// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #define LOG_CATEGORY LOGC_BOARD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../st/common/stusb160x.h" /* SYSCFG registers */ #define SYSCFG_BOOTR 0x00 #define SYSCFG_PMCSETR 0x04 #define SYSCFG_IOCTRLSETR 0x18 #define SYSCFG_ICNR 0x1C #define SYSCFG_CMPCR 0x20 #define SYSCFG_CMPENSETR 0x24 #define SYSCFG_PMCCLRR 0x44 #define SYSCFG_BOOTR_BOOT_MASK GENMASK(2, 0) #define SYSCFG_BOOTR_BOOTPD_SHIFT 4 #define SYSCFG_IOCTRLSETR_HSLVEN_TRACE BIT(0) #define SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI BIT(1) #define SYSCFG_IOCTRLSETR_HSLVEN_ETH BIT(2) #define SYSCFG_IOCTRLSETR_HSLVEN_SDMMC BIT(3) #define SYSCFG_IOCTRLSETR_HSLVEN_SPI BIT(4) #define SYSCFG_CMPCR_SW_CTRL BIT(1) #define SYSCFG_CMPCR_READY BIT(8) #define SYSCFG_CMPENSETR_MPU_EN BIT(0) #define SYSCFG_PMCSETR_ETH_CLK_SEL BIT(16) #define SYSCFG_PMCSETR_ETH_REF_CLK_SEL BIT(17) #define SYSCFG_PMCSETR_ETH_SELMII BIT(20) #define SYSCFG_PMCSETR_ETH_SEL_MASK GENMASK(23, 21) #define SYSCFG_PMCSETR_ETH_SEL_GMII_MII 0 #define SYSCFG_PMCSETR_ETH_SEL_RGMII BIT(21) #define SYSCFG_PMCSETR_ETH_SEL_RMII BIT(23) /* * Get a global data pointer */ DECLARE_GLOBAL_DATA_PTR; #define USB_LOW_THRESHOLD_UV 200000 #define USB_WARNING_LOW_THRESHOLD_UV 660000 #define USB_START_LOW_THRESHOLD_UV 1230000 #define USB_START_HIGH_THRESHOLD_UV 2150000 int board_early_init_f(void) { /* nothing to do, only used in SPL */ return 0; } int checkboard(void) { int ret; char *mode; u32 otp; struct udevice *dev; const char *fdt_compat; int fdt_compat_len; if (IS_ENABLED(CONFIG_TFABOOT)) { if (IS_ENABLED(CONFIG_STM32MP15x_STM32IMAGE)) mode = "trusted - stm32image"; else mode = "trusted"; } else { mode = "basic"; } fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible", &fdt_compat_len); log_info("Board: stm32mp1 in %s mode (%s)\n", mode, fdt_compat && fdt_compat_len ? fdt_compat : ""); /* display the STMicroelectronics board identification */ if (CONFIG_IS_ENABLED(CMD_STBOARD)) { ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (!ret) ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_BOARD), &otp, sizeof(otp)); if (ret > 0 && otp) log_info("Board: MB%04x Var%d.%d Rev.%c-%02d\n", otp >> 16, (otp >> 12) & 0xF, (otp >> 4) & 0xF, ((otp >> 8) & 0xF) - 1 + 'A', otp & 0xF); } return 0; } static void board_key_check(void) { ofnode node; struct gpio_desc gpio; enum forced_boot_mode boot_mode = BOOT_NORMAL; if (!IS_ENABLED(CONFIG_FASTBOOT) && !IS_ENABLED(CONFIG_CMD_STM32PROG)) return; node = ofnode_path("/config"); if (!ofnode_valid(node)) { log_debug("no /config node?\n"); return; } if (IS_ENABLED(CONFIG_FASTBOOT)) { if (gpio_request_by_name_nodev(node, "st,fastboot-gpios", 0, &gpio, GPIOD_IS_IN)) { log_debug("could not find a /config/st,fastboot-gpios\n"); } else { udelay(20); if (dm_gpio_get_value(&gpio)) { log_notice("Fastboot key pressed, "); boot_mode = BOOT_FASTBOOT; } dm_gpio_free(NULL, &gpio); } } if (IS_ENABLED(CONFIG_CMD_STM32PROG)) { if (gpio_request_by_name_nodev(node, "st,stm32prog-gpios", 0, &gpio, GPIOD_IS_IN)) { log_debug("could not find a /config/st,stm32prog-gpios\n"); } else { udelay(20); if (dm_gpio_get_value(&gpio)) { log_notice("STM32Programmer key pressed, "); boot_mode = BOOT_STM32PROG; } dm_gpio_free(NULL, &gpio); } } if (boot_mode != BOOT_NORMAL) { log_notice("entering download mode...