32 mclk;		/* mmc framework required bus clock */
	u32 sclk;		/* actual calculated bus clock */

	/* operation timeout clocks */
	u32 timeout_ns;
	u32 timeout_clks;

	/* tuning options */
	u32 hs400_ds_delay;
	u32 hs200_cmd_int_delay;
	u32 hs200_write_int_delay;
	u32 latch_ck;
	u32 r_smpl;		/* sample edge */
	bool hs400_mode;

	/* whether to use gpio detection or built-in hw detection */
	bool builtin_cd;
	bool cd_active_high;

	/* card detection / write protection GPIOs */
#if CONFIG_IS_ENABLED(DM_GPIO)
	struct gpio_desc gpio_wp;
	struct gpio_desc gpio_cd;
#endif

	uint last_resp_type;
	uint last_data_write;

	enum bus_mode timing;

	struct msdc_tune_para def_tune_para;
	struct msdc_tune_para saved_tune_para;
};

static void msdc_reset_hw(struct msdc_host *host)
{
	u32 reg;

	setbits_le32(&host->base->msdc_cfg, MSDC_CFG_RST);

	readl_poll_timeout(&host->base->msdc_cfg, reg,
			   !(reg & MSDC_CFG_RST), 1000000);
}

static void msdc_fifo_clr(struct msdc_host *host)
{
	u32 reg;

	setbits_le32(&host->base->msdc_fifocs, MSDC_FIFOCS_CLR);

	readl_poll_timeout(&host->base->msdc_fifocs, reg,
			   !(reg & MSDC_FIFOCS_CLR), 1000000);
}

static u32 msdc_fifo_rx_bytes(struct msdc_host *host)
{
	return (readl(&host->base->msdc_fifocs) &
		MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S;
}

static u32 msdc_fifo_tx_bytes(struct msdc_host *host)
{
	return (readl(&host->base->msdc_fifocs) &
		MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S;
}

static u32 msdc_cmd_find_resp(struct msdc_host *host, struct mmc_cmd *cmd)
{
	u32 resp;

	switch (cmd->resp_type) {
		/* Actually, R1, R5, R6, R7 are the same */
	case MMC_RSP_R1:
		resp = 0x1;
		break;
	case MMC_RSP_R1b:
		resp = 0x7;
		break;
	case MMC_RSP_R2:
		resp = 0x2;
		break;
	case MMC_RSP_R3:
		resp = 0x3;
		break;
	case MMC_RSP_NONE:
	default:
		resp = 0x0;
		break;
	}

	return resp;
}

static u32 msdc_cmd_prepare_raw_cmd(struct msdc_host *host,
				    struct mmc_cmd *cmd,
				    struct mmc_data *data)
{
	u32 opcode = cmd->cmdidx;
	u32 resp_type = msdc_cmd_find_resp(host, cmd);
	uint blocksize = 0;
	u32 dtype = 0;
	u32 rawcmd = 0;

	switch (opcode) {
	case MMC_CMD_WRITE_MULTIPLE_BLOCK:
	case MMC_CMD_READ_MULTIPLE_BLOCK:
		dtype = 2;
		break;
	case MMC_CMD_WRITE_SINGLE_BLOCK:
	case MMC_CMD_READ_SINGLE_BLOCK:
	case SD_CMD_APP_SEND_SCR:
	case MMC_CMD_SEND_TUNING_BLOCK:
	case MMC_CMD_SEND_TUNING_BLOCK_HS200:
		dtype = 1;
		break;
	case SD_CMD_SWITCH_FUNC: /* same as MMC_CMD_SWITCH */
	case SD_CMD_SEND_IF_COND: /* same as MMC_CMD_SEND_EXT_CSD */
	case SD_CMD_APP_SD_STATUS: /* same as MMC_CMD_SEND_STATUS */
		if (data)
			dtype = 1;
	}

	if (data) {
		if (data->flags == MMC_DATA_WRITE)
			rawcmd |= SDC_CMD_WR;

		if (data->blocks > 1)
			dtype = 2;

		blocksize = data->blocksize;
	}

	rawcmd |= ((opcode << SDC_CMD_CMD_S) & SDC_CMD_CMD_M) |
		((resp_type << SDC_CMD_RSPTYP_S) & SDC_CMD_RSPTYP_M) |
		((blocksize << SDC_CMD_BLK_LEN_S) & SDC_CMD_BLK_LEN_M) |
		((dtype << SDC_CMD_DTYPE_S) & SDC_CMD_DTYPE_M);

	if (opcode == MMC_CMD_STOP_TRANSMISSION)
		rawcmd |= SDC_CMD_STOP;

	return rawcmd;
}

static int msdc_cmd_done(struct msdc_host *host, int events,
			 struct mmc_cmd *cmd)
{
	u32 *rsp = cmd->response;
	int ret = 0;

	if (cmd->resp_type & MMC_RSP_PRESENT) {
		if (cmd->resp_type & MMC_RSP_136) {
			rsp[0] = readl(&host->base->sdc_resp[3]);
			rsp[1] = readl(&host->base->sdc_resp[2]);
			rsp[2] = readl(&host->base->sdc_resp[1]);
			rsp[3] = readl(&host->base->sdc_resp[0]);
		} else {
			rsp[0] = readl(&host->base->sdc_resp[0]);
		}
	}

	if (!(events & MSDC_INT_CMDRDY)) {
		if (cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK &&
		    cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK_HS200)
			/*
			 * should not clear fifo/interrupt as the tune data
			 * may have alreay come.
			 */
			msdc_reset_hw(host);

		if (events & MSDC_INT_CMDTMO)
			ret = -ETIMEDOUT;
		else
			ret = -EIO;
	}

	return ret;
}

static bool msdc_cmd_is_ready(struct msdc_host *host)
{
	int ret;
	u32 reg;

