// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * f_mass_storage.c -- Mass Storage USB Composite Function * * Copyright (C) 2003-2008 Alan Stern * Copyright (C) 2009 Samsung Electronics * Author: Michal Nazarewicz * All rights reserved. */ /* * The Mass Storage Function acts as a USB Mass Storage device, * appearing to the host as a disk drive or as a CD-ROM drive. In * addition to providing an example of a genuinely useful composite * function for a USB device, it also illustrates a technique of * double-buffering for increased throughput. * * Function supports multiple logical units (LUNs). Backing storage * for each LUN is provided by a regular file or a block device. * Access for each LUN can be limited to read-only. Moreover, the * function can indicate that LUN is removable and/or CD-ROM. (The * later implies read-only access.) * * MSF is configured by specifying a fsg_config structure. It has the * following fields: * * nluns Number of LUNs function have (anywhere from 1 * to FSG_MAX_LUNS which is 8). * luns An array of LUN configuration values. This * should be filled for each LUN that * function will include (ie. for "nluns" * LUNs). Each element of the array has * the following fields: * ->filename The path to the backing file for the LUN. * Required if LUN is not marked as * removable. * ->ro Flag specifying access to the LUN shall be * read-only. This is implied if CD-ROM * emulation is enabled as well as when * it was impossible to open "filename" * in R/W mode. * ->removable Flag specifying that LUN shall be indicated as * being removable. * ->cdrom Flag specifying that LUN shall be reported as * being a CD-ROM. * * lun_name_format A printf-like format for names of the LUN * devices. This determines how the * directory in sysfs will be named. * Unless you are using several MSFs in * a single gadget (as opposed to single * MSF in many configurations) you may * leave it as NULL (in which case * "lun%d" will be used). In the format * you can use "%d" to index LUNs for * MSF's with more than one LUN. (Beware * that there is only one integer given * as an argument for the format and * specifying invalid format may cause * unspecified behaviour.) * thread_name Name of the kernel thread process used by the * MSF. You can safely set it to NULL * (in which case default "file-storage" * will be used). * * vendor_name * product_name * release Information used as a reply to INQUIRY * request. To use default set to NULL, * NULL, 0xffff respectively. The first * field should be 8 and the second 16 * characters or less. * * can_stall Set to permit function to halt bulk endpoints. * Disabled on some USB devices known not * to work correctly. You should set it * to true. * * If "removable" is not set for a LUN then a backing file must be * specified. If it is set, then NULL filename means the LUN's medium * is not loaded (an empty string as "filename" in the fsg_config * structure causes error). The CD-ROM emulation includes a single * data track and no audio tracks; hence there need be only one * backing file per LUN. Note also that the CD-ROM block length is * set to 512 rather than the more common value 2048. * * * MSF includes support for module parameters. If gadget using it * decides to use it, the following module parameters will be * available: * * file=filename[,filename...] * Names of the files or block devices used for * backing storage. * ro=b[,b...] Default false, boolean for read-only access. * removable=b[,b...] * Default true, boolean for removable media. * cdrom=b[,b...] Default false, boolean for whether to emulate * a CD-ROM drive. * luns=N Default N = number of filenames, number of * LUNs to support. * stall Default determined according to the type of * USB device controller (usually true), * boolean to permit the driver to halt * bulk endpoints. * * The module parameters may be prefixed with some string. You need * to consult gadget's documentation or source to verify whether it is * using those module parameters and if it does what are the prefixes * (look for FSG_MODULE_PARAMETERS() macro usage, what's inside it is * the prefix). * * * Requirements are modest; only a bulk-in and a bulk-out endpoint are * needed. The memory requirement amounts to two 16K buffers, size * configurable by a parameter. Support is included for both * full-speed and high-speed operation. * * Note that the driver is slightly non-portable in that it assumes a * single memory/DMA buffer will be useable for bulk-in, bulk-out, and * interrupt-in endpoints. With most device controllers this isn't an * issue, but there may be some with hardware restrictions that prevent * a buffer from being used by more than one endpoint. * * * The pathnames of the backing files and the ro settings are * available in the attribute files "file" and "ro" in the lun (or * to be more precise in a directory which name comes from * "lun_name_format" option!) subdirectory of the gadget's sysfs * directory. If the "removable" option is set, writing to these * files will simulate ejecting/loading the medium (writing an empty * line means eject) and adjusting a write-enable tab. Changes to the * ro setting are not allowed when the medium is loaded or if CD-ROM * emulation is being used. * * When a LUN receive an "eject" SCSI request (Start/Stop Unit), * if the LUN is removable, the backing file is released to simulate * ejection. * * * This function is heavily based on "File-backed Storage Gadget" by * Alan Stern which in turn is heavily based on "Gadget Zero" by David * Brownell. The driver's SCSI command interface was based on the * "Information technology - Small Computer System Interface - 2" * document from X3T9.2 Project 375D, Revision 10L, 7-SEP-93, * available at . * The single exception is opcode 0x23 (READ FORMAT CAPACITIES), which * was based on the "Universal Serial Bus Mass Storage Class UFI * Command Specification" document, Revision 1.0, December 14, 1998, * available at * . */ /* * Driver Design * * The MSF is fairly straightforward. There is a main kernel * thread that handles most of the work. Interrupt routines field * callbacks from the controller driver: bulk- and interrupt-request * completion notifications, endpoint-0 events, and disconnect events. * Completion events are passed to the main thread by wakeup calls. Many * ep0 requests are handled at interrupt time, but SetInterface, * SetConfiguration, and device reset requests are forwarded to the * thread in the form of "exceptions" using SIGUSR1 signals (since they * should interrupt any ongoing file I/O operations). * * The thread's main routine implements the standard command/data/status * parts of a SCSI interaction. It and its subroutines are full of tests * for pending signals/exceptions -- all this polling is necessary since * the kernel has no setjmp/longjmp equivalents. (Maybe this is an * indication that the driver really wants to be running in userspace.) * An important point is that so long as the thread is alive it keeps an * open reference to the backing file. This will prevent unmounting * the backing file's underlying filesystem and could cause problems * during system shutdown, for example. To prevent such problems, the * thread catches INT, TERM, and KILL signals and converts them into * an EXIT exception. * * In normal operation the main thread is started during the gadget's * fsg_bind() callback and stopped during fsg_unbind(). But it can * also exit when it receives a signal, and there's no point leaving * the gadget running when the thread is dead. At of this moment, MSF * provides no way to deregister the gadget when thread dies -- maybe * a callback functions is needed. * * To provide maximum throughput, the driver uses a circular pipeline of * buffer heads (struct fsg_buffhd). In principle the pipeline can be * arbitrarily long; in practice the benefits don't justify having more * than 2 stages (i.e., double buffering). But it helps to think of the * pipeline as being a long one. Each buffer head contains a bulk-in and * a bulk-out request pointer (since the buffer can be used for both * output and input -- directions always are given from the host's * point of view) as well as a pointer to the buffer and various state * variables. * * Use of the pipeline follows a simple protocol. There is a variable * (fsg->next_buffhd_to_fill) that points to the next buffer head to use. * At any time that buffer head may still be in use from an earlier * request, so each buffer head has a state variable indicating whether * it is EMPTY, FULL, or BUSY. Typical use involves waiting for the * buffer head to be EMPTY, filling the buffer either by file I/O or by * USB I/O (during which the buffer head is BUSY), and marking the buffer * head FULL when the I/O is complete. Then the buffer will be emptied * (again possibly by USB I/O, during which it is marked BUSY) and * finally marked EMPTY again (possibly by a completion routine). * * A module parameter tells the driver to avoid stalling the bulk * endpoints wherever the