// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2016 * * Michael Kurz, * * STM32 QSPI driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include struct stm32_qspi_regs { u32 cr; /* 0x00 */ u32 dcr; /* 0x04 */ u32 sr; /* 0x08 */ u32 fcr; /* 0x0C */ u32 dlr; /* 0x10 */ u32 ccr; /* 0x14 */ u32 ar; /* 0x18 */ u32 abr; /* 0x1C */ u32 dr; /* 0x20 */ u32 psmkr; /* 0x24 */ u32 psmar; /* 0x28 */ u32 pir; /* 0x2C */ u32 lptr; /* 0x30 */ }; /* * QUADSPI control register */ #define STM32_QSPI_CR_EN BIT(0) #define STM32_QSPI_CR_ABORT BIT(1) #define STM32_QSPI_CR_DMAEN BIT(2) #define STM32_QSPI_CR_TCEN BIT(3) #define STM32_QSPI_CR_SSHIFT BIT(4) #define STM32_QSPI_CR_DFM BIT(6) #define STM32_QSPI_CR_FSEL BIT(7) #define STM32_QSPI_CR_FTHRES_SHIFT 8 #define STM32_QSPI_CR_TEIE BIT(16) #define STM32_QSPI_CR_TCIE BIT(17) #define STM32_QSPI_CR_FTIE BIT(18) #define STM32_QSPI_CR_SMIE BIT(19) #define STM32_QSPI_CR_TOIE BIT(20) #define STM32_QSPI_CR_APMS BIT(22) #define STM32_QSPI_CR_PMM BIT(23) #define STM32_QSPI_CR_PRESCALER_MASK GENMASK(7, 0) #define STM32_QSPI_CR_PRESCALER_SHIFT 24 /* * QUADSPI device configuration register */ #define STM32_QSPI_DCR_CKMODE BIT(0) #define STM32_QSPI_DCR_CSHT_MASK GENMASK(2, 0) #define STM32_QSPI_DCR_CSHT_SHIFT 8 #define STM32_QSPI_DCR_FSIZE_MASK GENMASK(4, 0) #define STM32_QSPI_DCR_FSIZE_SHIFT 16 /* * QUADSPI status register */ #define STM32_QSPI_SR_TEF BIT(0) #define STM32_QSPI_SR_TCF BIT(1) #define STM32_QSPI_SR_FTF BIT(2) #define STM32_QSPI_SR_SMF BIT(3) #define STM32_QSPI_SR_TOF BIT(4) #define STM32_QSPI_SR_BUSY BIT(5) /* * QUADSPI flag clear register */ #define STM32_QSPI_FCR_CTEF BIT(0) #define STM32_QSPI_FCR_CTCF BIT(1) #define STM32_QSPI_FCR_CSMF BIT(3) #define STM32_QSPI_FCR_CTOF BIT(4) /* * QUADSPI communication configuration register */ #define STM32_QSPI_CCR_DDRM BIT(31) #define STM32_QSPI_CCR_DHHC BIT(30) #define STM32_QSPI_CCR_SIOO BIT(28) #define STM32_QSPI_CCR_FMODE_SHIFT 26 #define STM32_QSPI_CCR_DMODE_SHIFT 24 #define STM32_QSPI_CCR_DCYC_SHIFT 18 #define STM32_QSPI_CCR_ABSIZE_SHIFT 16 #define STM32_QSPI_CCR_ABMODE_SHIFT 14 #define STM32_QSPI_CCR_ADSIZE_SHIFT 12 #define STM32_QSPI_CCR_ADMODE_SHIFT 10 #define STM32_QSPI_CCR_IMODE_SHIFT 8 #define STM32_QSPI_CCR_IND_WRITE 0 #define STM32_QSPI_CCR_IND_READ 1 #define STM32_QSPI_CCR_MEM_MAP 3 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M #define STM32_QSPI_MAX_CHIP 2 #define STM32_QSPI_FIFO_TIMEOUT_US 30000 #define STM32_QSPI_CMD_TIMEOUT_US 1000000 #define STM32_BUSY_TIMEOUT_US 100000 #define STM32_ABT_TIMEOUT_US 100000 struct stm32_qspi_flash { u32 cr; u32 dcr; bool initialized; }; struct stm32_qspi_priv { struct stm32_qspi_regs *regs; struct stm32_qspi_flash flash[STM32_QSPI_MAX_CHIP]; void __iomem *mm_base; resource_size_t mm_size; ulong clock_rate; int cs_used; }; static int _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv) { u32 sr; int ret; ret = readl_poll_timeout(&priv->regs->sr, sr, !(sr & STM32_QSPI_SR_BUSY), STM32_BUSY_TIMEOUT_US); if (ret) pr_err("busy timeout (stat:%#x)\n", sr); return ret; } static int _stm32_qspi_wait_cmd(struct stm32_qspi_priv *priv, const struct spi_mem_op *op) { u32 sr; int ret; if (!op->data.nbytes) return _stm32_qspi_wait_for_not_busy(priv); ret = readl_poll_timeout(&priv->regs->sr, sr, sr & STM32_QSPI_SR_TCF, STM32_QSPI_CMD_TIMEOUT_US); if (ret) { pr_err("cmd timeout (stat:%#x)\n", sr); } else if (readl(&priv->regs->sr) & STM32_QSPI_SR_TEF) { pr_err("transfer error (stat:%#x)\n", sr); ret = -EIO; } /* clear flags */ writel(STM32_QSPI_FCR_CTCF | STM32_QSPI_FCR_CTEF, &priv->regs->fcr); return ret; } static void _stm32_qspi_read_fifo(u8 *val, void __iomem *addr) { *val = readb(addr); } static void _stm32_qspi_write_fifo(u8 *val, void __iomem *addr) { writeb(*val, addr); } static int _stm32_qspi_poll(struct stm32_qspi_priv *priv, const struct spi_mem_op *op) { void (*fifo)(u8 *val, void __iomem *addr); u32 len = op->data.nbytes, sr; u8 *buf; int ret; if (op->data.dir == SPI_MEM_DATA_IN) { fifo = _stm32_qspi_read_fifo; buf = op->data.buf.in; } else { fifo = _stm32_qspi_write_fifo; buf = (u8 *)op->data.buf.out; } while (len--) { ret = readl_poll_timeout(&priv->regs->sr, sr, sr & STM32_QSPI_SR_FTF, STM32_QSPI_FIFO_TIMEOUT_US); if (ret) { pr_err("fifo timeout (len:%d stat:%#x)\n", len, sr); return ret; } fifo(buf++, &priv->regs->dr); } return 0; } static int stm32_qspi_mm(struct stm32_qspi_priv *priv, const struct spi_mem_op *op) { memcpy_fromio(op->data.buf.in, priv->mm_base + op->addr.val, op->data.nbytes); return 0; } static int _stm32_qspi_tx(struct stm32_qspi_priv *priv, const struct spi_mem_op *op, u8 mode) { if (!op->data.nbytes) return 0; if (mode == STM32_QSPI_CCR_MEM_MAP) return stm32_qspi_mm(priv, op); return _stm32_qspi_poll(priv, op); } static int _stm32_qspi_get_mode(u8 buswidth) { if (buswidth == 4) return 3; return buswidth; } static int stm32_qspi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct stm32_qspi_priv *priv = dev_get_priv(slave->dev->parent); u32 cr, ccr, addr_max; u8 mode = STM32_QSPI_CCR_IND_WRITE; int timeout, ret; debug("%s: cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n", __func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth, op->addr.val, op->data.nbytes); ret = _stm32_qspi_wait_for_not_busy(priv); if (ret) return ret; addr_max = op->addr.val + op->data.nbytes + 1; if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes) { if (addr_max < priv->mm_size && op->addr.buswidth) mode = STM32_QSPI_CCR_MEM_MAP; else mode = STM32_QSPI_CCR_IND_READ; } if (op->data.nbytes) writel(op->data.nbytes - 1, &priv->regs->dlr); ccr = (mode << STM32_QSPI_CCR_FMODE_SHIFT); ccr |= op->cmd.opcode; ccr |= (_stm32_qspi_get_mode(op->cmd.buswidth) << STM32_QSPI_CCR_IMODE_SHIFT); if (op->addr.nbytes) { ccr |= ((op->addr.nbytes - 1) << STM32_QSPI_CCR_ADSIZE_SHIFT); ccr |= (_stm32_qspi_get_mode(op->addr.buswidth) << STM32_QSPI_CCR_ADMODE_SHIFT); } if (op->dummy.buswidth && op->dummy.nbytes) ccr |= (op->dummy.nbytes * 8 / op->dummy.buswidth << STM32_QSPI_CCR_DCYC_SHIFT); if (op->data.nbytes) ccr |= (_stm32_qspi_get_mode(op->data.buswidth) << STM32_QSPI_CCR_DMODE_SHIFT); writel(ccr, &priv->regs->ccr); if (op->addr.nbytes && mode != STM32_QSPI_CCR_MEM_MAP) writel(op->addr.val, &priv->regs->ar); ret = _stm32_qspi_tx(priv, op, mode); /* * Abort in: * -error case * -read memory map: prefetching must be stopped if we read the last * byte of device (device size - fifo size). like device size is not * knows, the prefetching is always stop. */ if (ret || mode == STM32_QSPI_CCR_MEM_MAP) goto abort; /* Wait end of tx in indirect mode */ ret = _stm32_qspi_wait_cmd(priv, op); if (ret) goto abort; return 0; abort: setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT); /* Wait clear of abort bit by hw */ timeout = readl_poll_timeout(&priv->regs->cr, cr, !(cr & STM32_QSPI_CR_ABORT), STM32_ABT_TIMEOUT_US); writel(STM32_QSPI_FCR_CTCF, &priv->regs->fcr); if (ret || timeout) pr_err("%s ret:%d abort timeout:%d\n", __func__, ret, timeout); return ret; } static int stm32_qspi_probe(struct udevice *bus) { struct stm32_qspi_priv *priv = dev_get_priv(bus); struct resource res; struct clk clk; struct reset_ctl reset_ctl; int ret; ret = dev_read_resource_byname(bus, "qspi", &res); if (ret) { dev_err(bus, "can't get regs base addresses(ret = %d)!\n", ret); return ret; } priv->regs = (struct stm32_qspi_regs *)res.start; ret = dev_read_resource_byname(bus, "qspi_mm", &res); if (ret) { dev_err(bus, "can't get mmap base address(ret = %d)!