	/* The max busy time we can endure is 20ms */
	ret = readl_poll_timeout(&host->base->sdc_sts, reg,
				 !(reg & SDC_STS_CMDBUSY), 20000);

	if (ret) {
		pr_err("CMD bus busy detected\n");
		msdc_reset_hw(host);
		return false;
	}

	if (host->last_resp_type == MMC_RSP_R1b && host->last_data_write) {
		ret = readl_poll_timeout(&host->base->msdc_ps, reg,
					 reg & MSDC_PS_DAT0, 1000000);

		if (ret) {
			pr_err("Card stuck in programming state!\n");
			msdc_reset_hw(host);
			return false;
		}
	}

	return true;
}

static int msdc_start_command(struct msdc_host *host, struct mmc_cmd *cmd,
			      struct mmc_data *data)
{
	u32 rawcmd;
	u32 status;
	u32 blocks = 0;
	int ret;

	if (!msdc_cmd_is_ready(host))
		return -EIO;

	if ((readl(&host->base->msdc_fifocs) &
	    MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S ||
	    (readl(&host->base->msdc_fifocs) &
	    MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S) {
		pr_err("TX/RX FIFO non-empty before start of IO. Reset\n");
		msdc_reset_hw(host);
	}

	msdc_fifo_clr(host);

	host->last_resp_type = cmd->resp_type;
	host->last_data_write = 0;

	rawcmd = msdc_cmd_prepare_raw_cmd(host, cmd, data);

	if (data)
		blocks = data->blocks;

	writel(CMD_INTS_MASK, &host->base->msdc_int);
	writel(blocks, &host->base->sdc_blk_num);
	writel(cmd->cmdarg, &host->base->sdc_arg);
	writel(rawcmd, &host->base->sdc_cmd);

	ret = readl_poll_timeout(&host->base->msdc_int, status,
				 status & CMD_INTS_MASK, 1000000);

	if (ret)
		status = MSDC_INT_CMDTMO;

	return msdc_cmd_done(host, status, cmd);
}

static void msdc_fifo_read(struct msdc_host *host, u8 *buf, u32 size)
{
	u32 *wbuf;

	while ((size_t)buf % 4) {
		*buf++ = readb(&host->base->msdc_rxdata);
		size--;
	}

	wbuf = (u32 *)buf;
	while (size >= 4) {
		*wbuf++ = readl(&host->base->msdc_rxdata);
		size -= 4;
	}

	buf = (u8 *)wbuf;
	while (size) {
		*buf++ = readb(&host->base->msdc_rxdata);
		size--;
	}
}

static void msdc_fifo_write(struct msdc_host *host, const u8 *buf, u32 size)
{
	const u32 *wbuf;

	while ((size_t)buf % 4) {
		writeb(*buf++, &host->base->msdc_txdata);
		size--;
	}

	wbuf = (const u32 *)buf;
	while (size >= 4) {
		writel(*wbuf++, &host->base->msdc_txdata);
		size -= 4;
	}

	buf = (const u8 *)wbuf;
	while (size) {
		writeb(*buf++, &host->base->msdc_txdata);
		size--;
	}
}

static int msdc_pio_read(struct msdc_host *host, u8 *ptr, u32 size)
{
	u32 status;
	u32 chksz;
	int ret = 0;

	while (1) {
		status = readl(&host->base->msdc_int);
		writel(status, &host->base->msdc_int);
		status &= DATA_INTS_MASK;

		if (status & MSDC_INT_DATCRCERR) {
			ret = -EIO;
			break;
		}

		if (status & MSDC_INT_DATTMO) {
			ret = -ETIMEDOUT;
			break;
		}

		chksz = min(size, (u32)MSDC_FIFO_SIZE);

		if (msdc_fifo_rx_bytes(host) >= chksz) {
			msdc_fifo_read(host, ptr, chksz);
			ptr += chksz;
			size -= chksz;
		}

		if (status & MSDC_INT_XFER_COMPL) {
			if (size) {
				pr_err("data not fully read\n");
				ret = -EIO;
			}

			break;
		}
}

	return ret;
}

static int msdc_pio_write(struct msdc_host *host, const u8 *ptr, u32 size)
{
	u32 status;
	u32 chksz;
	int ret = 0;

	while (1) {
		status = readl(&host->base->msdc_int);
		writel(status, &host->base->msdc_int);
		status &= DATA_INTS_MASK;

		if (status & MSDC_INT_DATCRCERR) {
			ret = -EIO;
			break;
		}

		if (status & MSDC_INT_DATTMO) {
			ret = -ETIMEDOUT;
			break;
		}

		if (status & MSDC_INT_XFER_COMPL) {
			if (size) {
				pr_err("data not fully written\n");
				ret = -EIO;
			}

			break;
		}

		chksz = min(size, (u32)MSDC_FIFO_SIZE);

		if (MSDC_FIFO_SIZE - msdc_fifo_tx_bytes(host) >= chksz) {
			msdc_fifo_write(host, ptr, chksz);
			ptr += chksz;
			size -= chksz;
		}
	}

	return ret;
}

static int msdc_start_data(struct msdc_host *host, struct mmc_data *data)
{
	u32 size;
	int ret;