transport specification allows. This is * necessary for some UDCs like the SuperH, which cannot reliably clear a * halt on a bulk endpoint. However, under certain circumstances the * Bulk-only specification requires a stall. In such cases the driver * will halt the endpoint and set a flag indicating that it should clear * the halt in software during the next device reset. Hopefully this * will permit everything to work correctly. Furthermore, although the * specification allows the bulk-out endpoint to halt when the host sends * too much data, implementing this would cause an unavoidable race. * The driver will always use the "no-stall" approach for OUT transfers. * * One subtle point concerns sending status-stage responses for ep0 * requests. Some of these requests, such as device reset, can involve * interrupting an ongoing file I/O operation, which might take an * arbitrarily long time. During that delay the host might give up on * the original ep0 request and issue a new one. When that happens the * driver should not notify the host about completion of the original * request, as the host will no longer be waiting for it. So the driver * assigns to each ep0 request a unique tag, and it keeps track of the * tag value of the request associated with a long-running exception * (device-reset, interface-change, or configuration-change). When the * exception handler is finished, the status-stage response is submitted * only if the current ep0 request tag is equal to the exception request * tag. Thus only the most recently received ep0 request will get a * status-stage response. * * Warning: This driver source file is too long. It ought to be split up * into a header file plus about 3 separate .c files, to handle the details * of the Gadget, USB Mass Storage, and SCSI protocols. */ /* #define VERBOSE_DEBUG */ /* #define DUMP_MSGS */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*------------------------------------------------------------------------*/ #define FSG_DRIVER_DESC "Mass Storage Function" #define FSG_DRIVER_VERSION "2012/06/5" static const char fsg_string_interface[] = "Mass Storage"; #define FSG_NO_INTR_EP 1 #define FSG_NO_DEVICE_STRINGS 1 #define FSG_NO_OTG 1 #define FSG_NO_INTR_EP 1 #include "storage_common.c" /*-------------------------------------------------------------------------*/ #define GFP_ATOMIC ((gfp_t) 0) #define PAGE_CACHE_SHIFT 12 #define PAGE_CACHE_SIZE (1 << PAGE_CACHE_SHIFT) #define kthread_create(...) __builtin_return_address(0) #define wait_for_completion(...) do {} while (0) struct kref {int x; }; struct completion {int x; }; struct fsg_dev; struct fsg_common; /* Data shared by all the FSG instances. */ struct fsg_common { struct usb_gadget *gadget; struct fsg_dev *fsg, *new_fsg; struct usb_ep *ep0; /* Copy of gadget->ep0 */ struct usb_request *ep0req; /* Copy of cdev->req */ unsigned int ep0_req_tag; struct fsg_buffhd *next_buffhd_to_fill; struct fsg_buffhd *next_buffhd_to_drain; struct fsg_buffhd buffhds[FSG_NUM_BUFFERS]; int cmnd_size; u8 cmnd[MAX_COMMAND_SIZE]; unsigned int nluns; unsigned int lun; struct fsg_lun luns[FSG_MAX_LUNS]; unsigned int bulk_out_maxpacket; enum fsg_state state; /* For exception handling */ unsigned int exception_req_tag; enum data_direction data_dir; u32 data_size; u32 data_size_from_cmnd; u32 tag; u32 residue; u32 usb_amount_left; unsigned int can_stall:1; unsigned int free_storage_on_release:1; unsigned int phase_error:1; unsigned int short_packet_received:1; unsigned int bad_lun_okay:1; unsigned int running:1; int thread_wakeup_needed; struct completion thread_notifier; struct task_struct *thread_task; /* Callback functions. */ const struct fsg_operations *ops; /* Gadget's private data. */ void *private_data; const char *vendor_name; /* 8 characters or less */ const char *product_name; /* 16 characters or less */ u16 release; /* Vendor (8 chars), product (16 chars), release (4 * hexadecimal digits) and NUL byte */ char inquiry_string[8 + 16 + 4 + 1]; struct kref ref; }; struct fsg_config { unsigned nluns; struct fsg_lun_config { const char *filename; char ro; char removable; char cdrom; char nofua; } luns[FSG_MAX_LUNS]; /* Callback functions. */ const struct fsg_operations *ops; /* Gadget's private data. */ void *private_data; const char *vendor_name; /* 8 characters or less */ const char *product_name; /* 16 characters or less */ char can_stall; }; struct fsg_dev { struct usb_function function; struct usb_gadget *gadget; /* Copy of cdev->gadget */ struct fsg_common *common; u16 interface_number; unsigned int bulk_in_enabled:1; unsigned int bulk_out_enabled:1; unsigned long atomic_bitflags; #define IGNORE_BULK_OUT 0 struct usb_ep *bulk_in; struct usb_ep *bulk_out; }; static inline int __fsg_is_set(struct fsg_common *common, const char *func, unsigned line) { if (common->fsg) return 1; ERROR(common, "common->fsg is NULL in %s at %u\n", func, line); #ifdef __UBOOT__ assert_noisy(false); #else WARN_ON(1); #endif return 0; } #define fsg_is_set(common) likely(__fsg_is_set(common, __func__, __LINE__)) static inline struct fsg_dev *fsg_from_func(struct usb_function *f) { return container_of(f, struct fsg_dev, function); } typedef void (*fsg_routine_t)(struct fsg_dev *); static int exception_in_progress(struct fsg_common *common) { return common->state > FSG_STATE_IDLE; } /* Make bulk-out requests be divisible by the maxpacket size */ static void set_bulk_out_req_length(struct fsg_common *common, struct fsg_buffhd *bh, unsigned int length) { unsigned int rem; bh->bulk_out_intended_length = length; rem = length % common->bulk_out_maxpacket; if (rem > 0) length += common->bulk_out_maxpacket - rem; bh->outreq->length = length; } /*-------------------------------------------------------------------------*/ static struct ums *ums; static int ums_count; static struct fsg_common *the_fsg_common; static struct udevice *udcdev; static int fsg_set_halt(struct fsg_dev *fsg, struct usb_ep *ep) { const char *name; if (ep == fsg->bulk_in) name = "bulk-in"; else if (ep == fsg->bulk_out) name = "bulk-out"; else name = ep->name; DBG(fsg, "%s set halt\n", name); return usb_ep_set_halt(ep); } /*-------------------------------------------------------------------------*/ /* These routines may be called in process context or in_irq */ /* Caller must hold fsg->lock */ static void wakeup_thread(struct fsg_common *common) { common->thread_wakeup_needed = 1; } static void raise_exception(struct fsg_common *common, enum fsg_state new_state) { /* Do nothing if a higher-priority exception is already in progress. * If a lower-or-equal priority exception is in progress, preempt it * and notify the main thread by sending it a signal. */ if (common->state <= new_state) { common->exception_req_tag = common->ep0_req_tag; common->state = new_state; common->thread_wakeup_needed = 1; } } /*-------------------------------------------------------------------------*/ static int ep0_queue(struct fsg_common *common) { int rc; rc = usb_ep_queue(common->ep0, common->ep0req, GFP_ATOMIC); common->ep0->driver_data = common; if (rc != 0 && rc != -ESHUTDOWN) { /* We can't do much more than wait for a reset */ WARNING(common, "error in submission: %s --> %d\n", common->ep0->name, rc); } return rc; } /*-------------------------------------------------------------------------*/ /* Bulk and interrupt endpoint completion handlers. * These always run in_irq. */ static void bulk_in_complete(struct usb_ep *ep, struct usb_request *req) { struct fsg_common *common = ep->driver_data; struct fsg_buffhd *bh = req->context; if (req->status || req->actual != req->length) DBG(common, "%s --> %d, %u/%u\n", __func__, req->status, req->actual, req->length); if (req->status == -ECONNRESET) /* Request was cancelled */ usb_ep_fifo_flush(ep); /* Hold the lock while we update the request and buffer states */ bh->inreq_busy = 0; bh->state = BUF_STATE_EMPTY; wakeup_thread(common); } static void bulk_out_complete(struct usb_ep *ep, struct usb_request *req) { struct fsg_common *common = ep->driver_data; struct fsg_buffhd *bh = req->context; dump_msg(common, "bulk-out", req->buf, req->actual); if (req->status || req->actual != bh->bulk_out_intended_length) DBG(common, "%s --> %d, %u/%u\n", __func__, req->status, req->actual, bh->bulk_out_intended_length); if (req->status == -ECONNRESET) /* Request was cancelled */ usb_ep_fifo_flush(ep); /* Hold the lock while we update the request and buffer states */ bh->outreq_busy = 0; bh->state = BUF_STATE_FULL; wakeup_thread(common); } /*-------------------------------------------------------------------------*/ /* Ep0 class-specific handlers. These always run in_irq. */ static int fsg_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct fsg_dev *fsg = fsg_from_func(f); struct usb_request *req = fsg->common->ep0req; u16 w_index = get_unaligned_le16(&ctrl->wIndex); u16 w_value = get_unaligned_le16(&ctrl->wValue); u16 w_length = get_unaligned_le16(&ctrl->wLength); if (!fsg_is_set(fsg->common)) return -EOPNOTSUPP; switch (ctrl->bRequest) { case USB_BULK_RESET_REQUEST: if (ctrl->bRequestType != (USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE)) break; if (w_index != fsg->interface_number || w_value != 0) return -EDOM; /* Raise an exception to stop the current operation * and reinitialize our state. */ DBG(fsg, "bulk reset request\n"); raise_exception(fsg->common, FSG_STATE_RESET); return DELAYED_STATUS; case USB_BULK_GET_MAX_LUN_REQUEST: if (ctrl->bRequestType != (USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE)) break; if (w_index != fsg->interface_number || w_value != 0) return -EDOM; VDBG(fsg, "get max LUN\n"); *(u8 *) req->buf = fsg->common->nluns - 1; /* Respond with data/status */ req->length = min((u16)1, w_length); return ep0_queue(fsg->common); } VDBG(fsg, "unknown class-specific control req " "%02x.