/* * (C) Copyright 2001 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* * I2C Functions similar to the standard memory functions. * * There are several parameters in many of the commands that bear further * explanations: * * Two of the commands (imm and imw) take a byte/word/long modifier * (e.g. imm.w specifies the word-length modifier). This was done to * allow manipulating word-length registers. It was not done on any other * commands because it was not deemed useful. * * {i2c_chip} is the I2C chip address (the first byte sent on the bus). * Each I2C chip on the bus has a unique address. On the I2C data bus, * the address is the upper seven bits and the LSB is the "read/write" * bit. Note that the {i2c_chip} address specified on the command * line is not shifted up: e.g. a typical EEPROM memory chip may have * an I2C address of 0x50, but the data put on the bus will be 0xA0 * for write and 0xA1 for read. This "non shifted" address notation * matches at least half of the data sheets :-/. * * {addr} is the address (or offset) within the chip. Small memory * chips have 8 bit addresses. Large memory chips have 16 bit * addresses. Other memory chips have 9, 10, or 11 bit addresses. * Many non-memory chips have multiple registers and {addr} is used * as the register index. Some non-memory chips have only one register * and therefore don't need any {addr} parameter. * * The default {addr} parameter is one byte (.1) which works well for * memories and registers with 8 bits of address space. * * You can specify the length of the {addr} field with the optional .0, * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are * manipulating a single register device which doesn't use an address * field, use "0.0" for the address and the ".0" length field will * suppress the address in the I2C data stream. This also works for * successive reads using the I2C auto-incrementing memory pointer. * * If you are manipulating a large memory with 2-byte addresses, use * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal). * * Then there are the unfortunate memory chips that spill the most * significant 1, 2, or 3 bits of address into the chip address byte. * This effectively makes one chip (logically) look like 2, 4, or * 8 chips. This is handled (awkwardly) by #defining * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the * {addr} field (since .1 is the default, it doesn't actually have to * be specified). Examples: given a memory chip at I2C chip address * 0x50, the following would happen... * imd 50 0 10 display 16 bytes starting at 0x000 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd> * imd 50 100 10 display 16 bytes starting at 0x100 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd> * imd 50 210 10 display 16 bytes starting at 0x210 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd> * This is awfully ugly. It would be nice if someone would think up * a better way of handling this. * * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de). */ #include <common.h> #include <command.h> #include <i2c.h> #include <asm/byteorder.h> #if (CONFIG_COMMANDS & CFG_CMD_I2C) /* Display values from last command. * Memory modify remembered values are different from display memory. */ static uchar i2c_dp_last_chip; static uint i2c_dp_last_addr; static uint i2c_dp_last_alen; static uint i2c_dp_last_length = 0x10; static uchar i2c_mm_last_chip; static uint i2c_mm_last_addr; static uint i2c_mm_last_alen; #if defined(CFG_I2C_NOPROBES) static uchar i2c_no_probes[] = CFG_I2C_NOPROBES; #endif static int mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]); extern int cmd_get_data_size(char* arg, int default_size); /* * Syntax: * imd {i2c_chip} {addr}{.0, .1, .2} {len} */ #define DISP_LINE_LEN 16 int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { u_char chip; uint addr, alen, length; int j, nbytes, linebytes; /* We use the last specified parameters, unless new ones are * entered. */ chip = i2c_dp_last_chip; addr = i2c_dp_last_addr; alen = i2c_dp_last_alen; length = i2c_dp_last_length; if (argc < 3) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } if ((flag & CMD_FLAG_REPEAT) == 0) { /* * New command specified. */ alen = 1; /* * I2C chip