// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2004-2008 Texas Instruments, * Rohit Choraria */ #include #include #include #include #include #include #include #include #include #include #include #include #define BADBLOCK_MARKER_LENGTH 2 #define SECTOR_BYTES 512 #define ECCCLEAR (0x1 << 8) #define ECCRESULTREG1 (0x1 << 0) /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ #define BCH4_BIT_PAD 4 #ifdef CONFIG_BCH static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, 0x97, 0x79, 0xe5, 0x24, 0xb5}; #endif static uint8_t cs_next; static __maybe_unused struct nand_ecclayout omap_ecclayout; #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG) static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] = { CONFIG_NAND_OMAP_GPMC_WSCFG }; #else /* wscfg is preset to zero since its a static variable */ static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE]; #endif /* * Driver configurations */ struct omap_nand_info { struct bch_control *control; enum omap_ecc ecc_scheme; uint8_t cs; uint8_t ws; /* wait status pin (0,1) */ }; /* We are wasting a bit of memory but al least we are safe */ static struct omap_nand_info omap_nand_info[GPMC_MAX_CS]; /* * omap_nand_hwcontrol - Set the address pointers corretly for the * following address/data/command operation */ static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd, uint32_t ctrl) { register struct nand_chip *this = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(this); int cs = info->cs; /* * Point the IO_ADDR to DATA and ADDRESS registers instead * of chip address */ switch (ctrl) { case NAND_CTRL_CHANGE | NAND_CTRL_CLE: this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; break; case NAND_CTRL_CHANGE | NAND_CTRL_ALE: this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr; break; case NAND_CTRL_CHANGE | NAND_NCE: this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; break; } if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); } /* Check wait pin as dev ready indicator */ static int omap_dev_ready(struct mtd_info *mtd) { register struct nand_chip *this = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(this); return gpmc_cfg->status & (1 << (8 + info->ws)); } /* * gen_true_ecc - This function will generate true ECC value, which * can be used when correcting data read from NAND flash memory core * * @ecc_buf: buffer to store ecc code * * @return: re-formatted ECC value */ static uint32_t gen_true_ecc(uint8_t *ecc_buf) { return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); } /* * omap_correct_data - Compares the ecc read from nand spare area with ECC * registers values and corrects one bit error if it has occurred * Further details can be had from OMAP TRM and the following selected links: * http://en.wikipedia.org/wiki/Hamming_code * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf * * @mtd: MTD device structure * @dat: page data * @read_ecc: ecc read from nand flash * @calc_ecc: ecc read from ECC registers * * Return: 0 if data is OK or corrected, else returns -1 */ static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { uint32_t orig_ecc, new_ecc, res, hm; uint16_t parity_bits, byte; uint8_t bit; /* Regenerate the orginal ECC */ orig_ecc = gen_true_ecc(read_ecc); new_ecc = gen_true_ecc(calc_ecc); /* Get the XOR of real ecc */ res = orig_ecc ^ new_ecc; if (res) { /* Get the hamming width */ hm = hweight32(res); /* Single bit errors can be corrected! */ if (hm == 12) { /* Correctable data! */ parity_bits = res >> 16; bit = (parity_bits & 0x7); byte = (parity_bits >> 3) & 0x1FF; /* Flip the bit to correct */ dat[byte] ^= (0x1 << bit); } else if (hm == 1) { printf("Error: Ecc is wrong\n"); /* ECC itself is corrupted */ return 2; } else { /* * hm distance != parity pairs OR one, could mean 2 bit * error OR potentially be on a blank page.. * orig_ecc: contains spare area data from nand flash. * new_ecc: generated ecc while reading data area. * Note: if the ecc = 0, all data