	WATCHDOG_RESET();

	if (data->flags == MMC_DATA_WRITE)
		host->last_data_write = 1;

	writel(DATA_INTS_MASK, &host->base->msdc_int);

	size = data->blocks * data->blocksize;

	if (data->flags == MMC_DATA_WRITE)
		ret = msdc_pio_write(host, (const u8 *)data->src, size);
	else
		ret = msdc_pio_read(host, (u8 *)data->dest, size);

	if (ret) {
		msdc_reset_hw(host);
		msdc_fifo_clr(host);
	}

	return ret;
}

static int msdc_ops_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
			     struct mmc_data *data)
{
	struct msdc_host *host = dev_get_priv(dev);
	int cmd_ret, data_ret;

	cmd_ret = msdc_start_command(host, cmd, data);
	if (cmd_ret &&
	    !(cmd_ret == -EIO &&
	    (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
	    cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)))
		return cmd_ret;

	if (data) {
		data_ret = msdc_start_data(host, data);
		if (cmd_ret)
			return cmd_ret;
		else
			return data_ret;
	}

	return 0;
}

static void msdc_set_timeout(struct msdc_host *host, u32 ns, u32 clks)
{
	u32 timeout, clk_ns, shift;
	u32 mode = 0;

	host->timeout_ns = ns;
	host->timeout_clks = clks;

	if (host->sclk == 0) {
		timeout = 0;
	} else {
		shift = host->dev_comp->sclk_cycle_shift;
		clk_ns = 1000000000UL / host->sclk;
		timeout = (ns + clk_ns - 1) / clk_ns + clks;
		/* unit is 1048576 sclk cycles */
		timeout = (timeout + (0x1 << shift) - 1) >> shift;
		if (host->dev_comp->clk_div_bits == 8)
			mode = (readl(&host->base->msdc_cfg) &
				MSDC_CFG_CKMOD_M) >> MSDC_CFG_CKMOD_S;
		else
			mode = (readl(&host->base->msdc_cfg) &
				MSDC_CFG_CKMOD_EXT_M) >> MSDC_CFG_CKMOD_EXT_S;
		/* DDR mode will double the clk cycles for data timeout */
		timeout = mode >= 2 ? timeout * 2 : timeout;
		timeout = timeout > 1 ? timeout - 1 : 0;
		timeout = timeout > 255 ? 255 : timeout;
	}

	clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M,
			timeout << SDC_CFG_DTOC_S);
}

static void msdc_set_buswidth(struct msdc_host *host, u32 width)
{
	u32 val = readl(&host->base->sdc_cfg);

	val &= ~SDC_CFG_BUSWIDTH_M;

	switch (width) {
	default:
	case 1:
		val |= (MSDC_BUS_1BITS << SDC_CFG_BUSWIDTH_S);
		break;
	case 4:
		val |= (MSDC_BUS_4BITS << SDC_CFG_BUSWIDTH_S);
		break;
	case 8:
		val |= (MSDC_BUS_8BITS << SDC_CFG_BUSWIDTH_S);
		break;
	}

	writel(val, &host->base->sdc_cfg);
}

static void msdc_set_mclk(struct msdc_host *host, enum bus_mode timing, u32 hz)
{
	u32 mode;
	u32 div;
	u32 sclk;
	u32 reg;

	if (!hz) {
		host->mclk = 0;
		clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
		return;
	}

	if (host->dev_comp->clk_div_bits == 8)
		clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_HS400_CK_MODE);
	else
		clrbits_le32(&host->base->msdc_cfg,
			     MSDC_CFG_HS400_CK_MODE_EXT);

	if (timing == UHS_DDR50 || timing == MMC_DDR_52 ||
	    timing == MMC_HS_400) {
		if (timing == MMC_HS_400)
			mode = 0x3;
		else
			mode = 0x2; /* ddr mode and use divisor */

		if (hz >= (host->src_clk_freq >> 2)) {
			div = 0; /* mean div = 1/4 */
			sclk = host->src_clk_freq >> 2; /* sclk = clk / 4 */
		} else {
			div = (host->src_clk_freq + ((hz << 2) - 1)) /
			       (hz << 2);
			sclk = (host->src_clk_freq >> 2) / div;
			div = (div >> 1);
		}

		if (timing == MMC_HS_400 && hz >= (host->src_clk_freq >> 1)) {
			if (host->dev_comp->clk_div_bits == 8)
				setbits_le32(&host->base->msdc_cfg,
					     MSDC_CFG_HS400_CK_MODE);
			else
				setbits_le32(&host->base->msdc_cfg,
					     MSDC_CFG_HS400_CK_MODE_EXT);