%02x v%04x i%04x l%u\n", ctrl->bRequestType, ctrl->bRequest, get_unaligned_le16(&ctrl->wValue), w_index, w_length); return -EOPNOTSUPP; } /*-------------------------------------------------------------------------*/ /* All the following routines run in process context */ /* Use this for bulk or interrupt transfers, not ep0 */ static void start_transfer(struct fsg_dev *fsg, struct usb_ep *ep, struct usb_request *req, int *pbusy, enum fsg_buffer_state *state) { int rc; if (ep == fsg->bulk_in) dump_msg(fsg, "bulk-in", req->buf, req->length); *pbusy = 1; *state = BUF_STATE_BUSY; rc = usb_ep_queue(ep, req, GFP_KERNEL); if (rc != 0) { *pbusy = 0; *state = BUF_STATE_EMPTY; /* We can't do much more than wait for a reset */ /* Note: currently the net2280 driver fails zero-length * submissions if DMA is enabled. */ if (rc != -ESHUTDOWN && !(rc == -EOPNOTSUPP && req->length == 0)) WARNING(fsg, "error in submission: %s --> %d\n", ep->name, rc); } } #define START_TRANSFER_OR(common, ep_name, req, pbusy, state) \ if (fsg_is_set(common)) \ start_transfer((common)->fsg, (common)->fsg->ep_name, \ req, pbusy, state); \ else #define START_TRANSFER(common, ep_name, req, pbusy, state) \ START_TRANSFER_OR(common, ep_name, req, pbusy, state) (void)0 static void busy_indicator(void) { static int state; switch (state) { case 0: puts("\r|"); break; case 1: puts("\r/"); break; case 2: puts("\r-"); break; case 3: puts("\r\\"); break; case 4: puts("\r|"); break; case 5: puts("\r/"); break; case 6: puts("\r-"); break; case 7: puts("\r\\"); break; default: state = 0; } if (state++ == 8) state = 0; } static int sleep_thread(struct fsg_common *common) { int rc = 0; int i = 0, k = 0; /* Wait until a signal arrives or we are woken up */ for (;;) { if (common->thread_wakeup_needed) break; if (++i == 20000) { busy_indicator(); i = 0; k++; } if (k == 10) { /* Handle CTRL+C */ if (ctrlc()) return -EPIPE; /* Check cable connection */ if (!g_dnl_board_usb_cable_connected()) return -EIO; k = 0; } dm_usb_gadget_handle_interrupts(udcdev); } common->thread_wakeup_needed = 0; return rc; } /*-------------------------------------------------------------------------*/ static int do_read(struct fsg_common *common) { struct fsg_lun *curlun = &common->luns[common->lun]; u32 lba; struct fsg_buffhd *bh; int rc; u32 amount_left; loff_t file_offset; unsigned int amount; unsigned int partial_page; ssize_t nread; /* Get the starting Logical Block Address and check that it's * not too big */ if (common->cmnd[0] == SC_READ_6) lba = get_unaligned_be24(&common->cmnd[1]); else { lba = get_unaligned_be32(&common->cmnd[2]); /* We allow DPO (Disable Page Out = don't save data in the * cache) and FUA (Force Unit Access = don't read from the * cache), but we don't implement them. */ if ((common->cmnd[1] & ~0x18) != 0) { curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } } if (lba >= curlun->num_sectors) { curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; return -EINVAL; } file_offset = ((loff_t) lba) << 9; /* Carry out the file reads */ amount_left = common->data_size_from_cmnd; if (unlikely(amount_left == 0)) return -EIO; /* No default reply */ for (;;) { /* Figure out how much we need to read: * Try to read the remaining amount. * But don't read more than the buffer size. * And don't try to read past the end of the file. * Finally, if we're not at a page boundary, don't read past * the next page. * If this means reading 0 then we were asked to read past * the end of file. */ amount = min(amount_left, FSG_BUFLEN); partial_page = file_offset & (PAGE_CACHE_SIZE - 1); if (partial_page > 0) amount = min(amount, (unsigned int) PAGE_CACHE_SIZE - partial_page); /* Wait for the next buffer to become available */ bh = common->next_buffhd_to_fill; while (bh->state != BUF_STATE_EMPTY) { rc = sleep_thread(common); if (rc) return rc; } /* If we were asked to read past the end of file, * end with an empty buffer. */ if (amount == 0) { curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; curlun->info_valid = 1; bh->inreq->length = 0; bh->state = BUF_STATE_FULL; break; } /* Perform the read */ rc = ums[common->lun].read_sector(&ums[common->lun], file_offset / SECTOR_SIZE, amount / SECTOR_SIZE, (char __user *)bh->buf); if (!rc) return -EIO; nread = rc * SECTOR_SIZE; VLDBG(curlun, "file read %u @ %llu -> %d\n", amount, (unsigned long long) file_offset, (int) nread); if (nread < 0) { LDBG(curlun, "error in file read: %d\n", (int) nread); nread = 0; } else if (nread < amount) { LDBG(curlun, "partial file read: %d/%u\n", (int) nread, amount); nread -= (nread & 511); /* Round down to a block */ } file_offset += nread; amount_left -= nread; common->residue -= nread; bh->inreq->length = nread; bh->state = BUF_STATE_FULL; /* If an error occurred, report it and its position */ if (nread < amount) { curlun->sense_data = SS_UNRECOVERED_READ_ERROR; curlun->info_valid = 1; break; } if (amount_left == 0) break; /* No more left to read */ /* Send this buffer and go read some more */ bh->inreq->zero = 0; START_TRANSFER_OR(common, bulk_in, bh->inreq, &bh->inreq_busy, &bh->state) /* Don't know what to do if * common->fsg is NULL */ return -EIO; common->next_buffhd_to_fill = bh->next; } return -EIO; /* No default reply */ } /*-------------------------------------------------------------------------*/ static int do_write(struct fsg_common *common) { struct fsg_lun *curlun = &common->luns[common->lun]; u32 lba; struct fsg_buffhd *bh; int get_some_more; u32 amount_left_to_req, amount_left_to_write; loff_t usb_offset, file_offset; unsigned int amount; unsigned int partial_page; ssize_t nwritten; int rc; if (curlun->ro) { curlun->sense_data = SS_WRITE_PROTECTED; return -EINVAL; } /* Get the starting Logical Block Address and check that it's * not too big */ if (common->cmnd[0] == SC_WRITE_6) lba = get_unaligned_be24(&common->cmnd[1]); else { lba = get_unaligned_be32(&common->cmnd[2]); /* We allow DPO (Disable Page Out = don't save data in the * cache) and FUA (Force Unit Access = write directly to the * medium). We don't implement DPO; we implement FUA by * performing synchronous output. */ if (common->cmnd[1] & ~0x18) { curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } } if (lba >= curlun->num_sectors) { curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; return -EINVAL; } /* Carry out the file writes */ get_some_more = 1; file_offset = usb_offset = ((loff_t) lba) << 9; amount_left_to_req = common->data_size_from_cmnd; amount_left_to_write = common->data_size_from_cmnd; while (amount_left_to_write > 0) { /* Queue a request for more data from the host */ bh = common->next_buffhd_to_fill; if (bh->state == BUF_STATE_EMPTY && get_some_more) { /* Figure out how much we want to get: * Try to get the remaining amount. * But don't get more than the buffer size. * And don't try to go past the end of the file. * If we're not at a page boundary, * don't go past the next page. * If this means getting 0, then we were asked * to write past the end of file. * Finally, round down to a block boundary. */ amount = min(amount_left_to_req, FSG_BUFLEN); partial_page = usb_offset & (PAGE_CACHE_SIZE - 1); if (partial_page > 0) amount = min(amount, (unsigned int) PAGE_CACHE_SIZE - partial_page); if (amount == 0) { get_some_more = 0; curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; curlun->info_valid = 1; continue; } amount -= (amount & 511); if (amount == 0) { /* Why were we were asked to transfer a * partial block? */ get_some_more = 0; continue; } /* Get the next buffer */ usb_offset += amount; common->usb_amount_left -= amount; amount_left_to_req -= amount; if (amount_left_to_req == 0) get_some_more = 0; /* amount is always divisible by 512, hence by * the bulk-out maxpacket size */ bh->outreq->length = amount; bh->bulk_out_intended_length = amount; bh->outreq->short_not_ok = 1; START_TRANSFER_OR(common, bulk_out, bh->outreq, &bh->outreq_busy, &bh->state) /* Don't know what to do if * common->fsg is NULL */ return -EIO; common->next_buffhd_to_fill = bh->next; continue; } /* Write the received data to the backing file */ bh = common->next_buffhd_to_drain; if (bh->state == BUF_STATE_EMPTY && !get_some_more) break; /* We stopped early */ if (bh->state == BUF_STATE_FULL) { common->next_buffhd_to_drain = bh->next; bh->state = BUF_STATE_EMPTY; /* Did something go wrong with the transfer? */ if (bh->outreq->status != 0) { curlun->sense_data = SS_COMMUNICATION_FAILURE; curlun->info_valid = 1; break; } amount = bh->outreq->actual; /* Perform the write */ rc = ums[common->lun].write_sector(&ums[common->lun], file_offset / SECTOR_SIZE, amount / SECTOR_SIZE, (char __user *)bh->buf); if (!rc) return -EIO; nwritten = rc * SECTOR_SIZE; VLDBG(curlun, "file write %u @ %llu -> %d\n", amount, (unsigned long long) file_offset, (int) nwritten); if (nwritten < 0) { LDBG(curlun, "error in file write: %d\n", (int) nwritten); nwritten = 0; } else if (nwritten < amount) { LDBG(curlun, "partial file write: %d/%u\n", (int) nwritten, amount); nwritten -= (nwritten & 511); /* Round down to a block */ } file_offset += nwritten; amount_left_to_write -= nwritten; common->residue -= nwritten; /* If an error occurred, report it and its position */ if (nwritten < amount) { printf("nwritten:%zd amount:%u\n", nwritten, amount); curlun->sense_data = SS_WRITE_ERROR; curlun->info_valid = 1; break; } /* Did the host decide to stop early? */ if (bh->outreq->actual != bh->outreq->length) { common->short_packet_received = 1; break; } continue; } /* Wait for something to happen */ rc = sleep_thread(common); if (rc) return rc; } return -EIO; /* No default reply */ } /*-------------------------------------------------------------------------*/ static int do_synchronize_cache(struct fsg_common *common) { return 0; } /*-------------------------------------------------------------------------*/ static int do_verify(struct fsg_common *common) { struct fsg_lun *curlun = &common->luns[common->lun]; u32 lba; u32 verification_length; struct fsg_buffhd *bh = common->next_buffhd_to_fill; loff_t file_offset; u32 amount_left; unsigned int amount; ssize_t nread; int rc; /* Get the starting Logical Block Address and check that it's * not too big */ lba = get_unaligned_be32(&common->cmnd[2]); if (lba >= curlun->num_sectors) { curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; return -EINVAL; } /* We allow DPO (Disable Page Out = don't save data in the * cache) but we don't implement it. */ if (common->cmnd[1] & ~0x10) { curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } verification_length = get_unaligned_be16(&common->cmnd[7]); if (unlikely(verification_length == 0)) return -EIO; /* No default reply */ /* Prepare to carry out the file verify */ amount_left = verification_length << 9; file_offset = ((loff_t) lba) << 9; /* Write out all the dirty buffers before invalidating them */ /* Just try to read the requested blocks */ while (amount_left > 0) { /* Figure out how much we need to read: * Try to read the remaining amount, but not more than * the buffer size. * And don't try to read past the end of the file. * If this means reading 0 then we were asked to read * past the end of file. */ amount = min(amount_left, FSG_BUFLEN); if (amount == 0) { curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; curlun->info_valid = 1; break; } /* Perform the read */ rc = ums[common->lun].read_sector(&ums[common->lun], file_offset / SECTOR_SIZE, amount / SECTOR_SIZE, (char __user *)bh->buf); if (!rc) return -EIO; nread = rc * SECTOR_SIZE; VLDBG(curlun, "file read %u @ %llu -> %d\n", amount, (unsigned long long) file_offset, (int) nread); if (nread < 0) { LDBG(curlun, "error in file verify: %d\n", (int) nread); nread = 0; } else if (nread < amount) { LDBG(curlun, "partial file verify: %d/%u\n", (int) nread, amount); nread -= (nread & 511); /* Round down to a sector */ } if (nread == 0) { curlun->sense_data = SS_UNRECOVERED_READ_ERROR; curlun->info_valid = 1; break; } file_offset += nread; amount_left -= nread; } return 0; } /*-------------------------------------------------------------------------*/ static int do_inquiry(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; static const char vendor_id[] = "Linux "; u8 *buf = (u8 *) bh->buf; if (!curlun) { /* Unsupported LUNs are okay */ common->bad_lun_okay = 1; memset(buf, 0, 36); buf[0] = 0x7f; /* Unsupported, no device-type */ buf[4] = 31; /* Additional length */ return 36; } memset(buf, 0, 8); buf[0] = TYPE_DISK; buf[1] = curlun->removable ? 0x80 : 0; buf[2] = 2; /* ANSI SCSI level 2 */ buf[3] = 2; /* SCSI-2 INQUIRY data format */ buf[4] = 31; /* Additional length */ /* No special options */ sprintf((char *) (buf + 8), "%-8s%-16s%04x", (char*) vendor_id , ums[common->lun].name, (u16) 0xffff); return 36; } static int do_request_sense(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; u8 *buf = (u8 *) bh->buf; u32 sd, sdinfo = 0; int valid; /* * From the SCSI-2 spec., section 7.9 (Unit attention condition): * * If a REQUEST SENSE command is received from an initiator * with a pending unit attention condition (before the target * generates the contingent allegiance condition), then the * target shall either: * a) report any pending sense data and preserve the unit * attention condition on the logical unit, or, * b) report the unit attention condition, may discard any * pending sense data, and clear the unit attention * condition on the logical unit for that initiator. * * FSG normally uses option a); enable this code to use option b). */ #if 0 if (curlun && curlun->unit_attention_data != SS_NO_SENSE) { curlun->sense_data = curlun->unit_attention_data; curlun->unit_attention_data = SS_NO_SENSE; } #endif if (!curlun) { /* Unsupported LUNs are okay */ common->bad_lun_okay = 1; sd = SS_LOGICAL_UNIT_NOT_SUPPORTED; valid = 0; } else { sd = curlun->sense_data; valid = curlun->info_valid << 7; curlun->sense_data = SS_NO_SENSE; curlun->info_valid = 0; } memset(buf, 0, 18); buf[0] = valid | 0x70; /* Valid, current error */ buf[2] = SK(sd); put_unaligned_be32(sdinfo, &buf[3]); /* Sense information */ buf[7] = 18 - 8; /* Additional sense length */ buf[12] = ASC(sd); buf[13] = ASCQ(sd); return 18; } static int do_read_capacity(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; u32 lba = get_unaligned_be32(&common->cmnd[2]); int pmi = common->cmnd[8]; u8 *buf = (u8 *) bh->buf; /* Check the PMI and LBA fields */ if (pmi > 1 || (pmi == 0 && lba != 0)) { curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } put_unaligned_be32(curlun->num_sectors - 1, &buf[0]); /* Max logical block */ put_unaligned_be32(512, &buf[4]); /* Block length */ return 8; } static int do_read_header(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; int msf = common->cmnd[1] & 0x02; u32 lba = get_unaligned_be32(&common->cmnd[2]); u8 *buf = (u8 *) bh->buf; if (common->cmnd[1] & ~0x02) { /* Mask away MSF */ curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } if (lba >= curlun->num_sectors) { curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; return -EINVAL; } memset(buf, 0, 8); buf[0] = 0x01; /* 2048 bytes of user data, rest is EC */ store_cdrom_address(&buf[4], msf, lba); return 8; } static int do_read_toc(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; int msf = common->cmnd[1] & 0x02; int start_track = common->cmnd[6]; u8 *buf = (u8 *) bh->buf; if ((common->cmnd[1] & ~0x02) != 0 || /* Mask away MSF */ start_track > 1) { curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } memset(buf, 0, 20); buf[1] = (20-2); /* TOC data length */ buf[2] = 1; /* First track number */ buf[3] = 1; /* Last track number */ buf[5] = 0x16; /* Data track, copying allowed */ buf[6] = 0x01; /* Only track is number 1 */ store_cdrom_address(&buf[8], msf, 0); buf[13] = 0x16; /* Lead-out track is data */ buf[14] = 0xAA; /* Lead-out track number */ store_cdrom_address(&buf[16], msf, curlun->num_sectors); return 20; } static int do_mode_sense(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; int mscmnd = common->cmnd[0]; u8 *buf = (u8 *) bh->buf; u8 *buf0 = buf; int pc, page_code; int changeable_values, all_pages; int valid_page = 0; int len, limit; if ((common->cmnd[1] & ~0x08) != 0) { /* Mask away DBD */ curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } pc = common->cmnd[2] >> 6; page_code = common->cmnd[2] & 0x3f; if (pc == 3) { curlun->sense_data = SS_SAVING_PARAMETERS_NOT_SUPPORTED; return -EINVAL; } changeable_values = (pc == 1); all_pages = (page_code == 0x3f); /* Write the mode parameter header. Fixed values are: default * medium type, no cache control (DPOFUA), and no block descriptors. * The only variable value is the WriteProtect bit. We will fill in * the mode data length later. */ memset(buf, 0, 8); if (mscmnd == SC_MODE_SENSE_6) { buf[2] = (curlun->ro ? 0x80 : 0x00); /* WP, DPOFUA */ buf += 4; limit = 255; } else { /* SC_MODE_SENSE_10 */ buf[3] = (curlun->ro ? 