address */ chip = simple_strtoul(argv[1], NULL, 16); /* * I2C data address within the chip. This can be 1 or * 2 bytes long. Some day it might be 3 bytes long :-). */ addr = simple_strtoul(argv[2], NULL, 16); alen = 1; for(j = 0; j < 8; j++) { if (argv[2][j] == '.') { alen = argv[2][j+1] - '0'; if (alen > 4) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } break; } else if (argv[2][j] == '\0') { break; } } /* * If another parameter, it is the length to display. * Length is the number of objects, not number of bytes. */ if (argc > 3) length = simple_strtoul(argv[3], NULL, 16); } /* * Print the lines. * * We buffer all read data, so we can make sure data is read only * once. */ nbytes = length; do { unsigned char linebuf[DISP_LINE_LEN]; unsigned char *cp; linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes; if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) { puts ("Error reading the chip.\n"); } else { printf("%04x:", addr); cp = linebuf; for (j=0; j<linebytes; j++) { printf(" %02x", *cp++); addr++; } puts (" "); cp = linebuf; for (j=0; j<linebytes; j++) { if ((*cp < 0x20) || (*cp > 0x7e)) puts ("."); else printf("%c", *cp); cp++; } putc ('\n'); } nbytes -= linebytes; } while (nbytes > 0); i2c_dp_last_chip = chip; i2c_dp_last_addr = addr; i2c_dp_last_alen = alen; i2c_dp_last_length = length; return 0; } int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { return mod_i2c_mem (cmdtp, 1, flag, argc, argv); } int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { return mod_i2c_mem (cmdtp, 0, flag, argc, argv); } /* Write (fill) memory * * Syntax: * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}] */ int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { uchar chip; ulong addr; uint alen; uchar byte; int count; int j; if ((argc < 4) || (argc > 5)) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } /* * Chip is always specified. */ chip = simple_strtoul(argv[1], NULL, 16); /* * Address is always specified. */ addr = simple_strtoul(argv[2], NULL, 16); alen = 1; for(j = 0; j < 8; j++) { if (argv[2][j] == '.') { alen = argv[2][j+1] - '0'; if(alen > 4) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } break; } else if (argv[2][j] == '\0') { break; } } /* * Value to write is always specified. */ byte = simple_strtoul(argv[3], NULL, 16); /* * Optional count */ if(argc == 5) { count = simple_strtoul(argv[4], NULL, 16); } else { count = 1; } while (count-- > 0) { if(i2c_write(chip, addr++, alen, &byte, 1) != 0) { puts ("Error writing the chip.\n"); } /* * Wait for the write to complete. The write can take * up to 10mSec (we allow a little more time). * * On some chips, while the write is in progress, the * chip doesn't respond. This apparently isn't a * universal feature so we don't take advantage of it. */ /* * No write delay with FRAM devices. */ #if !defined(CFG_I2C_FRAM) udelay(11000); #endif #if 0 for(timeout = 0; timeout < 10; timeout++) { udelay(2000); if(i2c_probe(chip) == 0) break; } #endif } return (0); } /* Calculate a CRC on memory * * Syntax: * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count} */ int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { uchar chip; ulong addr; uint alen; int count; uchar byte; ulong crc; ulong err; int j; if (argc < 4) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } /* * Chip is always specified. */ chip = simple_strtoul(argv[1], NULL, 16); /* * Address is always specified. */ addr = simple_strtoul(argv[2], NULL, 16); alen = 1; for(j = 0; j < 8; j++) { if (argv[2][j] == '.') { alen = argv[2][j+1] - '0'; if(alen > 4) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } break; } else if (argv[2][j] == '\0') { break; } } /* * Count is always specified */ count = simple_strtoul(argv[3], NULL, 16); printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1); /* * CRC a byte at a time. This is going to be slooow, but hey, the * memories are small and slow too so hopefully nobody notices. */ crc = 0; err = 0; while(count-- > 0) { if(i2c_read(chip, addr, alen, &byte, 1) != 0) { err++; } crc = crc32 (crc, &byte, 1); addr++; } if(err > 0) { puts ("Error reading the chip,\n"); } else { printf ("%08lx\n", crc); } return 0; } /* Modify memory. * * Syntax: * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} */ static int mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]) { uchar chip; ulong addr; uint alen; ulong data; int size = 1; int nbytes; int j; extern char console_buffer[]; if (argc != 3) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } #ifdef CONFIG_BOOT_RETRY_TIME reset_cmd_timeout(); /* got a good command to get here */ #endif /* * We use the last specified parameters, unless new ones are * entered. */ chip = i2c_mm_last_chip; addr = i2c_mm_last_addr; alen = i2c_mm_last_alen; if ((flag & CMD_FLAG_REPEAT) == 0) { /* * New command specified. Check for a size specification. * Defaults to byte if no or incorrect specification. */ size = cmd_get_data_size(argv[0], 1); /* * Chip is always specified. */ chip = simple_strtoul(argv[1], NULL, 16); /* * Address is always specified. */ addr = simple_strtoul(argv[2], NULL, 16); alen = 1; for(j = 0; j < 8; j++) { if (argv[2][j] == '.') { alen = argv[2][j+1] - '0'; if(alen > 4) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } break; } else if (argv[2][j] == '\0') { break; } } } /* * Print the address, followed by value. Then accept input for * the next value. A non-converted value exits. */ do { printf("%08lx:", addr); if(i2c_read(chip, addr, alen, (uchar *)&data, size) != 0) { puts ("\nError reading the chip,\n"); } else { data = cpu_to_be32(data); if(size == 1) { printf(" %02lx", (data >> 24) & 0x000000FF); } else if(size == 2) { printf(" %04lx", (data >> 16) & 0x0000FFFF); } else { printf(" %08lx", data); } } nbytes = readline (" ? "); if (nbytes == 0) { /* * <CR> pressed as only input, don't modify current * location and move to next. */ if (incrflag) addr += size; nbytes = size; #ifdef CONFIG_BOOT_RETRY_TIME reset_cmd_timeout(); /* good enough to not time out */ #endif } #ifdef CONFIG_BOOT_RETRY_TIME else if (nbytes == -2) { break; /* timed out, exit the command */ } #endif else { char *endp; data = simple_strtoul(console_buffer, &endp, 16); if(size == 1) { data = data << 24; } else if(size == 2) { data = data << 16; } data = be32_to_cpu(data); nbytes = endp - console_buffer; if (nbytes) { #ifdef CONFIG_BOOT_RETRY_TIME /* * good enough to not time out */ reset_cmd_timeout(); #endif if(i2c_write(chip, addr, alen, (uchar *)&data, size) != 0) { puts ("Error writing the chip.\n"); } #ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000); #endif if (incrflag) addr += size; } } } while (nbytes); chip = i2c_mm_last_chip; addr = i2c_mm_last_addr; alen = i2c_mm_last_alen; return 0; } /* * Syntax: * iprobe {addr}{.0, .1, .2} */ int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { int j; #if defined(CFG_I2C_NOPROBES) int k, skip; #endif puts ("Valid chip addresses:"); for(j = 0; j < 128; j++) { #if defined(CFG_I2C_NOPROBES) skip = 0; for (k = 0; k < sizeof(i2c_no_probes); k++){ if (j == i2c_no_probes[k]){ skip = 1; break; } } if (skip) continue; #endif if(i2c_probe(j) == 0) { printf(" %02X", j); } } putc ('\n'); #if defined(CFG_I2C_NOPROBES) puts ("Excluded chip addresses:"); for( k = 0; k < sizeof(i2c_no_probes); k++ ) printf(" %02X", i2c_no_probes[k] ); putc ('\n'); #endif return 0; } /* * Syntax: * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}] * {length} - Number of bytes to read * {delay} - A DECIMAL number and defaults to 1000 uSec */ int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { u_char chip; ulong alen; uint addr; uint length; u_char bytes[16]; int delay; int j; if (argc < 3) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } /* * Chip is always specified. */ chip = simple_strtoul(argv[1], NULL, 16); /* * Address is always specified. */ addr = simple_strtoul(argv[2], NULL, 16); alen = 1; for(j = 0; j < 8; j++) { if (argv[2][j] == '.') { alen = argv[2][j+1] - '0'; if (alen > 4) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } break; } else if (argv[2][j] == '\0') { break; } } /* * Length is the number of objects, not number of bytes. */ length = 1; length = simple_strtoul(argv[3], NULL, 16); if(length > sizeof(bytes)) { length = sizeof(bytes); } /* * The delay time (uSec) is optional. */ delay = 1000; if (argc > 3) { delay = simple_strtoul(argv[4], NULL, 10); } /* * Run the loop... */ while(1) { if(i2c_read(chip, addr, alen, bytes, length) != 0) { puts ("Error reading the chip.