			sclk = host->src_clk_freq >> 1;
			div = 0; /* div is ignore when bit18 is set */
		}
	} else if (hz >= host->src_clk_freq) {
		mode = 0x1; /* no divisor */
		div = 0;
		sclk = host->src_clk_freq;
	} else {
		mode = 0x0; /* use divisor */
		if (hz >= (host->src_clk_freq >> 1)) {
			div = 0; /* mean div = 1/2 */
			sclk = host->src_clk_freq >> 1; /* sclk = clk / 2 */
		} else {
			div = (host->src_clk_freq + ((hz << 2) - 1)) /
			       (hz << 2);
			sclk = (host->src_clk_freq >> 2) / div;
		}
	}

	clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);

	if (host->dev_comp->clk_div_bits == 8) {
		div = min(div, (u32)(MSDC_CFG_CKDIV_M >> MSDC_CFG_CKDIV_S));
		clrsetbits_le32(&host->base->msdc_cfg,
				MSDC_CFG_CKMOD_M | MSDC_CFG_CKDIV_M,
				(mode << MSDC_CFG_CKMOD_S) |
				(div << MSDC_CFG_CKDIV_S));
	} else {
		div = min(div, (u32)(MSDC_CFG_CKDIV_EXT_M >>
				      MSDC_CFG_CKDIV_EXT_S));
		clrsetbits_le32(&host->base->msdc_cfg,
				MSDC_CFG_CKMOD_EXT_M | MSDC_CFG_CKDIV_EXT_M,
				(mode << MSDC_CFG_CKMOD_EXT_S) |
				(div << MSDC_CFG_CKDIV_EXT_S));
	}

	readl_poll_timeout(&host->base->msdc_cfg, reg,
			   reg & MSDC_CFG_CKSTB, 1000000);

	setbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
	host->sclk = sclk;
	host->mclk = hz;
	host->timing = timing;

	/* needed because clk changed. */
	msdc_set_timeout(host, host->timeout_ns, host->timeout_clks);

	/*
	 * mmc_select_hs400() will drop to 50Mhz and High speed mode,
	 * tune result of hs200/200Mhz is not suitable for 50Mhz
	 */
	if (host->sclk <= 52000000) {
		writel(host->def_tune_para.iocon, &host->base->msdc_iocon);
		writel(host->def_tune_para.pad_tune,
		       &host->base->pad_tune);
	} else {
		writel(host->saved_tune_para.iocon, &host->base->msdc_iocon);
		writel(host->saved_tune_para.pad_tune,
		       &host->base->pad_tune);
	}

	dev_dbg(dev, "sclk: %d, timing: %d\n", host->sclk, timing);
}

static int msdc_ops_set_ios(struct udevice *dev)
{
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc *mmc = &plat->mmc;
	uint clock = mmc->clock;

	msdc_set_buswidth(host, mmc->bus_width);

	if (mmc->clk_disable)
		clock = 0;
	else if (clock < mmc->cfg->f_min)
		clock = mmc->cfg->f_min;

	if (host->mclk != clock || host->timing != mmc->selected_mode)
		msdc_set_mclk(host, mmc->selected_mode, clock);

	return 0;
}

static int msdc_ops_get_cd(struct udevice *dev)
{
	struct msdc_host *host = dev_get_priv(dev);
	u32 val;

	if (host->builtin_cd) {
		val = readl(&host->base->msdc_ps);
		val = !!(val & MSDC_PS_CDSTS);

		return !val ^ host->cd_active_high;
	}

#if CONFIG_IS_ENABLED(DM_GPIO)
	if (!host->gpio_cd.dev)
		return 1;

	return dm_gpio_get_value(&host->gpio_cd);
#else
	return 1;
#endif
}

static int msdc_ops_get_wp(struct udevice *dev)
{
#if CONFIG_IS_ENABLED(DM_GPIO)
	struct msdc_host *host = dev_get_priv(dev);

	if (!host->gpio_wp.dev)
		return 0;

	return !dm_gpio_get_value(&host->gpio_wp);
#else
	return 0;
#endif
}

#ifdef MMC_SUPPORTS_TUNING
static u32 test_delay_bit(u32 delay, u32 bit)
{
	bit %= PAD_DELAY_MAX;
	return delay & (1 << bit);
}

static int get_delay_len(u32 delay, u32 start_bit)
{
	int i;

	for (i = 0; i < (PAD_DELAY_MAX - start_bit); i++) {
		if (test_delay_bit(delay, start_bit + i) == 0)
			return i;
	}

	return PAD_DELAY_MAX - start_bit;
}

static struct msdc_delay_phase get_best_delay(struct msdc_host *host, u32 delay)
{
	int start = 0, len = 0;
	int start_final = 0, len_final = 0;
	u8 final_phase = 0xff;
	struct msdc_delay_phase delay_phase = { 0, };

	if (delay == 0) {
		dev_err(dev, "phase error: [map:%x]\n", delay);
		delay_phase.final_phase = final_phase;
		return delay_phase;
	}

	while (start < PAD_DELAY_MAX) {
		len = get_delay_len(delay, start);
		if (len_final < len) {
			start_final = start;
			len_final = len;
		}

		start += len ? len : 1;
		if (len >= 12 && start_final < 4)
			break;
	}

	/* The rule is to find the smallest delay cell */
	if (start_final == 0)
		final_phase = (start_final + len_final / 3) % PAD_DELAY_MAX;
	else
		final_phase = (start_final + len_final / 2) % PAD_DELAY_MAX;