0x80 : 0x00); /* WP, DPOFUA */ buf += 8; limit = 65535; /* Should really be FSG_BUFLEN */ } /* No block descriptors */ /* The mode pages, in numerical order. The only page we support * is the Caching page. */ if (page_code == 0x08 || all_pages) { valid_page = 1; buf[0] = 0x08; /* Page code */ buf[1] = 10; /* Page length */ memset(buf+2, 0, 10); /* None of the fields are changeable */ if (!changeable_values) { buf[2] = 0x04; /* Write cache enable, */ /* Read cache not disabled */ /* No cache retention priorities */ put_unaligned_be16(0xffff, &buf[4]); /* Don't disable prefetch */ /* Minimum prefetch = 0 */ put_unaligned_be16(0xffff, &buf[8]); /* Maximum prefetch */ put_unaligned_be16(0xffff, &buf[10]); /* Maximum prefetch ceiling */ } buf += 12; } /* Check that a valid page was requested and the mode data length * isn't too long. */ len = buf - buf0; if (!valid_page || len > limit) { curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } /* Store the mode data length */ if (mscmnd == SC_MODE_SENSE_6) buf0[0] = len - 1; else put_unaligned_be16(len - 2, buf0); return len; } static int do_start_stop(struct fsg_common *common) { struct fsg_lun *curlun = &common->luns[common->lun]; if (!curlun) { return -EINVAL; } else if (!curlun->removable) { curlun->sense_data = SS_INVALID_COMMAND; return -EINVAL; } return 0; } static int do_prevent_allow(struct fsg_common *common) { struct fsg_lun *curlun = &common->luns[common->lun]; int prevent; if (!curlun->removable) { curlun->sense_data = SS_INVALID_COMMAND; return -EINVAL; } prevent = common->cmnd[4] & 0x01; if ((common->cmnd[4] & ~0x01) != 0) { /* Mask away Prevent */ curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } if (curlun->prevent_medium_removal && !prevent) fsg_lun_fsync_sub(curlun); curlun->prevent_medium_removal = prevent; return 0; } static int do_read_format_capacities(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; u8 *buf = (u8 *) bh->buf; buf[0] = buf[1] = buf[2] = 0; buf[3] = 8; /* Only the Current/Maximum Capacity Descriptor */ buf += 4; put_unaligned_be32(curlun->num_sectors, &buf[0]); /* Number of blocks */ put_unaligned_be32(512, &buf[4]); /* Block length */ buf[4] = 0x02; /* Current capacity */ return 12; } static int do_mode_select(struct fsg_common *common, struct fsg_buffhd *bh) { struct fsg_lun *curlun = &common->luns[common->lun]; /* We don't support MODE SELECT */ if (curlun) curlun->sense_data = SS_INVALID_COMMAND; return -EINVAL; } /*-------------------------------------------------------------------------*/ static int halt_bulk_in_endpoint(struct fsg_dev *fsg) { int rc; rc = fsg_set_halt(fsg, fsg->bulk_in); if (rc == -EAGAIN) VDBG(fsg, "delayed bulk-in endpoint halt\n"); while (rc != 0) { if (rc != -EAGAIN) { WARNING(fsg, "usb_ep_set_halt -> %d\n", rc); rc = 0; break; } rc = usb_ep_set_halt(fsg->bulk_in); } return rc; } static int wedge_bulk_in_endpoint(struct fsg_dev *fsg) { int rc; DBG(fsg, "bulk-in set wedge\n"); rc = 0; /* usb_ep_set_wedge(fsg->bulk_in); */ if (rc == -EAGAIN) VDBG(fsg, "delayed bulk-in endpoint wedge\n"); while (rc != 0) { if (rc != -EAGAIN) { WARNING(fsg, "usb_ep_set_wedge -> %d\n", rc); rc = 0; break; } } return rc; } static int pad_with_zeros(struct fsg_dev *fsg) { struct fsg_buffhd *bh = fsg->common->next_buffhd_to_fill; u32 nkeep = bh->inreq->length; u32 nsend; int rc; bh->state = BUF_STATE_EMPTY; /* For the first iteration */ fsg->common->usb_amount_left = nkeep + fsg->common->residue; while (fsg->common->usb_amount_left > 0) { /* Wait for the next buffer to be free */ while (bh->state != BUF_STATE_EMPTY) { rc = sleep_thread(fsg->common); if (rc) return rc; } nsend = min(fsg->common->usb_amount_left, FSG_BUFLEN); memset(bh->buf + nkeep, 0, nsend - nkeep); bh->inreq->length = nsend; bh->inreq->zero = 0; start_transfer(fsg, fsg->bulk_in, bh->inreq, &bh->inreq_busy, &bh->state); bh = fsg->common->next_buffhd_to_fill = bh->next; fsg->common->usb_amount_left -= nsend; nkeep = 0; } return 0; } static int throw_away_data(struct fsg_common *common) { struct fsg_buffhd *bh; u32 amount; int rc; for (bh = common->next_buffhd_to_drain; bh->state != BUF_STATE_EMPTY || common->usb_amount_left > 0; bh = common->next_buffhd_to_drain) { /* Throw away the data in a filled buffer */ if (bh->state == BUF_STATE_FULL) { bh->state = BUF_STATE_EMPTY; common->next_buffhd_to_drain = bh->next; /* A short packet or an error ends everything */ if (bh->outreq->actual != bh->outreq->length || bh->outreq->status != 0) { raise_exception(common, FSG_STATE_ABORT_BULK_OUT); return -EINTR; } continue; } /* Try to submit another request if we need one */ bh = common->next_buffhd_to_fill; if (bh->state == BUF_STATE_EMPTY && common->usb_amount_left > 0) { amount = min(common->usb_amount_left, FSG_BUFLEN); /* amount is always divisible by 512, hence by * the bulk-out maxpacket size */ bh->outreq->length = amount; bh->bulk_out_intended_length = amount; bh->outreq->short_not_ok = 1; START_TRANSFER_OR(common, bulk_out, bh->outreq, &bh->outreq_busy, &bh->state) /* Don't know what to do if * common->fsg is NULL */ return -EIO; common->next_buffhd_to_fill = bh->next; common->usb_amount_left -= amount; continue; } /* Otherwise wait for something to happen */ rc = sleep_thread(common); if (rc) return rc; } return 0; } static int finish_reply(struct fsg_common *common) { struct fsg_buffhd *bh = common->next_buffhd_to_fill; int rc = 0; switch (common->data_dir) { case DATA_DIR_NONE: break; /* Nothing to send */ /* If we don't know whether the host wants to read or write, * this must be CB or CBI with an unknown command. We mustn't * try to send or receive any data. So stall both bulk pipes * if we can and wait for a reset. */ case DATA_DIR_UNKNOWN: if (!common->can_stall) { /* Nothing */ } else if (fsg_is_set(common)) { fsg_set_halt(common->fsg, common->fsg->bulk_out); rc = halt_bulk_in_endpoint(common->fsg); } else { /* Don't know what to do if common->fsg is NULL */ rc = -EIO; } break; /* All but the last buffer of data must have already been sent */ case DATA_DIR_TO_HOST: if (common->data_size == 0) { /* Nothing to send */ /* If there's no residue, simply send the last buffer */ } else if (common->residue == 0) { bh->inreq->zero = 0; START_TRANSFER_OR(common, bulk_in, bh->inreq, &bh->inreq_busy, &bh->state) return -EIO; common->next_buffhd_to_fill = bh->next; /* For Bulk-only, if we're allowed to stall then send the * short packet and halt the bulk-in endpoint. If we can't * stall, pad out the remaining data with 0's. */ } else if (common->can_stall) { bh->inreq->zero = 1; START_TRANSFER_OR(common, bulk_in, bh->inreq, &bh->inreq_busy, &bh->state) /* Don't know what to do if * common->fsg is NULL */ rc = -EIO; common->next_buffhd_to_fill = bh->next; if (common->fsg) rc = halt_bulk_in_endpoint(common->fsg); } else if (fsg_is_set(common)) { rc = pad_with_zeros(common->fsg); } else { /* Don't know what to do if common->fsg is NULL */ rc = -EIO; } break; /* We have processed all we want from the data the host has sent. * There may still be outstanding bulk-out requests. */ case DATA_DIR_FROM_HOST: if (common->residue == 0) { /* Nothing to receive */ /* Did the host stop sending unexpectedly early? */ } else if (common->short_packet_received) { raise_exception(common, FSG_STATE_ABORT_BULK_OUT); rc = -EINTR; /* We haven't processed all the incoming data. Even though * we may be allowed to stall, doing so would cause a race. * The controller may already have ACK'ed all the remaining * bulk-out packets, in which case the host wouldn't see a * STALL. Not realizing the endpoint was halted, it wouldn't * clear the halt -- leading to problems later on. */ #if 0 } else if (common->can_stall) { if (fsg_is_set(common)) fsg_set_halt(common->fsg, common->fsg->bulk_out); raise_exception(common, FSG_STATE_ABORT_BULK_OUT); rc = -EINTR; #endif /* We can't stall. Read in the excess data and throw it * all away. */ } else { rc = throw_away_data(common); } break; } return rc; } static int send_status(struct fsg_common *common) { struct fsg_lun *curlun = &common->luns[common->lun]; struct fsg_buffhd *bh; struct bulk_cs_wrap *csw; int rc; u8 status = USB_STATUS_PASS; u32 sd, sdinfo = 0; /* Wait for the next buffer to become available */ bh = common->next_buffhd_to_fill; while (bh->state != BUF_STATE_EMPTY) { rc = sleep_thread(common); if (rc) return rc; } if (curlun) sd = curlun->sense_data; else if (common->bad_lun_okay) sd = SS_NO_SENSE; else sd = SS_LOGICAL_UNIT_NOT_SUPPORTED; if (common->phase_error) { DBG(common, "sending phase-error status\n"); status = USB_STATUS_PHASE_ERROR; sd = SS_INVALID_COMMAND; } else if (sd != SS_NO_SENSE) { DBG(common, "sending command-failure status\n"); status = USB_STATUS_FAIL; VDBG(common, " sense data: SK x%02x, ASC x%02x, ASCQ x%02x;" " info x%x\n", SK(sd), ASC(sd), ASCQ(sd), sdinfo); } /* Store and send the Bulk-only CSW */ csw = (void *)bh->buf; csw->Signature = cpu_to_le32(USB_BULK_CS_SIG); csw->Tag = common->tag; csw->Residue = cpu_to_le32(common->residue); csw->Status = status; bh->inreq->length = USB_BULK_CS_WRAP_LEN; bh->inreq->zero = 0; START_TRANSFER_OR(common, bulk_in, bh->inreq, &bh->inreq_busy, &bh->state) /* Don't know what to do if common->fsg is NULL */ return -EIO; common->next_buffhd_to_fill = bh->next; return 0; } /*-------------------------------------------------------------------------*/ /* Check whether the command is properly formed and whether its data size * and direction agree with the values