\n"); } udelay(delay); } /* NOTREACHED */ return 0; } /* * The SDRAM command is separately configured because many * (most?) embedded boards don't use SDRAM DIMMs. */ #if (CONFIG_COMMANDS & CFG_CMD_SDRAM) /* * Syntax: * sdram {i2c_chip} */ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { u_char chip; u_char data[128]; u_char cksum; int j; if (argc < 2) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } /* * Chip is always specified. */ chip = simple_strtoul(argv[1], NULL, 16); if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) { puts ("No SDRAM Serial Presence Detect found.\n"); return 1; } cksum = 0; for (j = 0; j < 63; j++) { cksum += data[j]; } if(cksum != data[63]) { printf ("WARNING: Configuration data checksum failure:\n" " is 0x%02x, calculated 0x%02x\n", data[63], cksum); } printf("SPD data revision %d.%d\n", (data[62] >> 4) & 0x0F, data[62] & 0x0F); printf("Bytes used 0x%02X\n", data[0]); printf("Serial memory size 0x%02X\n", 1 << data[1]); puts ("Memory type "); switch(data[2]) { case 2: puts ("EDO\n"); break; case 4: puts ("SDRAM\n"); break; default: puts ("unknown\n"); break; } puts ("Row address bits "); if((data[3] & 0x00F0) == 0) { printf("%d\n", data[3] & 0x0F); } else { printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F); } puts ("Column address bits "); if((data[4] & 0x00F0) == 0) { printf("%d\n", data[4] & 0x0F); } else { printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F); } printf("Module rows %d\n", data[5]); printf("Module data width %d bits\n", (data[7] << 8) | data[6]); puts ("Interface signal levels "); switch(data[8]) { case 0: puts ("5.0v/TTL\n"); break; case 1: puts ("LVTTL\n"); break; case 2: puts ("HSTL 1.5\n"); break; case 3: puts ("SSTL 3.3\n"); break; case 4: puts ("SSTL 2.5\n"); break; default: puts ("unknown\n"); break; } printf("SDRAM cycle time %d.%d nS\n", (data[9] >> 4) & 0x0F, data[9] & 0x0F); printf("SDRAM access time %d.%d nS\n", (data[10] >> 4) & 0x0F, data[10] & 0x0F); puts ("EDC configuration "); switch(data[11]) { case 0: puts ("None\n"); break; case 1: puts ("Parity\n"); break; case 2: puts ("ECC\n"); break; default: puts ("unknown\n"); break; } if((data[12] & 0x80) == 0) { puts ("No self refresh, rate "); } else { puts ("Self refresh, rate "); } switch(data[12] & 0x7F) { case 0: puts ("15.625uS\n"); break; case 1: puts ("3.9uS\n"); break; case 2: puts ("7.8uS\n"); break; case 3: puts ("31.3uS\n"); break; case 4: puts ("62.5uS\n"); break; case 5: puts ("125uS\n"); break; default: puts ("unknown\n"); break; } printf("SDRAM width (primary) %d\n", data[13] & 0x7F); if((data[13] & 0x80) != 0) { printf(" (second bank) %d\n", 2 * (data[13] & 0x7F)); } if(data[14] != 0) { printf("EDC width %d\n", data[14] & 0x7F); if((data[14] & 0x80) != 0) { printf(" (second bank) %d\n", 2 * (data[14] & 0x7F)); } } printf("Min clock delay, back-to-back random column addresses %d\n", data[15]); puts ("Burst length(s) "); if (data[16] & 0x80) puts (" Page"); if (data[16] & 0x08) puts (" 8"); if (data[16] & 0x04) puts (" 4"); if (data[16] & 0x02) puts (" 2"); if (data[16] & 0x01) puts (" 1"); putc ('\n'); printf("Number of banks %d\n", data[17]); puts ("CAS latency(s) "); if (data[18] & 0x80) puts (" TBD"); if (data[18] & 0x40) puts (" 7"); if (data[18] & 0x20) puts (" 6"); if (data[18] & 0x10) puts (" 5"); if (data[18] & 0x08) puts (" 4"); if (data[18] & 0x04) puts (" 3"); if (data[18] & 0x02) puts (" 2"); if (data[18] & 0x01) puts (" 1"); putc ('\n'); puts ("CS latency(s) "); if (data[19] & 0x80) puts (" TBD"); if (data[19] & 0x40) puts (" 6"); if (data[19] & 0x20) puts (" 5"); if (data[19] & 0x10) puts (" 4"); if (data[19] & 0x08) puts (" 3"); if (data[19] & 0x04) puts (" 2"); if (data[19] & 0x02) puts (" 1"); if (data[19] & 0x01) puts (" 0"); putc ('\n'); puts ("WE latency(s) "); if (data[20] & 0x80) puts (" TBD"); if (data[20] & 0x40) puts (" 6"); if (data[20] & 0x20) puts (" 5"); if (data[20] & 0x10) puts (" 4"); if (data[20] & 0x08) puts (" 3"); if (data[20] & 0x04) puts (" 2"); if (data[20] & 0x02) puts (" 1"); if (data[20] & 0x01) puts (" 0"); putc ('\n'); puts ("Module attributes:\n"); if (!data[21]) puts (" (none)\n"); if (data[21] & 