\n"); clrsetbits_le32(TAMP_BOOT_CONTEXT, TAMP_BOOT_FORCED_MASK, boot_mode); } } int g_dnl_board_usb_cable_connected(void) { struct udevice *dwc2_udc_otg; int ret; if (!IS_ENABLED(CONFIG_USB_GADGET_DWC2_OTG)) return -ENODEV; /* if typec stusb160x is present, means DK1 or DK2 board */ ret = stusb160x_cable_connected(); if (ret >= 0) return ret; ret = uclass_get_device_by_driver(UCLASS_USB_GADGET_GENERIC, DM_DRIVER_GET(dwc2_udc_otg), &dwc2_udc_otg); if (ret) { log_debug("dwc2_udc_otg init failed\n"); return ret; } return dwc2_udc_B_session_valid(dwc2_udc_otg); } #ifdef CONFIG_USB_GADGET_DOWNLOAD #define STM32MP1_G_DNL_DFU_PRODUCT_NUM 0xdf11 #define STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM 0x0afb int g_dnl_bind_fixup(struct usb_device_descriptor *dev, const char *name) { if (IS_ENABLED(CONFIG_DFU_OVER_USB) && !strcmp(name, "usb_dnl_dfu")) put_unaligned(STM32MP1_G_DNL_DFU_PRODUCT_NUM, &dev->idProduct); else if (IS_ENABLED(CONFIG_FASTBOOT) && !strcmp(name, "usb_dnl_fastboot")) put_unaligned(STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM, &dev->idProduct); else put_unaligned(CONFIG_USB_GADGET_PRODUCT_NUM, &dev->idProduct); return 0; } #endif /* CONFIG_USB_GADGET_DOWNLOAD */ static int get_led(struct udevice **dev, char *led_string) { const char *led_name; int ret; led_name = ofnode_conf_read_str(led_string); if (!led_name) { log_debug("could not find %s config string\n", led_string); return -ENOENT; } ret = led_get_by_label(led_name, dev); if (ret) { log_debug("get=%d\n", ret); return ret; } return 0; } static int setup_led(enum led_state_t cmd) { struct udevice *dev; int ret; if (!CONFIG_IS_ENABLED(LED)) return 0; ret = get_led(&dev, "u-boot,boot-led"); if (ret) return ret; ret = led_set_state(dev, cmd); return ret; } static void __maybe_unused led_error_blink(u32 nb_blink) { int ret; struct udevice *led; u32 i; if (!nb_blink) return; if (CONFIG_IS_ENABLED(LED)) { ret = get_led(&led, "u-boot,error-led"); if (!ret) { /* make u-boot,error-led blinking */ /* if U32_MAX and 125ms interval, for 17.02 years */ for (i = 0; i < 2 * nb_blink; i++) { led_set_state(led, LEDST_TOGGLE); mdelay(125); WATCHDOG_RESET(); } led_set_state(led, LEDST_ON); } } /* infinite: the boot process must be stopped */ if (nb_blink == U32_MAX) hang(); } static int adc_measurement(ofnode node, int adc_count, int *min_uV, int *max_uV) { struct ofnode_phandle_args adc_args; struct udevice *adc; unsigned int raw; int ret, uV; int i; for (i = 0; i < adc_count; i++) { if (ofnode_parse_phandle_with_args(node, "st,adc_usb_pd", "#io-channel-cells", 0, i, &adc_args)) { log_debug("can't find /config/st,adc_usb_pd\n"); return 0; } ret = uclass_get_device_by_ofnode(UCLASS_ADC, adc_args.node, &adc); if (ret) { log_err("Can't get adc device(%d)\n", ret); return ret; } ret = adc_channel_single_shot(adc->name, adc_args.args[0], &raw); if (ret) { log_err("single shot failed for %s[%d]!\n", adc->name, adc_args.args[0]); return ret; } /* Convert to uV */ if (!adc_raw_to_uV(adc, raw, &uV)) { if (uV > *max_uV) *max_uV = uV; if (uV < *min_uV) *min_uV = uV; log_debug("%s[%02d] = %u, %d uV\n", adc->name, adc_args.args[0], raw, uV); } else { log_err("Can't get uV value for %s[%d]\n", adc->name, adc_args.args[0]); } } return 0; } static int board_check_usb_power(void) { ofnode node; int max_uV = 0; int min_uV = USB_START_HIGH_THRESHOLD_UV; int adc_count, ret; u32 nb_blink; u8 i; if (!IS_ENABLED(CONFIG_ADC)) return -ENODEV; node = ofnode_path("/config"); if (!ofnode_valid(node)) { log_debug("no /config node?