we already have. */ static int check_command(struct fsg_common *common, int cmnd_size, enum data_direction data_dir, unsigned int mask, int needs_medium, const char *name) { int i; int lun = common->cmnd[1] >> 5; static const char dirletter[4] = {'u', 'o', 'i', 'n'}; char hdlen[20]; struct fsg_lun *curlun; hdlen[0] = 0; if (common->data_dir != DATA_DIR_UNKNOWN) sprintf(hdlen, ", H%c=%u", dirletter[(int) common->data_dir], common->data_size); VDBG(common, "SCSI command: %s; Dc=%d, D%c=%u; Hc=%d%s\n", name, cmnd_size, dirletter[(int) data_dir], common->data_size_from_cmnd, common->cmnd_size, hdlen); /* We can't reply at all until we know the correct data direction * and size. */ if (common->data_size_from_cmnd == 0) data_dir = DATA_DIR_NONE; if (common->data_size < common->data_size_from_cmnd) { /* Host data size < Device data size is a phase error. * Carry out the command, but only transfer as much as * we are allowed. */ common->data_size_from_cmnd = common->data_size; common->phase_error = 1; } common->residue = common->data_size; common->usb_amount_left = common->data_size; /* Conflicting data directions is a phase error */ if (common->data_dir != data_dir && common->data_size_from_cmnd > 0) { common->phase_error = 1; return -EINVAL; } /* Verify the length of the command itself */ if (cmnd_size != common->cmnd_size) { /* Special case workaround: There are plenty of buggy SCSI * implementations. Many have issues with cbw->Length * field passing a wrong command size. For those cases we * always try to work around the problem by using the length * sent by the host side provided it is at least as large * as the correct command length. * Examples of such cases would be MS-Windows, which issues * REQUEST SENSE with cbw->Length == 12 where it should * be 6, and xbox360 issuing INQUIRY, TEST UNIT READY and * REQUEST SENSE with cbw->Length == 10 where it should * be 6 as well. */ if (cmnd_size <= common->cmnd_size) { DBG(common, "%s is buggy! Expected length %d " "but we got %d\n", name, cmnd_size, common->cmnd_size); cmnd_size = common->cmnd_size; } else { common->phase_error = 1; return -EINVAL; } } /* Check that the LUN values are consistent */ if (common->lun != lun) DBG(common, "using LUN %d from CBW, not LUN %d from CDB\n", common->lun, lun); /* Check the LUN */ if (common->lun < common->nluns) { curlun = &common->luns[common->lun]; if (common->cmnd[0] != SC_REQUEST_SENSE) { curlun->sense_data = SS_NO_SENSE; curlun->info_valid = 0; } } else { curlun = NULL; common->bad_lun_okay = 0; /* INQUIRY and REQUEST SENSE commands are explicitly allowed * to use unsupported LUNs; all others may not. */ if (common->cmnd[0] != SC_INQUIRY && common->cmnd[0] != SC_REQUEST_SENSE) { DBG(common, "unsupported LUN %d\n", common->lun); return -EINVAL; } } #if 0 /* If a unit attention condition exists, only INQUIRY and * REQUEST SENSE commands are allowed; anything else must fail. */ if (curlun && curlun->unit_attention_data != SS_NO_SENSE && common->cmnd[0] != SC_INQUIRY && common->cmnd[0] != SC_REQUEST_SENSE) { curlun->sense_data = curlun->unit_attention_data; curlun->unit_attention_data = SS_NO_SENSE; return -EINVAL; } #endif /* Check that only command bytes listed in the mask are non-zero */ common->cmnd[1] &= 0x1f; /* Mask away the LUN */ for (i = 1; i < cmnd_size; ++i) { if (common->cmnd[i] && !(mask & (1 << i))) { if (curlun) curlun->sense_data = SS_INVALID_FIELD_IN_CDB; return -EINVAL; } } return 0; } static int do_scsi_command(struct fsg_common *common) { struct fsg_buffhd *bh; int rc; int reply = -EINVAL; int i; static char unknown[16]; struct fsg_lun *curlun = &common->luns[common->lun]; dump_cdb(common); /* Wait for the next buffer to become available for data or status */ bh = common->next_buffhd_to_fill; common->next_buffhd_to_drain = bh; while (bh->state != BUF_STATE_EMPTY) { rc = sleep_thread(common); if (rc) return rc; } common->phase_error = 0; common->short_packet_received = 0; down_read(&common->filesem); /* We're using the backing file */ switch (common->cmnd[0]) { case SC_INQUIRY: common->data_size_from_cmnd = common->cmnd[4]; reply = check_command(common, 6, DATA_DIR_TO_HOST, (1<<4), 0, "INQUIRY"); if (reply == 0) reply = do_inquiry(common, bh); break; case SC_MODE_SELECT_6: common->data_size_from_cmnd = common->cmnd[4]; reply = check_command(common, 6, DATA_DIR_FROM_HOST, (1<<1) | (1<<4), 0, "MODE SELECT(6)"); if (reply == 0) reply = do_mode_select(common, bh); break; case SC_MODE_SELECT_10: common->data_size_from_cmnd = get_unaligned_be16(&common->cmnd[7]); reply = check_command(common, 10, DATA_DIR_FROM_HOST, (1<<1) | (3<<7), 0, "MODE SELECT(10)"); if (reply == 0) reply = do_mode_select(common, bh); break; case SC_MODE_SENSE_6: common->data_size_from_cmnd = common->cmnd[4]; reply = check_command(common, 6, DATA_DIR_TO_HOST, (1<<1) | (1<<2) | (1<<4), 0, "MODE SENSE(6)"); if (reply == 0) reply = do_mode_sense(common, bh); break; case SC_MODE_SENSE_10: common->data_size_from_cmnd = get_unaligned_be16(&common->cmnd[7]); reply = check_command(common, 10, DATA_DIR_TO_HOST, (1<<1) | (1<<2) | (3<<7), 0, "MODE SENSE(10)"); if (reply == 0) reply = do_mode_sense(common, bh); break; case SC_PREVENT_ALLOW_MEDIUM_REMOVAL: common->data_size_from_cmnd = 0; reply = check_command(common, 6, DATA_DIR_NONE, (1<<4), 0, "PREVENT-ALLOW MEDIUM REMOVAL"); if (reply == 0) reply = do_prevent_allow(common); break; case SC_READ_6: i = common->cmnd[4]; common->data_size_from_cmnd = (i == 0 ? 256 : i) << 9; reply = check_command(common, 6, DATA_DIR_TO_HOST, (7<<1) | (1<<4), 1, "READ(6)"); if (reply == 0) reply = do_read(common); break; case SC_READ_10: common->data_size_from_cmnd = get_unaligned_be16(&common->cmnd[7]) << 9; reply = check_command(common, 10, DATA_DIR_TO_HOST, (1<<1) | (0xf<<2) | (3<<7), 1, "READ(10)"); if (reply == 0) reply = do_read(common); break; case SC_READ_12: common->data_size_from_cmnd = get_unaligned_be32(&common->cmnd[6]) << 9; reply = check_command(common, 12, DATA_DIR_TO_HOST, (1<<1) | (0xf<<2) | (0xf<<6), 1, "READ(12)"); if (reply == 0) reply = do_read(common); break; case SC_READ_CAPACITY: common->data_size_from_cmnd = 8; reply = check_command(common, 10, DATA_DIR_TO_HOST, (0xf<<2) | (1<<8), 1, "READ CAPACITY"); if (reply == 0) reply = do_read_capacity(common, bh); break; case SC_READ_HEADER: if (!common->luns[common->lun].cdrom) goto unknown_cmnd; common->data_size_from_cmnd = get_unaligned_be16(&common->cmnd[7]); reply = check_command(common, 10, DATA_DIR_TO_HOST, (3<<7) | (0x1f<<1), 1, "READ HEADER"); if (reply == 0) reply = do_read_header(common, bh); break; case SC_READ_TOC: if (!common->luns[common->lun].cdrom) goto unknown_cmnd; common->data_size_from_cmnd = get_unaligned_be16(&common->cmnd[7]); reply = check_command(common, 10, DATA_DIR_TO_HOST, (7<<6) | (1<<1), 1, "READ TOC"); if (reply == 0) reply = do_read_toc(common, bh); break; case SC_READ_FORMAT_CAPACITIES: common->data_size_from_cmnd = get_unaligned_be16(&common->cmnd[7]); reply = check_command(common, 10, DATA_DIR_TO_HOST, (3<<7), 1, "READ FORMAT CAPACITIES"); if (reply == 0) reply = do_read_format_capacities(common, bh); break; case SC_REQUEST_SENSE: common->data_size_from_cmnd = common->cmnd[4]; reply = check_command(common, 6, DATA_DIR_TO_HOST, (1<<4), 0, "REQUEST SENSE"); if (reply == 0) reply = do_request_sense(common, bh); break; case SC_START_STOP_UNIT: common->data_size_from_cmnd = 0; reply = check_command(common, 6, DATA_DIR_NONE, (1<<1) | (1<<4), 0, "START-STOP UNIT"); if (reply == 0) reply = do_start_stop(common); break; case SC_SYNCHRONIZE_CACHE: common->data_size_from_cmnd = 0; reply = check_command(common, 10, DATA_DIR_NONE, (0xf<<2) | (3<<7), 1, "SYNCHRONIZE CACHE"); if (reply == 0) reply = do_synchronize_cache(common); break; case SC_TEST_UNIT_READY: common->data_size_from_cmnd = 0; reply = check_command(common, 6, DATA_DIR_NONE, 0, 1, "TEST UNIT READY"); break; /* Although optional, this command is used by MS-Windows. We * support a minimal version: BytChk must be 0. */ case SC_VERIFY: common->data_size_from_cmnd = 0; reply = check_command(common, 10, DATA_DIR_NONE, (1<<1) | (0xf<<2) | (3<<7), 1, "VERIFY"); if (reply == 0) reply = do_verify(common); break; case SC_WRITE_6: i = common->cmnd[4]; common->data_size_from_cmnd = (i == 0 ? 