// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2010 * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com. * * (C) Copyright 2012 * Amit Virdi, ST Microelectronics, amit.virdi@st.com. */ #include #include #include #include #include #include #include #include static u32 fsmc_version; static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *) CONFIG_SYS_FSMC_BASE; /* * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can * correct 1 bit in 512 bytes */ static struct nand_ecclayout fsmc_ecc4_lp_layout = { .eccbytes = 104, .eccpos = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 }, .oobfree = { {.offset = 15, .length = 3}, {.offset = 31, .length = 3}, {.offset = 47, .length = 3}, {.offset = 63, .length = 3}, {.offset = 79, .length = 3}, {.offset = 95, .length = 3}, {.offset = 111, .length = 3}, {.offset = 127, .length = 1} } }; /* * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 * bytes are free for use. */ static struct nand_ecclayout fsmc_ecc4_224_layout = { .eccbytes = 104, .eccpos = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 }, .oobfree = { {.offset = 15, .length = 3}, {.offset = 31, .length = 3}, {.offset = 47, .length = 3}, {.offset = 63, .length = 3}, {.offset = 79, .length = 3}, {.offset = 95, .length = 3}, {.offset = 111, .length = 3}, {.offset = 127, .length = 97} } }; /* * ECC placement definitions in oobfree type format * There are 13 bytes of ecc for every 512 byte block and it has to be read * consecutively and immediately after the 512 byte data block for hardware to * generate the error bit offsets in 512 byte data * Managing the ecc bytes in the following way makes it easier for software to * read ecc bytes consecutive to data bytes. This way is similar to * oobfree structure maintained already in u-boot nand driver */ static struct fsmc_eccplace fsmc_eccpl_lp = { .eccplace = { {.offset = 2, .length = 13}, {.offset = 18, .length = 13}, {.offset = 34, .length = 13}, {.offset = 50, .length = 13}, {.offset = 66, .length = 13}, {.offset = 82, .length = 13}, {.offset = 98, .length = 13}, {.offset = 114, .length = 13} } }; static struct nand_ecclayout fsmc_ecc4_sp_layout = { .eccbytes = 13, .eccpos = { 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, .oobfree = { {.offset = 15, .length = 1}, } }; static struct fsmc_eccplace fsmc_eccpl_sp = { .eccplace = { {.offset = 0, .length = 4}, {.offset = 6, .length = 9} } }; static struct nand_ecclayout fsmc_ecc1_layout = { .eccbytes = 24, .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, .oobfree = { {.offset = 8, .length = 8}, {.offset = 24, .length = 8}, {.offset = 40, .length = 8}, {.offset = 56, .length = 8}, {.offset = 72, .length = 8}, {.offset = 88, .length = 8}, {.offset = 104, .length = 8}, {.offset = 120, .length = 8} } }; /* Count the number of 0's in buff upto a max of max_bits */ static int count_written_bits(uint8_t *buff, int size, int max_bits) { int k, written_bits = 0; for (k = 0; k < size; k++) { written_bits += hweight8(~buff[k]); if (written_bits > max_bits) break; } return written_bits; } static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl) { struct nand_chip *this = mtd_to_nand(mtd); ulong IO_ADDR_W; if (ctrl & NAND_CTRL_CHANGE) { IO_ADDR_W = (ulong)this->IO_ADDR_W; IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE); if (ctrl & NAND_CLE) IO_ADDR_W |= CONFIG_SYS_NAND_CLE; if (ctrl & NAND_ALE) IO_ADDR_W |= CONFIG_SYS_NAND_ALE; if (ctrl & NAND_NCE) { writel(readl(&fsmc_regs_p->pc) | FSMC_ENABLE, &fsmc_regs_p->pc); } else { writel(readl(&fsmc_regs_p->pc) & ~FSMC_ENABLE, &fsmc_regs_p->pc); } this->IO_ADDR_W = (void *)IO_ADDR_W; } if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); } static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { /* The calculated ecc is actually the correction index in data */ u32 err_idx[8]; u32 num_err, i; u32 ecc1, ecc2, ecc3, ecc4; num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF; if (likely(num_err == 0)) return 0; if (unlikely(num_err > 8)) { /* * This is a temporary erase check. A newly erased page read * would result in an ecc error because the oob data is also * erased to FF and the calculated ecc for an FF data is not * FF..FF. * This is a workaround to skip performing correction in case * data is FF..FF * * Logic: * For every page, each bit written as 0 is counted until these * number of bits are greater than 8 (the maximum correction * capability of FSMC for each 512 + 13 bytes) */ int bits_ecc = count_written_bits(read_ecc, 13, 8); int bits_data = count_written_bits(dat, 512, 8); if ((bits_ecc + bits_data) <= 8) { if (bits_data) memset(dat, 0xff, 512); return bits_data + bits_ecc; } return -EBADMSG; } ecc1 = readl(&fsmc_regs_p->ecc1); ecc2 = readl(&fsmc_regs_p->ecc2); ecc3 = readl(&fsmc_regs_p->ecc3); ecc4 = readl(&fsmc_regs_p->sts); err_idx[0] = (ecc1 >> 0) & 0x1FFF; err_idx[1] = (ecc1 >> 13) & 0x1FFF; err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); err_idx[3] = (ecc2 >> 7) & 0x1FFF; err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); err_idx[5] = (ecc3 >> 1) & 0x1FFF; err_idx[6] = (ecc3 >> 14) & 0x1FFF; err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); i = 0; while (i < num_err) { err_idx[i] ^= 3; if (err_idx[i] < 512 * 8) __change_bit(err_idx[i], dat); i++; } return num_err; } static int fsmc_read_hwecc(struct mtd_info *mtd, const u_char *data, u_char *ecc) { u_int ecc_tmp; int timeout = CONFIG_SYS_HZ; ulong start; switch (fsmc_version) { case FSMC_VER8: start = get_timer(0); while (get_timer(start) < timeout) { /* * Busy waiting for ecc computation * to finish for 512 bytes */ if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY) break; } ecc_tmp = readl(&fsmc_regs_p->ecc1); ecc[0] = (u_char) (ecc_tmp >> 0); ecc[1] = (u_char) (ecc_tmp >> 8); ecc[2] = (u_char) (ecc_tmp >> 16); ecc[3] = (u_char) (ecc_tmp >> 24); ecc_tmp = readl(&fsmc_regs_p->ecc2); ecc[4] = (u_char) (ecc_tmp >> 0); ecc[5] = (u_char) (ecc_tmp >> 8); ecc[6] = (u_char) (ecc_tmp >> 16); ecc[7] = (u_char) (ecc_tmp >> 24); ecc_tmp = readl(&fsmc_regs_p->ecc3); ecc[8] = (u_char) (ecc_tmp >> 0); ecc[9] = (u_char) (ecc_tmp >> 8); ecc[10] = (u_char) (ecc_tmp >> 16); ecc[11] = (u_char) (ecc_tmp >> 24); ecc_tmp = readl(&fsmc_regs_p->sts); ecc[12] = (u_char) (ecc_tmp >> 16); break; default: ecc_tmp = readl(&fsmc_regs_p->ecc1); ecc[0] = (u_char) (ecc_tmp >> 0); ecc[1] = (u_char) (ecc_tmp >> 8); ecc[2] = (u_char) (ecc_tmp >> 16); break; } return 0; } void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) { writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256, &fsmc_regs_p->pc); writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN, &fsmc_regs_p->pc); writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN, &fsmc_regs_p->pc); } /* * fsmc_read_page_hwecc * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller expects OOB data read to chip->oob_poi * @page: page number to read * * This routine is needed for fsmc verison 8 as reading from NAND chip has to be * performed in a strict sequence as follows: * data(512 byte) -> ecc(13 byte) * After this read, fsmc hardware generates and reports error data bits(upto a * max of 8 bits) */ static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct fsmc_eccplace *fsmc_eccpl; int i, j, s, stat, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; int off, len, group = 0; uint8_t oob[13] __attribute__ ((aligned (2))); /* Differentiate between small and large page ecc place definitions */ if (mtd->writesize == 512) fsmc_eccpl = &fsmc_eccpl_sp; else fsmc_eccpl = &fsmc_eccpl_lp; for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); for (j = 0; j < eccbytes;) { off = fsmc_eccpl->eccplace[group].offset; len = fsmc_eccpl->eccplace[group].length; group++; /* * length is intentionally kept a higher multiple of 2 * to read at least 13 bytes even in case of 16 bit NAND * devices */ if (chip->options & NAND_BUSWIDTH_16) len = roundup(len, 2); chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); chip->read_buf(mtd, oob + j, len); j += len; } memcpy(&ecc_code[i], oob, 13); chip->ecc.calculate(mtd, p, &ecc_calc[i]); stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } int fsmc_nand_init(struct nand_chip *nand) { static int chip_nr; struct mtd_info *mtd; u32 peripid2 = readl(&fsmc_regs_p->peripid2); fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) & FSMC_REVISION_MSK; writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl); #if defined(CONFIG_SYS_FSMC_NAND_16BIT) writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON, &fsmc_regs_p->pc); #elif defined(CONFIG_SYS_FSMC_NAND_8BIT) writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON, &fsmc_regs_p->pc); #else #error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT #endif writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1, &fsmc_regs_p->pc); writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, &fsmc_regs_p->comm); writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, &fsmc_regs_p->attrib); nand->options = 0; #if defined(CONFIG_SYS_FSMC_NAND_16BIT) nand->options |= NAND_BUSWIDTH_16; #endif nand->ecc.mode = NAND_ECC_HW; nand->ecc.size = 512; nand->ecc.calculate = fsmc_read_hwecc; nand->ecc.hwctl = fsmc_enable_hwecc; nand->cmd_ctrl = fsmc_nand_hwcontrol; nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE; nand->badblockbits = 7; mtd = nand_to_mtd(nand); switch (fsmc_version) { case FSMC_VER8: nand->ecc.bytes = 13; nand->ecc.strength = 8; nand->ecc.correct = fsmc_bch8_correct_data; nand->ecc.read_page = fsmc_read_page_hwecc; if (mtd->writesize == 512) nand->ecc.layout = &fsmc_ecc4_sp_layout; else { if (mtd->oobsize == 224) nand->ecc.layout = &fsmc_ecc4_224_layout; else nand->ecc.layout = &fsmc_ecc4_lp_layout; } break; default: nand->ecc.bytes = 3; nand->ecc.strength = 1; nand->ecc.layout = &fsmc_ecc1_layout; nand->ecc.correct = nand_correct_data; break; } /* Detect NAND chips */ if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) return -ENXIO; if (nand_scan_tail(mtd)) return -ENXIO; if (nand_register(chip_nr++, mtd)) return -ENXIO; return 0; }