// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Stefan Roese * Copyright (C) 2016 Mario Six */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../drivers/ddr/marvell/a38x/ddr3_init.h" #include "../arch/arm/mach-mvebu/serdes/a38x/high_speed_env_spec.h" #include "keyprogram.h" #include "dt_helpers.h" #include "hydra.h" #include "ihs_phys.h" DECLARE_GLOBAL_DATA_PTR; #define DB_GP_88F68XX_GPP_OUT_ENA_LOW 0x7fffffff #define DB_GP_88F68XX_GPP_OUT_ENA_MID 0xffffefff #define DB_GP_88F68XX_GPP_OUT_VAL_LOW 0x0 #define DB_GP_88F68XX_GPP_OUT_VAL_MID 0x00001000 #define DB_GP_88F68XX_GPP_POL_LOW 0x0 #define DB_GP_88F68XX_GPP_POL_MID 0x0 static int get_tpm(struct udevice **devp) { int rc; rc = uclass_first_device_err(UCLASS_TPM, devp); if (rc) { printf("Could not find TPM (ret=%d)\n", rc); return CMD_RET_FAILURE; } return 0; } /* * Define the DDR layout / topology here in the board file. This will * be used by the DDR3 init code in the SPL U-Boot version to configure * the DDR3 controller. */ static struct mv_ddr_topology_map ddr_topology_map = { DEBUG_LEVEL_ERROR, 0x1, /* active interfaces */ /* cs_mask, mirror, dqs_swap, ck_swap X PUPs */ { { { {0x1, 0, 0, 0}, {0x1, 0, 0, 0}, {0x1, 0, 0, 0}, {0x1, 0, 0, 0}, {0x1, 0, 0, 0} }, SPEED_BIN_DDR_1600K, /* speed_bin */ MV_DDR_DEV_WIDTH_16BIT, /* memory_width */ MV_DDR_DIE_CAP_4GBIT, /* mem_size */ MV_DDR_FREQ_533, /* frequency */ 0, 0, /* cas_wl cas_l */ MV_DDR_TEMP_LOW, /* temperature */ MV_DDR_TIM_DEFAULT} }, /* timing */ BUS_MASK_32BIT, /* Busses mask */ MV_DDR_CFG_DEFAULT, /* ddr configuration data source */ NOT_COMBINED, /* ddr twin-die combined */ { {0} }, /* raw spd data */ {0} /* timing parameters */ }; static struct serdes_map serdes_topology_map[] = { {SGMII0, SERDES_SPEED_1_25_GBPS, SERDES_DEFAULT_MODE, 0, 0}, {USB3_HOST0, SERDES_SPEED_5_GBPS, SERDES_DEFAULT_MODE, 0, 0}, /* SATA tx polarity is inverted */ {SATA1, SERDES_SPEED_3_GBPS, SERDES_DEFAULT_MODE, 0, 1}, {SGMII2, SERDES_SPEED_1_25_GBPS, SERDES_DEFAULT_MODE, 0, 0}, {DEFAULT_SERDES, SERDES_SPEED_3_GBPS, SERDES_DEFAULT_MODE, 0, 0}, {PEX2, SERDES_SPEED_5_GBPS, PEX_ROOT_COMPLEX_X1, 0, 0} }; int hws_board_topology_load(struct serdes_map **serdes_map_array, u8 *count) { *serdes_map_array = serdes_topology_map; *count = ARRAY_SIZE(serdes_topology_map); return 0; } void spl_board_init(void) { #ifdef CONFIG_SPL_BUILD uint k; struct gpio_desc gpio = {}; /* Enable PCIe link 2 */ setbits_32(MVEBU_REGISTER(0x18204), BIT(2)); mdelay(10); if (!request_gpio_by_name(&gpio, "pca9698@22", 31, "fpga-program-gpio")) { /* prepare FPGA reconfiguration */ dm_gpio_set_dir_flags(&gpio, GPIOD_IS_OUT); dm_gpio_set_value(&gpio, 0); /* give lunatic PCIe clock some time to stabilize */ mdelay(500); /* start FPGA reconfiguration */ dm_gpio_set_dir_flags(&gpio, GPIOD_IS_IN); } /* wait for FPGA done */ if (!request_gpio_by_name(&gpio, "pca9698@22", 19, "fpga-done-gpio")) { for (k = 0; k < 20; ++k) { if (dm_gpio_get_value(&gpio)) { printf("FPGA done after %u rounds\n", k); break; } mdelay(100); } } /* disable FPGA reset */ if (!request_gpio_by_name(&gpio, "gpio@18100", 