256 : i) << 9; reply = check_command(common, 6, DATA_DIR_FROM_HOST, (7<<1) | (1<<4), 1, "WRITE(6)"); if (reply == 0) reply = do_write(common); break; case SC_WRITE_10: common->data_size_from_cmnd = get_unaligned_be16(&common->cmnd[7]) << 9; reply = check_command(common, 10, DATA_DIR_FROM_HOST, (1<<1) | (0xf<<2) | (3<<7), 1, "WRITE(10)"); if (reply == 0) reply = do_write(common); break; case SC_WRITE_12: common->data_size_from_cmnd = get_unaligned_be32(&common->cmnd[6]) << 9; reply = check_command(common, 12, DATA_DIR_FROM_HOST, (1<<1) | (0xf<<2) | (0xf<<6), 1, "WRITE(12)"); if (reply == 0) reply = do_write(common); break; /* Some mandatory commands that we recognize but don't implement. * They don't mean much in this setting. It's left as an exercise * for anyone interested to implement RESERVE and RELEASE in terms * of Posix locks. */ case SC_FORMAT_UNIT: case SC_RELEASE: case SC_RESERVE: case SC_SEND_DIAGNOSTIC: /* Fall through */ default: unknown_cmnd: common->data_size_from_cmnd = 0; sprintf(unknown, "Unknown x%02x", common->cmnd[0]); reply = check_command(common, common->cmnd_size, DATA_DIR_UNKNOWN, 0xff, 0, unknown); if (reply == 0) { curlun->sense_data = SS_INVALID_COMMAND; reply = -EINVAL; } break; } up_read(&common->filesem); if (reply == -EINTR) return -EINTR; /* Set up the single reply buffer for finish_reply() */ if (reply == -EINVAL) reply = 0; /* Error reply length */ if (reply >= 0 && common->data_dir == DATA_DIR_TO_HOST) { reply = min((u32) reply, common->data_size_from_cmnd); bh->inreq->length = reply; bh->state = BUF_STATE_FULL; common->residue -= reply; } /* Otherwise it's already set */ return 0; } /*-------------------------------------------------------------------------*/ static int received_cbw(struct fsg_dev *fsg, struct fsg_buffhd *bh) { struct usb_request *req = bh->outreq; struct fsg_bulk_cb_wrap *cbw = req->buf; struct fsg_common *common = fsg->common; /* Was this a real packet? Should it be ignored? */ if (req->status || test_bit(IGNORE_BULK_OUT, &fsg->atomic_bitflags)) return -EINVAL; /* Is the CBW valid? */ if (req->actual != USB_BULK_CB_WRAP_LEN || cbw->Signature != cpu_to_le32( USB_BULK_CB_SIG)) { DBG(fsg, "invalid CBW: len %u sig 0x%x\n", req->actual, le32_to_cpu(cbw->Signature)); /* The Bulk-only spec says we MUST stall the IN endpoint * (6.6.1), so it's unavoidable. It also says we must * retain this state until the next reset, but there's * no way to tell the controller driver it should ignore * Clear-Feature(HALT) requests. * * We aren't required to halt the OUT endpoint; instead * we can simply accept and discard any data received * until the next reset. */ wedge_bulk_in_endpoint(fsg); generic_set_bit(IGNORE_BULK_OUT, &fsg->atomic_bitflags); return -EINVAL; } /* Is the CBW meaningful? */ if (cbw->Lun >= FSG_MAX_LUNS || cbw->Flags & ~USB_BULK_IN_FLAG || cbw->Length <= 0 || cbw->Length > MAX_COMMAND_SIZE) { DBG(fsg, "non-meaningful CBW: lun = %u, flags = 0x%x, " "cmdlen %u\n", cbw->Lun, cbw->Flags, cbw->Length); /* We can do anything we want here, so let's stall the * bulk pipes if we are allowed to. */ if (common->can_stall) { fsg_set_halt(fsg, fsg->bulk_out); halt_bulk_in_endpoint(fsg); } return -EINVAL; } /* Save the command for later */ common->cmnd_size = cbw->Length; memcpy(common->cmnd, cbw->CDB, common->cmnd_size); if (cbw->Flags & USB_BULK_IN_FLAG) common->data_dir = DATA_DIR_TO_HOST; else common->data_dir = DATA_DIR_FROM_HOST; common->data_size = le32_to_cpu(cbw->DataTransferLength); if (common->data_size == 0) common->data_dir = DATA_DIR_NONE; common->lun = cbw->Lun; common->tag = cbw->Tag; return 0; } static int get_next_command(struct fsg_common *common) { struct fsg_buffhd *bh; int rc = 0; /* Wait for the next buffer to become available */ bh = common->next_buffhd_to_fill; while (bh->state != BUF_STATE_EMPTY) { rc = sleep_thread(common); if (rc) return rc; } /* Queue a request to read a Bulk-only CBW */ set_bulk_out_req_length(common, bh, USB_BULK_CB_WRAP_LEN); bh->outreq->short_not_ok = 1; START_TRANSFER_OR(common, bulk_out, bh->outreq, &bh->outreq_busy, &bh->state) /* Don't know what to do if common->fsg is NULL */ return -EIO; /* We will drain the buffer in software, which means we * can reuse it for the next filling. No need to advance * next_buffhd_to_fill. */ /* Wait for the CBW to arrive */ while (bh->state != BUF_STATE_FULL) { rc = sleep_thread(common); if (rc) return rc; } rc = fsg_is_set(common) ? received_cbw(common->fsg, bh) : -EIO; bh->state = BUF_STATE_EMPTY; return rc; } /*-------------------------------------------------------------------------*/ static int enable_endpoint(struct fsg_common *common, struct usb_ep *ep, const struct usb_endpoint_descriptor *d) { int rc; ep->driver_data = common; rc = usb_ep_enable(ep, d); if (rc) ERROR(common, "can't enable %s, result %d\n", ep->name, rc); return rc; } static int alloc_request(struct fsg_common *common, struct usb_ep *ep, struct usb_request **preq) { *preq = usb_ep_alloc_request(ep, GFP_ATOMIC); if (*preq) return 0; ERROR(common, "can't allocate request for %s\n", ep->name); return -ENOMEM; } /* Reset interface setting and re-init endpoint state (toggle etc). */ static int do_set_interface(struct fsg_common *common, struct fsg_dev *new_fsg) { const struct usb_endpoint_descriptor *d; struct fsg_dev *fsg; int i, rc = 0; if (common->running) DBG(common, "reset interface\n"); reset: /* Deallocate the requests */ if (common->fsg) { fsg = common->fsg; for (i = 0; i < FSG_NUM_BUFFERS; ++i) { struct fsg_buffhd *bh = &common->buffhds[i]; if (bh->inreq) { usb_ep_free_request(fsg->bulk_in, bh->inreq); bh->inreq = NULL; } if (bh->outreq) { usb_ep_free_request(fsg->bulk_out, bh->outreq); bh->outreq = NULL; } } /* Disable the endpoints */ if (fsg->bulk_in_enabled) { usb_ep_disable(fsg->bulk_in); fsg->bulk_in_enabled = 0; } if (fsg->bulk_out_enabled) { usb_ep_disable(fsg->bulk_out); fsg->bulk_out_enabled = 0; } common->fsg = NULL; /* wake_up(&common->fsg_wait); */ } common->running = 0; if (!new_fsg || rc) return rc; common->fsg = new_fsg; fsg = common->fsg; /* Enable the endpoints */ d = fsg_ep_desc(common->gadget, &fsg_fs_bulk_in_desc, &fsg_hs_bulk_in_desc); rc = enable_endpoint(common, fsg->bulk_in, d); if (rc) goto reset; fsg->bulk_in_enabled = 1; d = fsg_ep_desc(common->gadget, &fsg_fs_bulk_out_desc, &fsg_hs_bulk_out_desc); rc = enable_endpoint(common, fsg->bulk_out, d); if (rc) goto reset; fsg->bulk_out_enabled = 1; common->bulk_out_maxpacket = le16_to_cpu(get_unaligned(&d->wMaxPacketSize)); generic_clear_bit(IGNORE_BULK_OUT, &fsg->atomic_bitflags); /* Allocate the requests */ for (i = 0; i < FSG_NUM_BUFFERS; ++i) { struct fsg_buffhd *bh = &common->buffhds[i]; rc = alloc_request(common, fsg->bulk_in, &bh->inreq); if (rc) goto reset; rc = alloc_request(common, fsg->bulk_out, &bh->outreq); if (rc) goto reset; bh->inreq->buf = bh->outreq->buf = bh->buf; bh->inreq->context = bh->outreq->context = bh; bh->inreq->complete = bulk_in_complete; bh->outreq->complete = bulk_out_complete; } common->running = 1; return rc; } /****************************** ALT CONFIGS ******************************/ static int fsg_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct fsg_dev *fsg = fsg_from_func(f); fsg->common->new_fsg = fsg; raise_exception(fsg->common, FSG_STATE_CONFIG_CHANGE); return 0; } static void fsg_disable(struct usb_function *f) { struct fsg_dev *fsg = fsg_from_func(f); fsg->common->new_fsg = NULL; raise_exception(fsg->common, FSG_STATE_CONFIG_CHANGE); } /*-------------------------------------------------------------------------*/ static void handle_exception(struct fsg_common *common) { int i; struct fsg_buffhd *bh; enum fsg_state old_state; struct fsg_lun *curlun; unsigned int exception_req_tag; /* Cancel all the pending transfers */ if (common->fsg) { for (i = 0; i < FSG_NUM_BUFFERS; ++i) { bh = &common->buffhds[i]; if (bh->inreq_busy) usb_ep_dequeue(common->fsg->bulk_in, bh->inreq); if (bh->outreq_busy) usb_ep_dequeue(common->fsg->bulk_out, bh->outreq); } /* Wait until everything is idle */ for (;;) { int num_active = 0; for (i = 0; i < FSG_NUM_BUFFERS; ++i) { bh = &common->buffhds[i]; num_active += bh->inreq_busy + bh->outreq_busy; } if (num_active == 0) break; if (sleep_thread(common)) return; } /* Clear out the controller's fifos */ if (common->fsg->bulk_in_enabled) usb_ep_fifo_flush(common->fsg->bulk_in); if (common->fsg->bulk_out_enabled) usb_ep_fifo_flush(common->fsg->bulk_out); } /* Reset the I/O buffer states and pointers, the SCSI * state, and the exception. Then invoke the handler. */ for (i = 0; i < FSG_NUM_BUFFERS; ++i) { bh = &common->buffhds[i]; bh->state = BUF_STATE_EMPTY; } common->next_buffhd_to_fill = &common->buffhds[0]; common->next_buffhd_to_drain = &common->buffhds[0]; exception_req_tag = common->exception_req_tag; old_state = common->state; if (old_state == FSG_STATE_ABORT_BULK_OUT) common->state = FSG_STATE_STATUS_PHASE; else { for (i = 0; i < common->nluns; ++i) { curlun = &common->luns[i]; curlun->sense_data = SS_NO_SENSE; curlun->info_valid = 0; } common->state = FSG_STATE_IDLE; } /* Carry out any extra actions required for the exception */ switch (old_state) { case FSG_STATE_ABORT_BULK_OUT: send_status(common); if (common->state == FSG_STATE_STATUS_PHASE) common->state = FSG_STATE_IDLE; break; case FSG_STATE_RESET: /* In case we were forced against our will to halt a * bulk endpoint, clear the halt now. (The SuperH UDC * requires this.) */ if (!fsg_is_set(common)) break; if (test_and_clear_bit(IGNORE_BULK_OUT, &common->fsg->atomic_bitflags)) usb_ep_clear_halt(common->fsg->bulk_in); if (common->ep0_req_tag == exception_req_tag) ep0_queue(common); /* Complete the status stage */ break; case FSG_STATE_CONFIG_CHANGE: do_set_interface(common, common->new_fsg); break; case FSG_STATE_EXIT: case