	dev_info(dev, "phase: [map:%x] [maxlen:%d] [final:%d]\n",
		 delay, len_final, final_phase);

	delay_phase.maxlen = len_final;
	delay_phase.start = start_final;
	delay_phase.final_phase = final_phase;
	return delay_phase;
}

static int hs400_tune_response(struct udevice *dev, u32 opcode)
{
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc *mmc = &plat->mmc;
	u32 cmd_delay  = 0;
	struct msdc_delay_phase final_cmd_delay = { 0, };
	u8 final_delay;
	void __iomem *tune_reg = &host->base->pad_cmd_tune;
	int cmd_err;
	int i, j;

	setbits_le32(&host->base->pad_cmd_tune, BIT(0));

	if (mmc->selected_mode == MMC_HS_200 ||
	    mmc->selected_mode == UHS_SDR104)
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
				host->hs200_cmd_int_delay <<
				MSDC_PAD_TUNE_CMDRRDLY_S);

	if (host->r_smpl)
		clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
	else
		setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);

	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3,
				i << PAD_CMD_TUNE_RX_DLY3_S);

		for (j = 0; j < 3; j++) {
			mmc_send_tuning(mmc, opcode, &cmd_err);
			if (!cmd_err) {
				cmd_delay |= (1 << i);
			} else {
				cmd_delay &= ~(1 << i);
				break;
			}
		}
	}

	final_cmd_delay = get_best_delay(host, cmd_delay);
	clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3,
			final_cmd_delay.final_phase <<
			PAD_CMD_TUNE_RX_DLY3_S);
	final_delay = final_cmd_delay.final_phase;

	dev_err(dev, "Final cmd pad delay: %x\n", final_delay);
	return final_delay == 0xff ? -EIO : 0;
}

static int msdc_tune_response(struct udevice *dev, u32 opcode)
{
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc *mmc = &plat->mmc;
	u32 rise_delay = 0, fall_delay = 0;
	struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
	struct msdc_delay_phase internal_delay_phase;
	u8 final_delay, final_maxlen;
	u32 internal_delay = 0;
	void __iomem *tune_reg = &host->base->pad_tune;
	int cmd_err;
	int i, j;

	if (host->dev_comp->pad_tune0)
		tune_reg = &host->base->pad_tune0;

	if (mmc->selected_mode == MMC_HS_200 ||
	    mmc->selected_mode == UHS_SDR104)
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
				host->hs200_cmd_int_delay <<
				MSDC_PAD_TUNE_CMDRRDLY_S);

	clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);

	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				i << MSDC_PAD_TUNE_CMDRDLY_S);

		for (j = 0; j < 3; j++) {
			mmc_send_tuning(mmc, opcode, &cmd_err);
			if (!cmd_err) {
				rise_delay |= (1 << i);
			} else {
				rise_delay &= ~(1 << i);
				break;
			}
		}
	}

	final_rise_delay = get_best_delay(host, rise_delay);
	/* if rising edge has enough margin, do not scan falling edge */
	if (final_rise_delay.maxlen >= 12 ||
	    (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
		goto skip_fall;

	setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				i << MSDC_PAD_TUNE_CMDRDLY_S);

		for (j = 0; j < 3; j++) {
			mmc_send_tuning(mmc, opcode, &cmd_err);
			if (!cmd_err) {
				fall_delay |= (1 << i);
			} else {
				fall_delay &= ~(1 << i);
				break;
			}
		}
	}

	final_fall_delay = get_best_delay(host, fall_delay);

skip_fall:
	final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
	if (final_maxlen == final_rise_delay.maxlen) {
		clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				final_rise_delay.final_phase <<
				MSDC_PAD_TUNE_CMDRDLY_S);
		final_delay = final_rise_delay.final_phase;
	} else {
		setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				final_fall_delay.final_phase <<
				MSDC_PAD_TUNE_CMDRDLY_S);
		final_delay = final_fall_delay.final_phase;
	}

	if (host->dev_comp->async_fifo || host->hs200_cmd_int_delay)
		goto skip_internal;

	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
				i << MSDC_PAD_TUNE_CMDRRDLY_S);

		mmc_send_tuning(mmc, opcode, &cmd_err);
		if (!cmd_err)
			internal_delay |= (1 << i);
	}

	dev_err(dev, "Final internal delay: 0x%x\n", internal_delay);

	internal_delay_phase = get_best_delay(host, internal_delay);
	clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
			internal_delay_phase.final_phase <<
			MSDC_PAD_TUNE_CMDRRDLY_S);

skip_internal:
	dev_err(dev, "Final cmd pad delay: %x\n", final_delay);
	return final_delay == 0xff ? -EIO : 0;
}

static int msdc_tune_data(struct udevice *dev, u32 opcode)
{
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc *mmc = &plat->mmc;
	u32 rise_delay = 0, fall_delay = 0;
	struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
	u8 final_delay, final_maxlen;
	void __iomem *tune_reg = &host->base->pad_tune;
	int cmd_err;
	int i, ret;

	if (host->dev_comp->pad_tune0)
		tune_reg = &host->base->pad_tune0;

	clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
	clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);