0x80) puts (" TBD (bit 7)\n"); if (data[21] & 0x40) puts (" Redundant row address\n"); if (data[21] & 0x20) puts (" Differential clock input\n"); if (data[21] & 0x10) puts (" Registerd DQMB inputs\n"); if (data[21] & 0x08) puts (" Buffered DQMB inputs\n"); if (data[21] & 0x04) puts (" On-card PLL\n"); if (data[21] & 0x02) puts (" Registered address/control lines\n"); if (data[21] & 0x01) puts (" Buffered address/control lines\n"); puts ("Device attributes:\n"); if (data[22] & 0x80) puts (" TBD (bit 7)\n"); if (data[22] & 0x40) puts (" TBD (bit 6)\n"); if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n"); else puts (" Upper Vcc tolerance 10%\n"); if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n"); else puts (" Lower Vcc tolerance 10%\n"); if (data[22] & 0x08) puts (" Supports write1/read burst\n"); if (data[22] & 0x04) puts (" Supports precharge all\n"); if (data[22] & 0x02) puts (" Supports auto precharge\n"); if (data[22] & 0x01) puts (" Supports early RAS# precharge\n"); printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F); printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F); printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F); printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F); printf("Minimum row precharge %d nS\n", data[27]); printf("Row active to row active min %d nS\n", data[28]); printf("RAS to CAS delay min %d nS\n", data[29]); printf("Minimum RAS pulse width %d nS\n", data[30]); puts ("Density of each row "); if (data[31] & 0x80) puts (" 512"); if (data[31] & 0x40) puts (" 256"); if (data[31] & 0x20) puts (" 128"); if (data[31] & 0x10) puts (" 64"); if (data[31] & 0x08) puts (" 32"); if (data[31] & 0x04) puts (" 16"); if (data[31] & 0x02) puts (" 8"); if (data[31] & 0x01) puts (" 4"); puts ("MByte\n"); printf("Command and Address setup %c%d.%d nS\n", (data[32] & 0x80) ? '-' : '+', (data[32] >> 4) & 0x07, data[32] & 0x0F); printf("Command and Address hold %c%d.%d nS\n", (data[33] & 0x80) ? '-' : '+', (data[33] >> 4) & 0x07, data[33] & 0x0F); printf("Data signal input setup %c%d.%d nS\n", (data[34] & 0x80) ? '-' : '+', (data[34] >> 4) & 0x07, data[34] & 0x0F); printf("Data signal input hold %c%d.%d nS\n", (data[35] & 0x80) ? '-' : '+', (data[35] >> 4) & 0x07, data[35] & 0x0F); puts ("Manufacturer's JEDEC ID "); for(j = 64; j <= 71; j++) printf("%02X ", data[j]); putc ('\n'); printf("Manufacturing Location %02X\n", data[72]); puts ("Manufacturer's Part Number "); for(j = 73; j <= 90; j++) printf("%02X ", data[j]); putc ('\n'); printf("Revision Code %02X %02X\n", data[91], data[92]); printf("Manufacturing Date %02X %02X\n", data[93], data[94]); puts ("Assembly Serial Number "); for(j = 95; j <= 98; j++) printf("%02X ", data[j]); putc ('\n'); printf("Speed rating PC%d\n", data[126] == 0x66 ? 66 : data[126]); return 0; } #endif /* CFG_CMD_SDRAM */ /***************************************************/ U_BOOT_CMD( imd, 4, 1, do_i2c_md, \ "imd - i2c memory display\n", \ "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \ ); U_BOOT_CMD( imm, 3, 1, do_i2c_mm, "imm - i2c memory modify (auto-incrementing)\n", "chip address[.0, .1, .2]\n" " - memory modify, auto increment address\n" ); U_BOOT_CMD( inm, 3, 1, do_i2c_nm, "inm - memory modify (constant address)\n", "chip address[.0, .1, .2]\n - memory modify, read and keep address\n" ); U_BOOT_CMD( imw, 5, 1, do_i2c_mw, "imw - memory write (fill)\n", "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n" ); U_BOOT_CMD( icrc32, 5, 1, do_i2c_crc, "icrc32 - checksum calculation\n", "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n" ); U_BOOT_CMD( iprobe, 1, 1, do_i2c_probe, "iprobe - probe to discover valid I2C chip addresses\n", "\n -discover valid I2C chip addresses\n" ); /* * Require full name for "iloop" because it is an infinite loop! */ U_BOOT_CMD( iloop, 5, 1, do_i2c_loop, "iloop - infinite loop on address range\n", "chip address[.0, .1, .2] [# of objects]\n" " - loop, reading a set of addresses\n" ); #if (CONFIG_COMMANDS & CFG_CMD_SDRAM) U_BOOT_CMD( isdram, 2, 1, do_sdram, "isdram - print SDRAM configuration information\n", "chip\n - print SDRAM configuration information\n" " (valid chip values 50..57)\n" ); #endif #endif /* CFG_CMD_I2C */