\n"); return -ENOENT; } /* * Retrieve the ADC channels devices and get measurement * for each of them */ adc_count = ofnode_count_phandle_with_args(node, "st,adc_usb_pd", "#io-channel-cells", 0); if (adc_count < 0) { if (adc_count == -ENOENT) return 0; log_err("Can't find adc channel (%d)\n", adc_count); return adc_count; } /* perform maximum of 2 ADC measurements to detect power supply current */ for (i = 0; i < 2; i++) { ret = adc_measurement(node, adc_count, &min_uV, &max_uV); if (ret) return ret; /* * If highest value is inside 1.23 Volts and 2.10 Volts, that means * board is plugged on an USB-C 3A power supply and boot process can * continue. */ if (max_uV > USB_START_LOW_THRESHOLD_UV && max_uV <= USB_START_HIGH_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV) return 0; if (i == 0) { log_err("Previous ADC measurements was not the one expected, retry in 20ms\n"); mdelay(20); /* equal to max tPDDebounce duration (min 10ms - max 20ms) */ } } log_notice("****************************************************\n"); /* * If highest and lowest value are either both below * USB_LOW_THRESHOLD_UV or both above USB_LOW_THRESHOLD_UV, that * means USB TYPE-C is in unattached mode, this is an issue, make * u-boot,error-led blinking and stop boot process. */ if ((max_uV > USB_LOW_THRESHOLD_UV && min_uV > USB_LOW_THRESHOLD_UV) || (max_uV <= USB_LOW_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV)) { log_notice("* ERROR USB TYPE-C connection in unattached mode *\n"); log_notice("* Check that USB TYPE-C cable is correctly plugged *\n"); /* with 125ms interval, led will blink for 17.02 years ....*/ nb_blink = U32_MAX; } if (max_uV > USB_LOW_THRESHOLD_UV && max_uV <= USB_WARNING_LOW_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV) { log_notice("* WARNING 500mA power supply detected *\n"); nb_blink = 2; } if (max_uV > USB_WARNING_LOW_THRESHOLD_UV && max_uV <= USB_START_LOW_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV) { log_notice("* WARNING 1.5A power supply detected *\n"); nb_blink = 3; } /* * If highest value is above 2.15 Volts that means that the USB TypeC * supplies more than 3 Amp, this is not compliant with TypeC specification */ if (max_uV > USB_START_HIGH_THRESHOLD_UV) { log_notice("* USB TYPE-C charger not compliant with *\n"); log_notice("* specification *\n"); log_notice("****************************************************\n\n"); /* with 125ms interval, led will blink for 17.02 years ....*/ nb_blink = U32_MAX; } else { log_notice("* Current too low, use a 3A power supply! *\n"); log_notice("****************************************************\n\n"); } led_error_blink(nb_blink); return 0; } static void sysconf_init(void) { u8 *syscfg; struct udevice *pwr_dev; struct udevice *pwr_reg; struct udevice *dev; u32 otp = 0; int ret; u32 bootr, val; syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG); /* interconnect update : select master using the port 1 */ /* LTDC = AXI_M9 */ /* GPU = AXI_M8 */ /* today information is hardcoded in U-Boot */ writel(BIT(9), syscfg + SYSCFG_ICNR); /* disable Pull-Down for boot pin connected to VDD */ bootr = readl(syscfg + SYSCFG_BOOTR); bootr &= ~(SYSCFG_BOOTR_BOOT_MASK << SYSCFG_BOOTR_BOOTPD_SHIFT); bootr |= (bootr & SYSCFG_BOOTR_BOOT_MASK) << SYSCFG_BOOTR_BOOTPD_SHIFT; writel(bootr, syscfg + SYSCFG_BOOTR); /* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI * and TRACE. Needed above ~50MHz and conditioned by AFMUX selection. * The customer will have to disable this for low frequencies * or if AFMUX is selected but the function not used, typically