	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				i << MSDC_PAD_TUNE_DATRRDLY_S);

		ret = mmc_send_tuning(mmc, opcode, &cmd_err);
		if (!ret) {
			rise_delay |= (1 << i);
		} else if (cmd_err) {
			/* in this case, retune response is needed */
			ret = msdc_tune_response(dev, opcode);
			if (ret)
				break;
		}
	}

	final_rise_delay = get_best_delay(host, rise_delay);
	if (final_rise_delay.maxlen >= 12 ||
	    (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
		goto skip_fall;

	setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
	setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);

	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				i << MSDC_PAD_TUNE_DATRRDLY_S);

		ret = mmc_send_tuning(mmc, opcode, &cmd_err);
		if (!ret) {
			fall_delay |= (1 << i);
		} else if (cmd_err) {
			/* in this case, retune response is needed */
			ret = msdc_tune_response(dev, opcode);
			if (ret)
				break;
		}
	}

	final_fall_delay = get_best_delay(host, fall_delay);

skip_fall:
	final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
	if (final_maxlen == final_rise_delay.maxlen) {
		clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
		clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				final_rise_delay.final_phase <<
				MSDC_PAD_TUNE_DATRRDLY_S);
		final_delay = final_rise_delay.final_phase;
	} else {
		setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
		setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				final_fall_delay.final_phase <<
				MSDC_PAD_TUNE_DATRRDLY_S);
		final_delay = final_fall_delay.final_phase;
	}

	if (mmc->selected_mode == MMC_HS_200 ||
	    mmc->selected_mode == UHS_SDR104)
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATWRDLY_M,
				host->hs200_write_int_delay <<
				MSDC_PAD_TUNE_DATWRDLY_S);

	dev_err(dev, "Final data pad delay: %x\n", final_delay);

	return final_delay == 0xff ? -EIO : 0;
}

/*
 * MSDC IP which supports data tune + async fifo can do CMD/DAT tune
 * together, which can save the tuning time.
 */
static int msdc_tune_together(struct udevice *dev, u32 opcode)
{
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc *mmc = &plat->mmc;
	u32 rise_delay = 0, fall_delay = 0;
	struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
	u8 final_delay, final_maxlen;
	void __iomem *tune_reg = &host->base->pad_tune;
	int i, ret;

	if (host->dev_comp->pad_tune0)
		tune_reg = &host->base->pad_tune0;

	clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
	clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);

	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				i << MSDC_PAD_TUNE_CMDRDLY_S);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				i << MSDC_PAD_TUNE_DATRRDLY_S);

		ret = mmc_send_tuning(mmc, opcode, NULL);
		if (!ret)
			rise_delay |= (1 << i);
	}

	final_rise_delay = get_best_delay(host, rise_delay);
	if (final_rise_delay.maxlen >= 12 ||
	    (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
		goto skip_fall;

	setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
	setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);

	for (i = 0; i < PAD_DELAY_MAX; i++) {
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				i << MSDC_PAD_TUNE_CMDRDLY_S);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				i << MSDC_PAD_TUNE_DATRRDLY_S);

		ret = mmc_send_tuning(mmc, opcode, NULL);
		if (!ret)
			fall_delay |= (1 << i);
	}

	final_fall_delay = get_best_delay(host, fall_delay);

skip_fall:
	final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
	if (final_maxlen == final_rise_delay.maxlen) {
		clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
		clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				final_rise_delay.final_phase <<
				MSDC_PAD_TUNE_CMDRDLY_S);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				final_rise_delay.final_phase <<
				MSDC_PAD_TUNE_DATRRDLY_S);
		final_delay = final_rise_delay.final_phase;
	} else {
		setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
		setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
				final_fall_delay.final_phase <<
				MSDC_PAD_TUNE_CMDRDLY_S);
		clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
				final_fall_delay.final_phase <<
				MSDC_PAD_TUNE_DATRRDLY_S);
		final_delay = final_fall_delay.final_phase;
	}

	dev_err(dev, "Final pad delay: %x\n", final_delay);

	return final_delay == 0xff ? -EIO : 0;
}

static int msdc_execute_tuning(struct udevice *dev, uint opcode)
{
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc *mmc = &plat->mmc;
	int ret = 0;

	if (host->dev_comp->data_tune && host->dev_comp->async_fifo) {
		ret = msdc_tune_together(dev, opcode);
		if (ret == -EIO) {
			dev_err(dev, "Tune fail!\n");
			return ret;
		}

		if (mmc->selected_mode == MMC_HS_400) {
			clrbits_le32(&host->base->msdc_iocon,
				     MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
			clrsetbits_le32(&host->base->pad_tune,
					MSDC_PAD_TUNE_DATRRDLY_M, 0);

			writel(host->hs400_ds_delay, &host->base->pad_ds_tune);
			/* for hs400 mode it must be set to 0 */
			clrbits_le32(&host->base->patch_bit2,
				     MSDC_PB2_CFGCRCSTS);
			host->hs400_mode = true;
		}
		goto tune_done;
	}

	if (mmc->selected_mode == MMC_HS_400)
		ret = hs400_tune_response(dev, opcode);
	else
		ret = msdc_tune_response(dev, opcode);
	if (ret == -EIO) {
		dev_err(dev, "Tune response fail!\n");
		return ret;
	}

	if (mmc->selected_mode != MMC_HS_400) {
		ret = msdc_tune_data(dev, opcode);
		if (ret == -EIO) {
			dev_err(dev, "Tune data fail!\n");
			return ret;
		}
	}

tune_done:
	host->saved_tune_para.iocon = readl(&host->base->msdc_iocon);
	host->saved_tune_para.pad_tune = readl(&host->base->pad_tune);
	host->saved_tune_para.pad_cmd_tune = readl(&host->base->pad_cmd_tune);

	return ret;
}
#endif

static void msdc_init_hw(struct msdc_host *host)
{
	u32 val;
	void __iomem *tune_reg = &host->base->pad_tune;

	if (host->dev_comp->pad_tune0)
		tune_reg = &host->base->pad_tune0;