\n", ret); return ret; } priv->mm_base = (void __iomem *)res.start; priv->mm_size = resource_size(&res); if (priv->mm_size > STM32_QSPI_MAX_MMAP_SZ) return -EINVAL; debug("%s: regs=<0x%p> mapped=<0x%p> mapped_size=<0x%lx>\n", __func__, priv->regs, priv->mm_base, priv->mm_size); ret = clk_get_by_index(bus, 0, &clk); if (ret < 0) return ret; ret = clk_enable(&clk); if (ret) { dev_err(bus, "failed to enable clock\n"); return ret; } priv->clock_rate = clk_get_rate(&clk); if (!priv->clock_rate) { clk_disable(&clk); return -EINVAL; } ret = reset_get_by_index(bus, 0, &reset_ctl); if (ret) { if (ret != -ENOENT) { dev_err(bus, "failed to get reset\n"); clk_disable(&clk); return ret; } } else { /* Reset QSPI controller */ reset_assert(&reset_ctl); udelay(2); reset_deassert(&reset_ctl); } priv->cs_used = -1; setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT); /* Set dcr fsize to max address */ setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT); return 0; } static int stm32_qspi_claim_bus(struct udevice *dev) { struct stm32_qspi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_platdata *slave_plat = dev_get_parent_plat(dev); int slave_cs = slave_plat->cs; if (slave_cs >= STM32_QSPI_MAX_CHIP) return -ENODEV; if (priv->cs_used != slave_cs) { struct stm32_qspi_flash *flash = &priv->flash[slave_cs]; priv->cs_used = slave_cs; if (flash->initialized) { /* Set the configuration: speed + cs */ writel(flash->cr, &priv->regs->cr); writel(flash->dcr, &priv->regs->dcr); } else { /* Set chip select */ clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_FSEL, priv->cs_used ? STM32_QSPI_CR_FSEL : 0); /* Save the configuration: speed + cs */ flash->cr = readl(&priv->regs->cr); flash->dcr = readl(&priv->regs->dcr); flash->initialized = true; } } setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN); return 0; } static int stm32_qspi_release_bus(struct udevice *dev) { struct stm32_qspi_priv *priv = dev_get_priv(dev->parent); clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN); return 0; } static int stm32_qspi_set_speed(struct udevice *bus, uint speed) { struct stm32_qspi_priv *priv = dev_get_priv(bus); u32 qspi_clk = priv->clock_rate; u32 prescaler = 255; u32 csht; int ret; if (speed > 0) { prescaler = 0; if (qspi_clk) { prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1; if (prescaler > 255) prescaler = 255; } } csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000); csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK; ret = _stm32_qspi_wait_for_not_busy(priv); if (ret) return ret; clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_PRESCALER_MASK << STM32_QSPI_CR_PRESCALER_SHIFT, prescaler << STM32_QSPI_CR_PRESCALER_SHIFT); clrsetbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT, csht << STM32_QSPI_DCR_CSHT_SHIFT); debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, (qspi_clk / (prescaler + 1))); return 0; } static int stm32_qspi_set_mode(struct udevice *bus, uint mode) { struct stm32_qspi_priv *priv = dev_get_priv(bus); int ret; ret = _stm32_qspi_wait_for_not_busy(priv); if (ret) return ret; if ((mode & SPI_CPHA) && (mode & SPI_CPOL)) setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE); else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL)) clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE); else return -ENODEV; if (mode & SPI_CS_HIGH) return -ENODEV; debug("%s: regs=%p, mode=%d rx: ", __func__, priv->regs, mode); if (mode & SPI_RX_QUAD) debug("quad, tx: "); else if (mode & SPI_RX_DUAL) debug("dual, tx: "); else debug("single, tx: "); if (mode & SPI_TX_QUAD) debug("quad\n"); else if (mode & SPI_TX_DUAL) debug("dual\n"); else debug("single\n"); return 0; } static const struct spi_controller_mem_ops stm32_qspi_mem_ops = { .exec_op = stm32_qspi_exec_op, }; static const struct dm_spi_ops stm32_qspi_ops = { .claim_bus = stm32_qspi_claim_bus, .release_bus = stm32_qspi_release_bus, .set_speed = stm32_qspi_set_speed, .set_mode = stm32_qspi_set_mode, .mem_ops = &stm32_qspi_mem_ops, }; static const struct udevice_id stm32_qspi_ids[] = { { .compatible = "st,stm32f469-qspi" }, { } }; U_BOOT_DRIVER(stm32_qspi) = { .name = "stm32_qspi", .id = UCLASS_SPI, .of_match = stm32_qspi_ids, .ops = &stm32_qspi_ops, .priv_auto = sizeof(struct stm32_qspi_priv), .probe = stm32_qspi_probe, };