bits from which it was * generated are 0xFF. * The 3 byte(24 bits) ecc is generated per 512byte * chunk of a page. If orig_ecc(from spare area) * is 0xFF && new_ecc(computed now from data area)=0x0, * this means that data area is 0xFF and spare area is * 0xFF. A sure sign of a erased page! */ if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000)) return 0; printf("Error: Bad compare! failed\n"); /* detected 2 bit error */ return -EBADMSG; } } return 0; } /* * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write * @mtd: MTD device structure * @mode: Read/Write mode */ __maybe_unused static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) { struct nand_chip *nand = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(nand); unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0; unsigned int ecc_algo = 0; unsigned int bch_type = 0; unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00; u32 ecc_size_config_val = 0; u32 ecc_config_val = 0; int cs = info->cs; /* configure GPMC for specific ecc-scheme */ switch (info->ecc_scheme) { case OMAP_ECC_HAM1_CODE_SW: return; case OMAP_ECC_HAM1_CODE_HW: ecc_algo = 0x0; bch_type = 0x0; bch_wrapmode = 0x00; eccsize0 = 0xFF; eccsize1 = 0xFF; break; case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: case OMAP_ECC_BCH8_CODE_HW: ecc_algo = 0x1; bch_type = 0x1; if (mode == NAND_ECC_WRITE) { bch_wrapmode = 0x01; eccsize0 = 0; /* extra bits in nibbles per sector */ eccsize1 = 28; /* OOB bits in nibbles per sector */ } else { bch_wrapmode = 0x01; eccsize0 = 26; /* ECC bits in nibbles per sector */ eccsize1 = 2; /* non-ECC bits in nibbles per sector */ } break; case OMAP_ECC_BCH16_CODE_HW: ecc_algo = 0x1; bch_type = 0x2; if (mode == NAND_ECC_WRITE) { bch_wrapmode = 0x01; eccsize0 = 0; /* extra bits in nibbles per sector */ eccsize1 = 52; /* OOB bits in nibbles per sector */ } else { bch_wrapmode = 0x01; eccsize0 = 52; /* ECC bits in nibbles per sector */ eccsize1 = 0; /* non-ECC bits in nibbles per sector */ } break; default: return; } /* Clear ecc and enable bits */ writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); /* Configure ecc size for BCH */ ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12); writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config); /* Configure device details for BCH engine */ ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */ (bch_type << 12) | /* BCH4/BCH8/BCH16 */ (bch_wrapmode << 8) | /* wrap mode */ (dev_width << 7) | /* bus width */ (0x0 << 4) | /* number of sectors */ (cs << 1) | /* ECC CS */ (0x1)); /* enable ECC */ writel(ecc_config_val, &gpmc_cfg->ecc_config); } /* * omap_calculate_ecc - Read ECC result * @mtd: MTD structure * @dat: unused * @ecc_code: ecc_code buffer * Using noninverted ECC can be considered ugly since writing a blank * page ie. padding will clear the ECC bytes. This is no problem as * long nobody is trying to write data on the seemingly unused page. * Reading an erased page will produce an ECC mismatch between * generated and read ECC bytes that has to be dealt with separately. * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC * is used, the result of read will be 0x0 while the ECC offsets of the * spare area will be 0xFF which will result in an ECC mismatch. */ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) { struct nand_chip *chip = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(chip); const uint32_t *ptr; uint32_t val = 0; int8_t i = 0, j; switch (info->ecc_scheme) { case OMAP_ECC_HAM1_CODE_HW: val = readl(&gpmc_cfg->ecc1_result); ecc_code[0] = val & 0xFF; ecc_code[1] = (val >> 16) & 0xFF; ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0); break; #ifdef CONFIG_BCH case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: #endif case OMAP_ECC_BCH8_CODE_HW: ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3]; val = readl(ptr); ecc_code[i++] = (val >> 0) & 0xFF; ptr--; for (j = 0; j < 3; j++) { val = readl(ptr); ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF; ptr--; } break; case OMAP_ECC_BCH16_CODE_HW: val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]); ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF; val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]); ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF; val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]); ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF; for (j = 3; j >= 0; j--) { val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j] ); ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF; } break; default: return -EINVAL; } /* ECC scheme specific syndrome customizations */ switch (info->ecc_scheme) { case OMAP_ECC_HAM1_CODE_HW: break; #ifdef CONFIG_BCH case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: for (i = 0; i < chip->ecc.bytes; i++) *(ecc_code + i) = *(ecc_code + i) ^ bch8_polynomial[i]; break; #endif case OMAP_ECC_BCH8_CODE_HW: ecc_code[chip->ecc.bytes - 1] = 0x00; break; case OMAP_ECC_BCH16_CODE_HW: break; default: return -EINVAL; } return 0; } #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH #define PREFETCH_CONFIG1_CS_SHIFT 24 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) #define ENABLE_PREFETCH (1 << 7) /** * omap_prefetch_enable - configures and starts prefetch transfer * @fifo_th: fifo threshold to be used for read/ write * @count: number of bytes to be transferred * @is_write: prefetch read(0) or write post(1) mode * @cs: chip select to use */ static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs) { uint32_t val; if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) return -EINVAL; if (readl(&gpmc_cfg->prefetch_control)) return -EBUSY; /* Set the amount of bytes to be prefetched */ writel(count, &gpmc_cfg->prefetch_config2); val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) | PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH; writel(val, &gpmc_cfg->prefetch_config1); /* Start the prefetch engine */ writel(1, &gpmc_cfg->prefetch_control); return 0; } /** * omap_prefetch_reset - disables and stops the prefetch engine */ static void omap_prefetch_reset(void) { writel(0, &gpmc_cfg->prefetch_control); writel(0, &gpmc_cfg->prefetch_config1); } static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len) { int ret; uint32_t cnt; struct omap_nand_info *info = nand_get_controller_data(chip); ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs); if (ret < 0) return ret; do { int i; cnt = readl(&gpmc_cfg->prefetch_status); cnt = PREFETCH_STATUS_FIFO_CNT(cnt); for (i = 0; i < cnt / 4; i++) { *buf++ = readl(CONFIG_SYS_NAND_BASE); len -= 4; } } while (len); omap_prefetch_reset(); return 0; } static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); if (chip->options & NAND_BUSWIDTH_16) nand_read_buf16(mtd, buf, len); else nand_read_buf(mtd, buf, len); } static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len) { int ret; uint32_t head, tail; struct nand_chip *chip = mtd_to_nand(mtd); /* * If the destination buffer is unaligned, start with reading * the overlap byte-wise. */ head = ((uint32_t) buf) % 4; if (head) { omap_nand_read(mtd, buf, head); buf += head; len -= head; } /* * Only transfer multiples of 4 bytes in a pre-fetched fashion. * If there's a residue, care for it byte-wise afterwards. */ tail = len % 4; ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail); if (ret < 0) { /* fallback in case the prefetch engine is busy */ omap_nand_read(mtd, buf, len); } else if (tail) { buf += len - tail; omap_nand_read(mtd, buf, tail); } } #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */ #ifdef CONFIG_NAND_OMAP_ELM /* * omap_reverse_list - re-orders list elements in reverse order [internal] * @list: pointer to start of list * @length: length of list */ static void omap_reverse_list(u8 *list, unsigned int length) { unsigned int i, j; unsigned int half_length = length / 2; u8 tmp; for (i = 0, j = length - 1; i < half_length; i++, j--) { tmp = list[i]; list[i] = list[j]; list[j] = tmp; } } /* * omap_correct_data_bch - Compares the ecc read from nand spare area * with ECC registers values and corrects one bit error if it has occurred * * @mtd: MTD device structure * @dat: page data * @read_ecc: ecc read from nand flash (ignored) * @calc_ecc: ecc read from ECC registers * * Return: 0 if data is OK or corrected, else returns -1 */ static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { struct nand_chip *chip = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; uint32_t error_count = 0, error_max; uint32_t error_loc[ELM_MAX_ERROR_COUNT]; enum bch_level bch_type; uint32_t i, ecc_flag = 0; uint8_t count; uint32_t byte_pos, bit_pos; int err = 0; /* check calculated ecc */ for (i = 0; i < ecc->bytes && !ecc_flag; i++) { if (calc_ecc[i] != 0x00) goto not_ecc_match; } return 0; not_ecc_match: /* check for whether it's an erased-page */ for (i = 0; i < ecc->bytes; i++) { if (read_ecc[i] != 0xff) goto not_erased; } for (i = 0; i < SECTOR_BYTES; i++) { if (dat[i] != 0xff) goto not_erased; } return 0; not_erased: /* * Check for whether it's an erased page with a correctable * number of bitflips. Erased pages have all 1's in the data, * so we just compute the number of 0 bits in the data and * see if it's under the correction threshold. * * NOTE: The check for a perfect erased page above is faster for * the more common case, even though it's logically redundant. */ for (i = 0; i < ecc->bytes; i++) error_count += hweight8(~read_ecc[i]); for (i = 0; i < SECTOR_BYTES; i++) error_count += hweight8(~dat[i]); if (error_count <= ecc->strength) { memset(read_ecc, 0xFF, ecc->bytes); memset(dat, 0xFF, SECTOR_BYTES); debug("nand: %u bit-flip(s) corrected in erased page\n", error_count); return error_count; } /* * while reading ECC result we read it in big endian. * Hence while loading to ELM we have rotate to get the right endian. */ switch (info->ecc_scheme) { case OMAP_ECC_BCH8_CODE_HW: bch_type = BCH_8_BIT; omap_reverse_list(calc_ecc, ecc->bytes - 1); break; case OMAP_ECC_BCH16_CODE_HW: bch_type = BCH_16_BIT; omap_reverse_list(calc_ecc, ecc->bytes); break; default: return -EINVAL; } /* use elm module to check for errors */ elm_config(bch_type); error_count = 0; err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc); if (err) return err; /* correct bch error */ for (count = 0; count < error_count; count++) { switch (info->ecc_scheme) { case OMAP_ECC_BCH8_CODE_HW: /* 14th byte in ECC is reserved to match ROM layout */ error_max = SECTOR_BYTES + (ecc->bytes - 1); break; case OMAP_ECC_BCH16_CODE_HW: error_max = SECTOR_BYTES + ecc->bytes; break; default: return -EINVAL; } byte_pos = error_max - (error_loc[count] / 8) - 1; bit_pos = error_loc[count] % 8; if (byte_pos < SECTOR_BYTES) { dat[byte_pos] ^= 1 << bit_pos; debug("nand: bit-flip corrected @data=%d\n", byte_pos); } else if (byte_pos < error_max) { read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos; debug("nand: bit-flip corrected @oob=%d\n", byte_pos - SECTOR_BYTES); } else { err = -EBADMSG; printf("nand: error: invalid bit-flip location\n"); } } return (err) ? err : error_count; } /** * omap_read_page_bch - hardware ecc based page read function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller expects OOB data read to chip->oob_poi * @page: page number to read * */ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *oob = chip->oob_poi; uint32_t data_pos; uint32_t oob_pos; data_pos = 0; /* oob area start */ oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0]; oob += chip->ecc.layout->eccpos[0]; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize, oob += eccbytes) { chip->ecc.hwctl(mtd, NAND_ECC_READ); /* read data */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1); chip->read_buf(mtd, p, eccsize); /* read respective ecc from oob area */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); chip->read_buf(mtd, oob, eccbytes); /* read syndrome */ chip->ecc.calculate(mtd, p, &ecc_calc[i]); data_pos += eccsize; oob_pos += eccbytes; } for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } #endif /* CONFIG_NAND_OMAP_ELM */ /* * OMAP3 BCH8 support (with BCH library) */ #ifdef CONFIG_BCH /** * omap_correct_data_bch_sw - Decode received data and correct errors * @mtd: MTD device structure * @data: page data * @read_ecc: ecc read from nand flash * @calc_ecc: ecc read from HW ECC registers */ static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data, u_char *read_ecc, u_char *calc_ecc) { int i, count; /* cannot correct more than 8 errors */ unsigned int errloc[8]; struct nand_chip *chip = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(chip); count = decode_bch(info->control, NULL, SECTOR_BYTES, read_ecc, calc_ecc, NULL, errloc); if (count > 0) { /* correct errors */ for (i = 0; i < count; i++) { /* correct data only, not ecc bytes */ if (errloc[i] < SECTOR_BYTES << 3) data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7); debug("corrected bitflip %u\n", errloc[i]); #ifdef DEBUG puts("read_ecc: "); /* * BCH8 have 13 bytes of ECC; BCH4 needs adoption * here! */ for (i = 0; i < 13; i++) printf("%02x ", read_ecc[i]); puts("\n"); puts("calc_ecc: "); for (i = 0; i < 13; i++) printf("%02x ", calc_ecc[i]); puts("\n"); #endif } } else if (count < 0) { puts("ecc unrecoverable error\n"); } return count; } /** * omap_free_bch - Release BCH ecc resources * @mtd: MTD device structure */ static void __maybe_unused omap_free_bch(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(chip); if (info->control) { free_bch(info->control); info->control = NULL; } } #endif /* CONFIG_BCH */ /** * omap_select_ecc_scheme - configures driver for particular ecc-scheme * @nand: NAND chip device structure * @ecc_scheme: ecc scheme to configure * @pagesize: number of main-area bytes per page of NAND device * @oobsize: number of OOB/spare bytes per page of NAND device */ static int omap_select_ecc_scheme(struct nand_chip *nand, enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) { struct omap_nand_info *info = nand_get_controller_data(nand); struct nand_ecclayout *ecclayout = &omap_ecclayout; int eccsteps = pagesize / SECTOR_BYTES; int i; switch (ecc_scheme) { case OMAP_ECC_HAM1_CODE_SW: debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n"); /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are * initialized in nand_scan_tail(), so just set ecc.mode */ info->control = NULL; nand->ecc.mode = NAND_ECC_SOFT; nand->ecc.layout = NULL; nand->ecc.size = 0; break; case OMAP_ECC_HAM1_CODE_HW: debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n"); /* check ecc-scheme requirements before updating ecc info */ if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { printf("nand: error: insufficient OOB: require=%d\n", ( (3 * eccsteps) + BADBLOCK_MARKER_LENGTH)); return -EINVAL; } info->control = NULL; /* populate ecc specific fields */ memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); nand->ecc.mode = NAND_ECC_HW; nand->ecc.strength = 1; nand->ecc.size = SECTOR_BYTES; nand->ecc.bytes = 3; nand->ecc.hwctl = omap_enable_hwecc; nand->ecc.correct = omap_correct_data; nand->ecc.calculate = omap_calculate_ecc; /* define ecc-layout */ ecclayout->eccbytes = nand->ecc.bytes * eccsteps; for (i = 0; i < ecclayout->eccbytes; i++) { if (nand->options & NAND_BUSWIDTH_16) ecclayout->eccpos[i] = i + 2; else ecclayout->eccpos[i] = i + 1; } ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - BADBLOCK_MARKER_LENGTH; break; case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: #ifdef CONFIG_BCH debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); /* check ecc-scheme requirements before updating ecc info */ if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { printf("nand: error: insufficient OOB: require=%d\n", ( (13 * eccsteps) + BADBLOCK_MARKER_LENGTH)); return -EINVAL; } /* check if BCH S/W library can be used for error