	/* Configure to MMC/SD mode, clock free running */
	setbits_le32(&host->base->msdc_cfg, MSDC_CFG_MODE);

	/* Use PIO mode */
	setbits_le32(&host->base->msdc_cfg, MSDC_CFG_PIO);

	/* Reset */
	msdc_reset_hw(host);

	/* Enable/disable hw card detection according to fdt option */
	if (host->builtin_cd)
		clrsetbits_le32(&host->base->msdc_ps,
			MSDC_PS_CDDBCE_M,
			(DEFAULT_CD_DEBOUNCE << MSDC_PS_CDDBCE_S) |
			MSDC_PS_CDEN);
	else
		clrbits_le32(&host->base->msdc_ps, MSDC_PS_CDEN);

	/* Clear all interrupts */
	val = readl(&host->base->msdc_int);
	writel(val, &host->base->msdc_int);

	/* Enable data & cmd interrupts */
	writel(DATA_INTS_MASK | CMD_INTS_MASK, &host->base->msdc_inten);

	writel(0, tune_reg);
	writel(0, &host->base->msdc_iocon);

	if (host->r_smpl)
		setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
	else
		clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);

	writel(0x403c0046, &host->base->patch_bit0);
	writel(0xffff4089, &host->base->patch_bit1);

	if (host->dev_comp->stop_clk_fix)
		clrsetbits_le32(&host->base->patch_bit1, MSDC_PB1_STOP_DLY_M,
				3 << MSDC_PB1_STOP_DLY_S);

	if (host->dev_comp->busy_check)
		clrbits_le32(&host->base->patch_bit1, (1 << 7));

	setbits_le32(&host->base->emmc50_cfg0, EMMC50_CFG_CFCSTS_SEL);

	if (host->dev_comp->async_fifo) {
		clrsetbits_le32(&host->base->patch_bit2, MSDC_PB2_RESPWAIT_M,
				3 << MSDC_PB2_RESPWAIT_S);

		if (host->dev_comp->enhance_rx) {
			setbits_le32(&host->base->sdc_adv_cfg0,
				     SDC_RX_ENHANCE_EN);
		} else {
			clrsetbits_le32(&host->base->patch_bit2,
					MSDC_PB2_RESPSTSENSEL_M,
					2 << MSDC_PB2_RESPSTSENSEL_S);
			clrsetbits_le32(&host->base->patch_bit2,
					MSDC_PB2_CRCSTSENSEL_M,
					2 << MSDC_PB2_CRCSTSENSEL_S);
		}

		/* use async fifo to avoid tune internal delay */
		clrbits_le32(&host->base->patch_bit2,
			     MSDC_PB2_CFGRESP);
		clrbits_le32(&host->base->patch_bit2,
			     MSDC_PB2_CFGCRCSTS);
	}

	if (host->dev_comp->data_tune) {
		setbits_le32(tune_reg,
			     MSDC_PAD_TUNE_RD_SEL | MSDC_PAD_TUNE_CMD_SEL);
		clrsetbits_le32(&host->base->patch_bit0,
				MSDC_INT_DAT_LATCH_CK_SEL_M,
				host->latch_ck <<
				MSDC_INT_DAT_LATCH_CK_SEL_S);
	} else {
		/* choose clock tune */
		setbits_le32(tune_reg, MSDC_PAD_TUNE_RXDLYSEL);
	}

	/* Configure to enable SDIO mode otherwise sdio cmd5 won't work */
	setbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIO);

	/* disable detecting SDIO device interrupt function */
	clrbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIOIDE);

	/* Configure to default data timeout */
	clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M,
			3 << SDC_CFG_DTOC_S);

	if (host->dev_comp->stop_clk_fix) {
		clrbits_le32(&host->base->sdc_fifo_cfg,
			     SDC_FIFO_CFG_WRVALIDSEL);
		clrbits_le32(&host->base->sdc_fifo_cfg,
			     SDC_FIFO_CFG_RDVALIDSEL);
	}

	host->def_tune_para.iocon = readl(&host->base->msdc_iocon);
	host->def_tune_para.pad_tune = readl(&host->base->pad_tune);
}

static void msdc_ungate_clock(struct msdc_host *host)
{
	clk_enable(&host->src_clk);
	clk_enable(&host->h_clk);
	if (host->src_clk_cg.dev)
		clk_enable(&host->src_clk_cg);
}

static int msdc_drv_probe(struct udevice *dev)
{
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc_config *cfg = &plat->cfg;

	cfg->name = dev->name;

	host->dev_comp = (struct msdc_compatible *)dev_get_driver_data(dev);

	host->src_clk_freq = clk_get_rate(&host->src_clk);

	if (host->dev_comp->clk_div_bits == 8)
		cfg->f_min = host->src_clk_freq / (4 * 255);
	else
		cfg->f_min = host->src_clk_freq / (4 * 4095);
	cfg->f_max = host->src_clk_freq / 2;

	cfg->b_max = 1024;
	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34;

	host->mmc = &plat->mmc;
	host->timeout_ns = 100000000;
	host->timeout_clks = 3 * (1 << host->dev_comp->sclk_cycle_shift);