for * TRACE. Otherwise, impact on power consumption. * * WARNING: * enabling High Speed mode while VDD>2.7V * with the OTP product_below_2v5 (OTP 18, BIT 13) * erroneously set to 1 can damage the IC! * => U-Boot set the register only if VDD < 2.7V (in DT) * but this value need to be consistent with board design */ ret = uclass_get_device_by_driver(UCLASS_PMIC, DM_DRIVER_GET(stm32mp_pwr_pmic), &pwr_dev); if (!ret && IS_ENABLED(CONFIG_DM_REGULATOR)) { ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret) { log_err("Can't find stm32mp_bsec driver\n"); return; } ret = misc_read(dev, STM32_BSEC_SHADOW(18), &otp, 4); if (ret > 0) otp = otp & BIT(13); /* get VDD = vdd-supply */ ret = device_get_supply_regulator(pwr_dev, "vdd-supply", &pwr_reg); /* check if VDD is Low Voltage */ if (!ret) { if (regulator_get_value(pwr_reg) < 2700000) { writel(SYSCFG_IOCTRLSETR_HSLVEN_TRACE | SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI | SYSCFG_IOCTRLSETR_HSLVEN_ETH | SYSCFG_IOCTRLSETR_HSLVEN_SDMMC | SYSCFG_IOCTRLSETR_HSLVEN_SPI, syscfg + SYSCFG_IOCTRLSETR); if (!otp) log_err("product_below_2v5=0: HSLVEN protected by HW\n"); } else { if (otp) log_err("product_below_2v5=1: HSLVEN update is destructive, no update as VDD>2.7V\n"); } } else { log_debug("VDD unknown"); } } /* activate automatic I/O compensation * warning: need to ensure CSI enabled and ready in clock driver */ writel(SYSCFG_CMPENSETR_MPU_EN, syscfg + SYSCFG_CMPENSETR); /* poll until ready (1s timeout) */ ret = readl_poll_timeout(syscfg + SYSCFG_CMPCR, val, val & SYSCFG_CMPCR_READY, 1000000); if (ret) { log_err("SYSCFG: I/O compensation failed, timeout.\n"); led_error_blink(10); } clrbits_le32(syscfg + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL); } /* Fix to make I2C1 usable on DK2 for touchscreen usage in kernel */ static int dk2_i2c1_fix(void) { ofnode node; struct gpio_desc hdmi, audio; int ret = 0; if (!IS_ENABLED(CONFIG_DM_REGULATOR)) return -ENODEV; node = ofnode_path("/soc/i2c@40012000/hdmi-transmitter@39"); if (!ofnode_valid(node)) { log_debug("no hdmi-transmitter@39 ?\n"); return -ENOENT; } if (gpio_request_by_name_nodev(node, "reset-gpios", 0, &hdmi, GPIOD_IS_OUT)) { log_debug("could not find reset-gpios\n"); return -ENOENT; } node = ofnode_path("/soc/i2c@40012000/cs42l51@4a"); if (!ofnode_valid(node)) { log_debug("no cs42l51@4a ?\n"); return -ENOENT; } if (gpio_request_by_name_nodev(node, "reset-gpios", 0, &audio, GPIOD_IS_OUT)) { log_debug("could not find reset-gpios\n"); return -ENOENT; } /* before power up, insure that HDMI and AUDIO IC is under reset */ ret = dm_gpio_set_value(&hdmi, 1); if (ret) { log_err("can't set_value for hdmi_nrst gpio"); goto error; } ret = dm_gpio_set_value(&audio, 1); if (ret) { log_err("can't set_value for audio_nrst gpio"); goto error; } /* power-up audio IC */ regulator_autoset_by_name("v1v8_audio", NULL); /* power-up HDMI IC */ regulator_autoset_by_name("v1v2_hdmi", NULL); regulator_autoset_by_name("v3v3_hdmi", NULL); error: return ret; } static bool board_is_dk2(void) { if (CONFIG_IS_ENABLED(TARGET_ST_STM32MP15x) && of_machine_is_compatible("st,stm32mp157c-dk2")) return true; return false; } static bool board_is_ev1(void) { if (CONFIG_IS_ENABLED(TARGET_ST_STM32MP15x) && (of_machine_is_compatible("st,stm32mp157a-ev1") || of_machine_is_compatible("st,stm32mp157c-ev1") || of_machine_is_compatible("st,stm32mp157d-ev1") || of_machine_is_compatible("st,stm32mp157f-ev1"))) return true; return false; } /* touchscreen driver: only used for pincontrol configuration */ static const struct udevice_id goodix_ids[] = { { .compatible = "goodix,gt9147", }, { } }; U_BOOT_DRIVER(goodix) = { .name = "goodix", .id = UCLASS_NOP, .of_match = goodix_ids, }; static void board_ev1_init(void) { struct udevice *dev; /* configure IRQ line on EV1 for touchscreen before LCD reset */ uclass_get_device_by_driver(UCLASS_NOP, DM_DRIVER_GET(goodix), &dev); } /* board dependent setup after realloc */ int board_init(void) { board_key_check(); if (board_is_ev1()) board_ev1_init(); if (board_is_dk2()) dk2_i2c1_fix(); if (IS_ENABLED(CONFIG_DM_REGULATOR)) regulators_enable_boot_on(_DEBUG); /* * sysconf initialisation done only when U-Boot is running in secure * done in TF-A for TFABOOT. */ if (IS_ENABLED(CONFIG_ARMV7_NONSEC)) sysconf_init(); if (CONFIG_IS_ENABLED(LED)) led_default_state(); setup_led(LEDST_ON); return 0; } int board_late_init(void) { const void *fdt_compat; int fdt_compat_len; int ret; u32 otp; struct udevice *dev; char buf[10]; char dtb_name[256]; int buf_len; if (IS_ENABLED(CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG)) { fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible", &fdt_compat_len); if (fdt_compat && fdt_compat_len) { if (strncmp(fdt_compat, "st,", 3) != 0) { env_set("board_name", fdt_compat); } else { env_set("board_name", fdt_compat + 3); buf_len = sizeof(dtb_name); strncpy(dtb_name, fdt_compat + 3, buf_len); buf_len -= strlen(fdt_compat + 3); strncat(dtb_name, ".dtb", buf_len); env_set("fdtfile", dtb_name); } } ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (!ret) ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_BOARD), &otp, sizeof(otp)); if (ret > 0 && otp) { snprintf(buf, sizeof(buf), "0x%04x", otp >> 16); env_set("board_id", buf); snprintf(buf, sizeof(buf), "0x%04x", ((otp >> 8) & 0xF) - 1 + 0xA); env_set("board_rev", buf); } } /* for DK1/DK2 boards */ board_check_usb_power(); return 0; } void board_quiesce_devices(void) { setup_led(LEDST_OFF); } /* eth init function : weak called in eqos driver */ int board_interface_eth_init(struct udevice *dev, phy_interface_t interface_type) { u8 *syscfg; u32 value; bool eth_clk_sel_reg = false; bool eth_ref_clk_sel_reg = false; /* Gigabit Ethernet 125MHz clock selection. */ eth_clk_sel_reg = dev_read_bool(dev, "st,eth-clk-sel"); /* Ethernet 50Mhz RMII clock selection */ eth_ref_clk_sel_reg = dev_read_bool(dev, "st,eth-ref-clk-sel"); syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG); if (!syscfg) return -ENODEV; switch (interface_type) { case PHY_INTERFACE_MODE_MII: value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL; log_debug("PHY_INTERFACE_MODE_MII\n"); break; case PHY_INTERFACE_MODE_GMII: if (eth_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII | SYSCFG_PMCSETR_ETH_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII; log_debug("PHY_INTERFACE_MODE_GMII\n"); break; case PHY_INTERFACE_MODE_RMII: if (eth_ref_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_RMII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_RMII; log_debug("PHY_INTERFACE_MODE_RMII\n"); break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: if (eth_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_RGMII | SYSCFG_PMCSETR_ETH_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_RGMII; log_debug("PHY_INTERFACE_MODE_RGMII\n"); break; default: log_debug("Do not manage %d interface\n", interface_type); /* Do not manage others interfaces */ return -EINVAL; } /* clear