detection */ info->control = init_bch(13, 8, 0x201b); if (!info->control) { printf("nand: error: could not init_bch()\n"); return -ENODEV; } /* populate ecc specific fields */ memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); nand->ecc.mode = NAND_ECC_HW; nand->ecc.strength = 8; nand->ecc.size = SECTOR_BYTES; nand->ecc.bytes = 13; nand->ecc.hwctl = omap_enable_hwecc; nand->ecc.correct = omap_correct_data_bch_sw; nand->ecc.calculate = omap_calculate_ecc; /* define ecc-layout */ ecclayout->eccbytes = nand->ecc.bytes * eccsteps; ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH; for (i = 1; i < ecclayout->eccbytes; i++) { if (i % nand->ecc.bytes) ecclayout->eccpos[i] = ecclayout->eccpos[i - 1] + 1; else ecclayout->eccpos[i] = ecclayout->eccpos[i - 1] + 2; } ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - BADBLOCK_MARKER_LENGTH; break; #else printf("nand: error: CONFIG_BCH required for ECC\n"); return -EINVAL; #endif case OMAP_ECC_BCH8_CODE_HW: #ifdef CONFIG_NAND_OMAP_ELM debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n"); /* check ecc-scheme requirements before updating ecc info */ if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { printf("nand: error: insufficient OOB: require=%d\n", ( (14 * eccsteps) + BADBLOCK_MARKER_LENGTH)); return -EINVAL; } /* intialize ELM for ECC error detection */ elm_init(); info->control = NULL; /* populate ecc specific fields */ memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); nand->ecc.mode = NAND_ECC_HW; nand->ecc.strength = 8; nand->ecc.size = SECTOR_BYTES; nand->ecc.bytes = 14; nand->ecc.hwctl = omap_enable_hwecc; nand->ecc.correct = omap_correct_data_bch; nand->ecc.calculate = omap_calculate_ecc; nand->ecc.read_page = omap_read_page_bch; /* define ecc-layout */ ecclayout->eccbytes = nand->ecc.bytes * eccsteps; for (i = 0; i < ecclayout->eccbytes; i++) ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH; ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - BADBLOCK_MARKER_LENGTH; break; #else printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n"); return -EINVAL; #endif case OMAP_ECC_BCH16_CODE_HW: #ifdef CONFIG_NAND_OMAP_ELM debug("nand: using OMAP_ECC_BCH16_CODE_HW\n"); /* check ecc-scheme requirements before updating ecc info */ if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { printf("nand: error: insufficient OOB: require=%d\n", ( (26 * eccsteps) + BADBLOCK_MARKER_LENGTH)); return -EINVAL; } /* intialize ELM for ECC error detection */ elm_init(); /* populate ecc specific fields */ nand->ecc.mode = NAND_ECC_HW; nand->ecc.size = SECTOR_BYTES; nand->ecc.bytes = 26; nand->ecc.strength = 16; nand->ecc.hwctl = omap_enable_hwecc; nand->ecc.correct = omap_correct_data_bch; nand->ecc.calculate = omap_calculate_ecc; nand->ecc.read_page = omap_read_page_bch; /* define ecc-layout */ ecclayout->eccbytes = nand->ecc.bytes * eccsteps; for (i = 0; i < ecclayout->eccbytes; i++) ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH; ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes - BADBLOCK_MARKER_LENGTH; break; #else printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n"); return -EINVAL; #endif default: debug("nand: error: ecc scheme not enabled or supported\n"); return -EINVAL; } /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */ if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW) nand->ecc.layout = ecclayout; info->ecc_scheme = ecc_scheme; return 0; } #ifndef CONFIG_SPL_BUILD /* * omap_nand_switch_ecc - switch the ECC operation between different engines * (h/w and s/w) and different algorithms (hamming and BCHx) * * @hardware - true if one of the HW engines should be used * @eccstrength - the number of bits that could be corrected * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16) */ int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength) { struct nand_chip *nand; struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device); int err = 0; if (!mtd) { printf("nand: error: no NAND devices found\n"); return -ENODEV; } nand = mtd_to_nand(mtd); nand->options |= NAND_OWN_BUFFERS; nand->options &= ~NAND_SUBPAGE_READ; /* Setup the ecc configurations again */ if (hardware) { if (eccstrength == 1) { err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_HW, mtd->writesize, mtd->oobsize); } else if (eccstrength == 8) { err = omap_select_ecc_scheme(nand, OMAP_ECC_BCH8_CODE_HW, mtd->writesize, mtd->oobsize); } else if (eccstrength == 16) { err = omap_select_ecc_scheme(nand, OMAP_ECC_BCH16_CODE_HW, mtd->writesize, mtd->oobsize); } else { printf("nand: error: unsupported ECC scheme\n"); return -EINVAL; } } else { if (eccstrength == 1) { err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW, mtd->writesize, mtd->oobsize); } else if (eccstrength == 8) { err = omap_select_ecc_scheme(nand, OMAP_ECC_BCH8_CODE_HW_DETECTION_SW, mtd->writesize, mtd->oobsize); } else { printf("nand: error: unsupported ECC scheme\n"); return -EINVAL; } } /* Update NAND handling after ECC mode switch */ if (!err) err = nand_scan_tail(mtd); return err; } #endif /* CONFIG_SPL_BUILD */ /* * Board-specific NAND initialization. The following members of the * argument are board-specific: * - IO_ADDR_R: address to read the 8 I/O lines of the flash device * - IO_ADDR_W: address to write the 8 I/O lines of the flash device * - cmd_ctrl: hardwarespecific function for accesing control-lines * - waitfunc: hardwarespecific function for accesing device ready/busy line * - ecc.hwctl: function to enable (reset) hardware ecc generator * - ecc.mode: mode of ecc, see defines * - chip_delay: chip dependent delay for transfering data from array to * read regs (tR) * - options: various chip options. They can partly be set to inform * nand_scan about special functionality. See the defines for further * explanation */ int board_nand_init(struct nand_chip *nand) { int32_t gpmc_config = 0; int cs = cs_next++; int err = 0; /* * xloader/Uboot's gpmc configuration would have configured GPMC for * nand type of memory. The following logic scans and latches on to the * first CS with NAND type memory. * TBD: need to make this logic generic to handle multiple CS NAND * devices. */ while (cs < GPMC_MAX_CS) { /* Check if NAND type is set */ if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) { /* Found it!! */ break; } cs++; } if (cs >= GPMC_MAX_CS) { printf("nand: error: Unable to find NAND settings in " "GPMC Configuration - quitting\n"); return -ENODEV; } gpmc_config = readl(&gpmc_cfg->config); /* Disable Write protect */ gpmc_config |= 0x10; writel(gpmc_config, &gpmc_cfg->config); nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; omap_nand_info[cs].control = NULL; omap_nand_info[cs].cs = cs; omap_nand_info[cs].ws = wscfg[cs]; nand_set_controller_data(nand, &omap_nand_info[cs]); nand->cmd_ctrl = omap_nand_hwcontrol; nand->options |= NAND_NO_PADDING | NAND_CACHEPRG; nand->chip_delay = 100; nand->ecc.layout = &omap_ecclayout; /* configure driver and controller based on NAND device bus-width */ gpmc_config = readl(&gpmc_cfg->cs[cs].config1); #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT) nand->options |= NAND_BUSWIDTH_16; writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1); #else nand->options &= ~NAND_BUSWIDTH_16; writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1); #endif /* select ECC scheme */ #if defined(CONFIG_NAND_OMAP_ECCSCHEME) err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME, CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE); #else /* pagesize and oobsize are not required to configure sw ecc-scheme */ err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW, 0, 0); #endif if (err) return err; #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH nand->read_buf = omap_nand_read_prefetch; #else if (nand->options & NAND_BUSWIDTH_16) nand->read_buf = nand_read_buf16; else nand->read_buf = nand_read_buf; #endif nand->dev_ready = omap_dev_ready; return 0; }