#ifdef CONFIG_PINCTRL
	pinctrl_select_state(dev, "default");
#endif

	msdc_ungate_clock(host);
	msdc_init_hw(host);

	upriv->mmc = &plat->mmc;

	return 0;
}

static int msdc_ofdata_to_platdata(struct udevice *dev)
{
	struct msdc_plat *plat = dev_get_platdata(dev);
	struct msdc_host *host = dev_get_priv(dev);
	struct mmc_config *cfg = &plat->cfg;
	int ret;

	host->base = (void *)dev_read_addr(dev);
	if (!host->base)
		return -EINVAL;

	ret = mmc_of_parse(dev, cfg);
	if (ret)
		return ret;

	ret = clk_get_by_name(dev, "source", &host->src_clk);
	if (ret < 0)
		return ret;

	ret = clk_get_by_name(dev, "hclk", &host->h_clk);
	if (ret < 0)
		return ret;

	clk_get_by_name(dev, "source_cg", &host->src_clk_cg); /* optional */

#if CONFIG_IS_ENABLED(DM_GPIO)
	gpio_request_by_name(dev, "wp-gpios", 0, &host->gpio_wp, GPIOD_IS_IN);
	gpio_request_by_name(dev, "cd-gpios", 0, &host->gpio_cd, GPIOD_IS_IN);
#endif

	host->hs400_ds_delay = dev_read_u32_default(dev, "hs400-ds-delay", 0);
	host->hs200_cmd_int_delay =
			dev_read_u32_default(dev, "cmd_int_delay", 0);
	host->hs200_write_int_delay =
			dev_read_u32_default(dev, "write_int_delay", 0);
	host->latch_ck = dev_read_u32_default(dev, "latch-ck", 0);
	host->r_smpl = dev_read_u32_default(dev, "r_smpl", 0);
	host->builtin_cd = dev_read_u32_default(dev, "builtin-cd", 0);
	host->cd_active_high = dev_read_bool(dev, "cd-active-high");

	return 0;
}

static int msdc_drv_bind(struct udevice *dev)
{
	struct msdc_plat *plat = dev_get_platdata(dev);

	return mmc_bind(dev, &plat->mmc, &plat->cfg);
}

static const struct dm_mmc_ops msdc_ops = {
	.send_cmd = msdc_ops_send_cmd,
	.set_ios = msdc_ops_set_ios,
	.get_cd = msdc_ops_get_cd,
	.get_wp = msdc_ops_get_wp,
#ifdef MMC_SUPPORTS_TUNING
	.execute_tuning = msdc_execute_tuning,
#endif
};

static const struct msdc_compatible mt7620_compat = {
	.clk_div_bits = 8,
	.sclk_cycle_shift = 16,
	.pad_tune0 = false,
	.async_fifo = false,
	.data_tune = false,
	.busy_check = false,
	.stop_clk_fix = false,
	.enhance_rx = false
};

static const struct msdc_compatible mt7623_compat = {
	.clk_div_bits = 12,
	.sclk_cycle_shift = 20,
	.pad_tune0 = true,
	.async_fifo = true,
	.data_tune = true,
	.busy_check = false,
	.stop_clk_fix = false,
	.enhance_rx = false
};

static const struct msdc_compatible mt8516_compat = {
	.clk_div_bits = 12,
	.sclk_cycle_shift = 20,
	.pad_tune0 = true,
	.async_fifo = true,
	.data_tune = true,
	.busy_check = true,
	.stop_clk_fix = true,
};

static const struct msdc_compatible mt8183_compat = {
	.clk_div_bits = 12,
	.sclk_cycle_shift = 20,
	.pad_tune0 = true,
	.async_fifo = true,
	.data_tune = true,
	.busy_check = true,
	.stop_clk_fix = true,
};

static const struct udevice_id msdc_ids[] = {
	{ .compatible = "mediatek,mt7620-mmc", .data = (ulong)&mt7620_compat },
	{ .compatible = "mediatek,mt7623-mmc", .data = (ulong)&mt7623_compat },
	{ .compatible = "mediatek,mt8516-mmc", .data = (ulong)&mt8516_compat },
	{ .compatible = "mediatek,mt8183-mmc", .data = (ulong)&mt8183_compat },
	{}
};

U_BOOT_DRIVER(mtk_sd_drv) = {
	.name = "mtk_sd",
	.id = UCLASS_MMC,
	.of_match = msdc_ids,
	.ofdata_to_platdata = msdc_ofdata_to_platdata,
	.bind = msdc_drv_bind,
	.probe = msdc_drv_probe,
	.ops = &msdc_ops,
	.platdata_auto_alloc_size = sizeof(struct msdc_plat),
	.priv_auto_alloc_size = sizeof(struct msdc_host),
};