6, "cpu-to-fpga-reset")) { dm_gpio_set_dir_flags(&gpio, GPIOD_IS_OUT); dm_gpio_set_value(&gpio, 1); } /* wait for FPGA ready */ if (!request_gpio_by_name(&gpio, "pca9698@22", 27, "fpga-ready-gpio")) { for (k = 0; k < 2; ++k) { if (!dm_gpio_get_value(&gpio)) break; mdelay(100); } } #endif } struct mv_ddr_topology_map *mv_ddr_topology_map_get(void) { return &ddr_topology_map; } int board_early_init_f(void) { #ifdef CONFIG_SPL_BUILD /* Configure MPP */ writel(0x00111111, MVEBU_MPP_BASE + 0x00); writel(0x40040000, MVEBU_MPP_BASE + 0x04); writel(0x00466444, MVEBU_MPP_BASE + 0x08); writel(0x00043300, MVEBU_MPP_BASE + 0x0c); writel(0x44400000, MVEBU_MPP_BASE + 0x10); writel(0x20000334, MVEBU_MPP_BASE + 0x14); writel(0x40000000, MVEBU_MPP_BASE + 0x18); writel(0x00004444, MVEBU_MPP_BASE + 0x1c); /* Set GPP Out value */ writel(DB_GP_88F68XX_GPP_OUT_VAL_LOW, MVEBU_GPIO0_BASE + 0x00); writel(DB_GP_88F68XX_GPP_OUT_VAL_MID, MVEBU_GPIO1_BASE + 0x00); /* Set GPP Polarity */ writel(DB_GP_88F68XX_GPP_POL_LOW, MVEBU_GPIO0_BASE + 0x0c); writel(DB_GP_88F68XX_GPP_POL_MID, MVEBU_GPIO1_BASE + 0x0c); /* Set GPP Out Enable */ writel(DB_GP_88F68XX_GPP_OUT_ENA_LOW, MVEBU_GPIO0_BASE + 0x04); writel(DB_GP_88F68XX_GPP_OUT_ENA_MID, MVEBU_GPIO1_BASE + 0x04); #endif return 0; } int board_init(void) { /* Address of boot parameters */ gd->bd->bi_boot_params = mvebu_sdram_bar(0) + 0x100; return 0; } #ifndef CONFIG_SPL_BUILD void init_host_phys(struct mii_dev *bus) { uint k; for (k = 0; k < 2; ++k) { struct phy_device *phydev; phydev = phy_find_by_mask(bus, 1 << k, PHY_INTERFACE_MODE_SGMII); if (phydev) phy_config(phydev); } } int ccdc_eth_init(void) { uint k; uint octo_phy_mask = 0; int ret; struct mii_dev *bus; /* Init SoC's phys */ bus = miiphy_get_dev_by_name("ethernet@34000"); if (bus) init_host_phys(bus); bus = miiphy_get_dev_by_name("ethernet@70000"); if (bus) init_host_phys(bus); /* Init octo phys */ octo_phy_mask = calculate_octo_phy_mask(); printf("IHS PHYS: %08x", octo_phy_mask); ret = init_octo_phys(octo_phy_mask); if (ret) return ret; printf("\n"); if (!get_fpga()) { puts("fpga was NULL\n"); return 1; } /* reset all FPGA-QSGMII instances */ for (k = 0; k < 80; ++k) writel(1 << 31, get_fpga()->qsgmii_port_state[k]); udelay(100); for (k = 0; k < 80; ++k) writel(0, get_fpga()->qsgmii_port_state[k]); return 0; } #endif int board_late_init(void) { #ifndef CONFIG_SPL_BUILD hydra_initialize(); #endif return 0; } int board_fix_fdt(void *rw_fdt_blob) { struct udevice *bus = NULL; uint k; char name[64]; int err; err = uclass_get_device_by_name(UCLASS_I2C, "i2c@11000", &bus); if (err) { printf("Could not get I2C bus.\n"); return err; } for (k = 0x21; k <= 0x26; k++) { snprintf(name, 64, "/soc/internal-regs/i2c@11000/pca9698@%02x", k); if (!dm_i2c_simple_probe(bus, k)) fdt_disable_by_ofname(rw_fdt_blob, name); } return 0; } int last_stage_init(void) { struct udevice *tpm; int ret; #ifndef CONFIG_SPL_BUILD ccdc_eth_init(); #endif ret = get_tpm(&tpm); if (ret || tpm_init(tpm) || tpm1_startup(tpm, TPM_ST_CLEAR) || tpm1_continue_self_test(tpm)) { return 1; } mdelay(37); flush_keys(tpm); load_and_run_keyprog(tpm); return 0; }