and set ETH configuration bits */ writel(SYSCFG_PMCSETR_ETH_SEL_MASK | SYSCFG_PMCSETR_ETH_SELMII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL | SYSCFG_PMCSETR_ETH_CLK_SEL, syscfg + SYSCFG_PMCCLRR); writel(value, syscfg + SYSCFG_PMCSETR); return 0; } enum env_location env_get_location(enum env_operation op, int prio) { u32 bootmode = get_bootmode(); if (prio) return ENVL_UNKNOWN; switch (bootmode & TAMP_BOOT_DEVICE_MASK) { case BOOT_FLASH_SD: case BOOT_FLASH_EMMC: if (CONFIG_IS_ENABLED(ENV_IS_IN_MMC)) return ENVL_MMC; else if (CONFIG_IS_ENABLED(ENV_IS_IN_EXT4)) return ENVL_EXT4; else return ENVL_NOWHERE; case BOOT_FLASH_NAND: case BOOT_FLASH_SPINAND: if (CONFIG_IS_ENABLED(ENV_IS_IN_UBI)) return ENVL_UBI; else return ENVL_NOWHERE; case BOOT_FLASH_NOR: if (CONFIG_IS_ENABLED(ENV_IS_IN_SPI_FLASH)) return ENVL_SPI_FLASH; else return ENVL_NOWHERE; default: return ENVL_NOWHERE; } } const char *env_ext4_get_intf(void) { u32 bootmode = get_bootmode(); switch (bootmode & TAMP_BOOT_DEVICE_MASK) { case BOOT_FLASH_SD: case BOOT_FLASH_EMMC: return "mmc"; default: return ""; } } int mmc_get_boot(void) { struct udevice *dev; u32 boot_mode = get_bootmode(); unsigned int instance = (boot_mode & TAMP_BOOT_INSTANCE_MASK) - 1; char cmd[20]; const u32 sdmmc_addr[] = { STM32_SDMMC1_BASE, STM32_SDMMC2_BASE, STM32_SDMMC3_BASE }; if (instance > ARRAY_SIZE(sdmmc_addr)) return 0; /* search associated sdmmc node in devicetree */ snprintf(cmd, sizeof(cmd), "mmc@%x", sdmmc_addr[instance]); if (uclass_get_device_by_name(UCLASS_MMC, cmd, &dev)) { log_err("mmc%d = %s not found in device tree!\n", instance, cmd); return 0; } return dev_seq(dev); }; const char *env_ext4_get_dev_part(void) { static char *const env_dev_part = #ifdef CONFIG_ENV_EXT4_DEVICE_AND_PART CONFIG_ENV_EXT4_DEVICE_AND_PART; #else ""; #endif static char *const dev_part[] = {"0:auto", "1:auto", "2:auto"}; if (strlen(env_dev_part) > 0) return env_dev_part; return dev_part[mmc_get_boot()]; } int mmc_get_env_dev(void) { const int mmc_env_dev = CONFIG_IS_ENABLED(ENV_IS_IN_MMC, (CONFIG_SYS_MMC_ENV_DEV), (-1)); if (mmc_env_dev >= 0) return mmc_env_dev; /* use boot instance to select the correct mmc device identifier */ return mmc_get_boot(); } #if defined(CONFIG_OF_BOARD_SETUP) int ft_board_setup(void *blob, struct bd_info *bd) { static const struct node_info nodes[] = { { "st,stm32f469-qspi", MTD_DEV_TYPE_NOR, }, { "st,stm32f469-qspi", MTD_DEV_TYPE_SPINAND}, { "st,stm32mp15-fmc2", MTD_DEV_TYPE_NAND, }, { "st,stm32mp1-fmc2-nfc", MTD_DEV_TYPE_NAND, }, }; char *boot_device; /* Check the boot-source and don't update MTD for serial or usb boot */ boot_device = env_get("boot_device"); if (!boot_device || (strcmp(boot_device, "serial") && strcmp(boot_device, "usb"))) if (IS_ENABLED(CONFIG_FDT_FIXUP_PARTITIONS)) fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes)); if (CONFIG_IS_ENABLED(FDT_SIMPLEFB)) fdt_simplefb_enable_and_mem_rsv(blob); return 0; } #endif static void board_copro_image_process(ulong fw_image, size_t fw_size) { int ret, id = 0; /* Copro id fixed to 0 as only one coproc on mp1 */ if (!rproc_is_initialized()) if (rproc_init()) { log_err("Remote Processor %d initialization failed\n", id); return; } ret = rproc_load(id, fw_image, fw_size); log_err("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n", id, fw_image, fw_size, ret ? " Failed!" : " Success!"); if (!ret) rproc_start(id); } U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_COPRO, board_copro_image_process);