FSG_STATE_TERMINATED: do_set_interface(common, NULL); /* Free resources */ common->state = FSG_STATE_TERMINATED; /* Stop the thread */ break; case FSG_STATE_INTERFACE_CHANGE: case FSG_STATE_DISCONNECT: case FSG_STATE_COMMAND_PHASE: case FSG_STATE_DATA_PHASE: case FSG_STATE_STATUS_PHASE: case FSG_STATE_IDLE: break; } } /*-------------------------------------------------------------------------*/ int fsg_main_thread(void *common_) { int ret; struct fsg_common *common = the_fsg_common; /* The main loop */ do { if (exception_in_progress(common)) { handle_exception(common); continue; } if (!common->running) { ret = sleep_thread(common); if (ret) return ret; continue; } ret = get_next_command(common); if (ret) return ret; if (!exception_in_progress(common)) common->state = FSG_STATE_DATA_PHASE; if (do_scsi_command(common) || finish_reply(common)) continue; if (!exception_in_progress(common)) common->state = FSG_STATE_STATUS_PHASE; if (send_status(common)) continue; if (!exception_in_progress(common)) common->state = FSG_STATE_IDLE; } while (0); common->thread_task = NULL; return 0; } static void fsg_common_release(struct kref *ref); static struct fsg_common *fsg_common_init(struct fsg_common *common, struct usb_composite_dev *cdev) { struct usb_gadget *gadget = cdev->gadget; struct fsg_buffhd *bh; struct fsg_lun *curlun; int nluns, i, rc; /* Find out how many LUNs there should be */ nluns = ums_count; if (nluns < 1 || nluns > FSG_MAX_LUNS) { printf("invalid number of LUNs: %u\n", nluns); return ERR_PTR(-EINVAL); } /* Allocate? */ if (!common) { common = calloc(sizeof(*common), 1); if (!common) return ERR_PTR(-ENOMEM); common->free_storage_on_release = 1; } else { memset(common, 0, sizeof(*common)); common->free_storage_on_release = 0; } common->ops = NULL; common->private_data = NULL; common->gadget = gadget; common->ep0 = gadget->ep0; common->ep0req = cdev->req; /* Maybe allocate device-global string IDs, and patch descriptors */ if (fsg_strings[FSG_STRING_INTERFACE].id == 0) { rc = usb_string_id(cdev); if (unlikely(rc < 0)) goto error_release; fsg_strings[FSG_STRING_INTERFACE].id = rc; fsg_intf_desc.iInterface = rc; } /* Create the LUNs, open their backing files, and register the * LUN devices in sysfs. */ curlun = calloc(nluns, sizeof *curlun); if (!curlun) { rc = -ENOMEM; goto error_release; } common->nluns = nluns; for (i = 0; i < nluns; i++) { common->luns[i].removable = 1; rc = fsg_lun_open(&common->luns[i], ums[i].num_sectors, ""); if (rc) goto error_luns; } common->lun = 0; /* Data buffers cyclic list */ bh = common->buffhds; i = FSG_NUM_BUFFERS; goto buffhds_first_it; do { bh->next = bh + 1; ++bh; buffhds_first_it: bh->inreq_busy = 0; bh->outreq_busy = 0; bh->buf = memalign(CONFIG_SYS_CACHELINE_SIZE, FSG_BUFLEN); if (unlikely(!bh->buf)) { rc = -ENOMEM; goto error_release; } } while (--i); bh->next = common->buffhds; snprintf(common->inquiry_string, sizeof common->inquiry_string, "%-8s%-16s%04x", "Linux ", "File-Store Gadget", 0xffff); /* Some peripheral controllers are known not to be able to * halt bulk endpoints correctly. If one of them is present, * disable stalls. */ /* Tell the thread to start working */ common->thread_task = kthread_create(fsg_main_thread, common, OR(cfg->thread_name, "file-storage")); if (IS_ERR(common->thread_task)) { rc = PTR_ERR(common->thread_task); goto error_release; } #undef OR /* Information */ INFO(common, FSG_DRIVER_DESC ", version: " FSG_DRIVER_VERSION "\n"); INFO(common, "Number of LUNs=%d\n", common->nluns); return common; error_luns: common->nluns = i + 1; error_release: common->state = FSG_STATE_TERMINATED; /* The thread is dead */ /* Call fsg_common_release() directly, ref might be not * initialised */ fsg_common_release(&common->ref); return ERR_PTR(rc); } static void fsg_common_release(struct kref *ref) { struct fsg_common *common = container_of(ref, struct fsg_common, ref); /* If the thread isn't already dead, tell it to exit now */ if (common->state != FSG_STATE_TERMINATED) { raise_exception(common, FSG_STATE_EXIT); wait_for_completion(&common->thread_notifier); } if (likely(common->luns)) { struct fsg_lun *lun = common->luns; unsigned i = common->nluns; /* In error recovery common->nluns may be zero. */ for (; i; --i, ++lun) fsg_lun_close(lun); kfree(common->luns); } { struct fsg_buffhd *bh = common->buffhds; unsigned i = FSG_NUM_BUFFERS; do { kfree(bh->buf); } while (++bh, --i); } if (common->free_storage_on_release) kfree(common); } /*-------------------------------------------------------------------------*/ /** * usb_copy_descriptors - copy a vector of USB descriptors * @src: null-terminated vector to copy * Context: initialization code, which may sleep * * This makes a copy of a vector of USB descriptors. Its primary use * is to support usb_function objects which can have multiple copies, * each needing different descriptors. Functions may have static * tables of descriptors, which are used as templates and customized * with identifiers (for interfaces, strings, endpoints, and more) * as needed by a given function instance. */ struct usb_descriptor_header ** usb_copy_descriptors(struct usb_descriptor_header **src) { struct usb_descriptor_header **tmp; unsigned bytes; unsigned n_desc; void *mem; struct usb_descriptor_header **ret; /* count descriptors and their sizes; then add vector size */ for (bytes = 0, n_desc = 0, tmp = src; *tmp; tmp++, n_desc++) bytes += (*tmp)->bLength; bytes += (n_desc + 1) * sizeof(*tmp); mem = memalign(CONFIG_SYS_CACHELINE_SIZE, bytes); if (!mem) return NULL; /* fill in pointers starting at "tmp", * to descriptors copied starting at "mem"; * and return "ret" */ tmp = mem; ret = mem; mem += (n_desc + 1) * sizeof(*tmp); while (*src) { memcpy(mem, *src, (*src)->bLength); *tmp = mem; tmp++; mem += (*src)->bLength; src++; } *tmp = NULL; return ret; } static void fsg_unbind(struct usb_configuration *c, struct usb_function *f) { struct fsg_dev *fsg = fsg_from_func(f); DBG(fsg, "unbind\n"); if (fsg->common->fsg == fsg) { fsg->common->new_fsg = NULL; raise_exception(fsg->common, FSG_STATE_CONFIG_CHANGE); } free(fsg->function.descriptors); free(fsg->function.hs_descriptors); kfree(fsg); } static int fsg_bind(struct usb_configuration *c, struct usb_function *f) { struct fsg_dev *fsg = fsg_from_func(f); struct usb_gadget *gadget = c->cdev->gadget; int i; struct usb_ep *ep; fsg->gadget = gadget; /* New interface */ i = usb_interface_id(c, f); if (i < 0) return i; fsg_intf_desc.bInterfaceNumber = i; fsg->interface_number = i; /* Find all the endpoints we will use */ ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_in_desc); if (!ep) goto autoconf_fail; ep->driver_data = fsg->common; /* claim the endpoint */ fsg->bulk_in = ep; ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_out_desc); if (!ep) goto autoconf_fail; ep->driver_data = fsg->common; /* claim the endpoint */ fsg->bulk_out = ep; /* Copy descriptors */ f->descriptors = usb_copy_descriptors(fsg_fs_function); if (unlikely(!f->descriptors)) return -ENOMEM; if (gadget_is_dualspeed(gadget)) { /* Assume endpoint addresses are the same for both speeds */ fsg_hs_bulk_in_desc.bEndpointAddress = fsg_fs_bulk_in_desc.bEndpointAddress; fsg_hs_bulk_out_desc.bEndpointAddress = fsg_fs_bulk_out_desc.bEndpointAddress; f->hs_descriptors = usb_copy_descriptors(fsg_hs_function); if (unlikely(!f->hs_descriptors)) { free(f->descriptors); return -ENOMEM; } } return 0; autoconf_fail: ERROR(fsg, "unable to autoconfigure all endpoints\n"); return -ENOTSUPP; } /****************************** ADD FUNCTION ******************************/ static struct usb_gadget_strings *fsg_strings_array[] = { &fsg_stringtab, NULL, }; static int fsg_bind_config(struct usb_composite_dev *cdev, struct usb_configuration *c, struct fsg_common *common) { struct fsg_dev *fsg; int rc; fsg = calloc(1, sizeof *fsg); if (!fsg) return -ENOMEM; fsg->function.name = FSG_DRIVER_DESC; fsg->function.strings = fsg_strings_array; fsg->function.bind = fsg_bind; fsg->function.unbind = fsg_unbind; fsg->function.setup = fsg_setup; fsg->function.set_alt = fsg_set_alt; fsg->function.disable = fsg_disable; fsg->common = common; common->fsg = fsg; /* Our caller holds a reference to common structure so we * don't have to be worry about it being freed until we return * from this function. So instead of incrementing counter now * and decrement in error recovery we increment it only when * call to usb_add_function() was successful. */ rc = usb_add_function(c, &fsg->function); if (rc) kfree(fsg); return rc; } int fsg_add(struct usb_configuration *c) { struct fsg_common *fsg_common; fsg_common = fsg_common_init(NULL, c->cdev); fsg_common->vendor_name = 0; fsg_common->product_name = 0; fsg_common->release = 0xffff; fsg_common->ops = NULL; fsg_common->private_data = NULL; the_fsg_common = fsg_common; return fsg_bind_config(c->cdev, c, fsg_common); } int fsg_init(struct ums *ums_devs, int count, struct udevice *udc) { ums = ums_devs; ums_count = count; udcdev = udc; return 0; } DECLARE_GADGET_BIND_CALLBACK(usb_dnl_ums, fsg_add);