// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2007, 2010-2011 Freescale Semiconductor, Inc * Copyright 2019, 2021 NXP * Andy Fleming * Yangbo Lu * * Based vaguely on the pxa mmc code: * (C) Copyright 2003 * Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE #ifdef CONFIG_FSL_USDHC #define ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE 1 #endif #endif DECLARE_GLOBAL_DATA_PTR; #define SDHCI_IRQ_EN_BITS (IRQSTATEN_CC | IRQSTATEN_TC | \ IRQSTATEN_CINT | \ IRQSTATEN_CTOE | IRQSTATEN_CCE | IRQSTATEN_CEBE | \ IRQSTATEN_CIE | IRQSTATEN_DTOE | IRQSTATEN_DCE | \ IRQSTATEN_DEBE | IRQSTATEN_BRR | IRQSTATEN_BWR | \ IRQSTATEN_DINT) #define MAX_TUNING_LOOP 40 struct fsl_esdhc { uint dsaddr; /* SDMA system address register */ uint blkattr; /* Block attributes register */ uint cmdarg; /* Command argument register */ uint xfertyp; /* Transfer type register */ uint cmdrsp0; /* Command response 0 register */ uint cmdrsp1; /* Command response 1 register */ uint cmdrsp2; /* Command response 2 register */ uint cmdrsp3; /* Command response 3 register */ uint datport; /* Buffer data port register */ uint prsstat; /* Present state register */ uint proctl; /* Protocol control register */ uint sysctl; /* System Control Register */ uint irqstat; /* Interrupt status register */ uint irqstaten; /* Interrupt status enable register */ uint irqsigen; /* Interrupt signal enable register */ uint autoc12err; /* Auto CMD error status register */ uint hostcapblt; /* Host controller capabilities register */ uint wml; /* Watermark level register */ uint mixctrl; /* For USDHC */ char reserved1[4]; /* reserved */ uint fevt; /* Force event register */ uint admaes; /* ADMA error status register */ uint adsaddr; /* ADMA system address register */ char reserved2[4]; uint dllctrl; uint dllstat; uint clktunectrlstatus; char reserved3[4]; uint strobe_dllctrl; uint strobe_dllstat; char reserved4[72]; uint vendorspec; uint mmcboot; uint vendorspec2; uint tuning_ctrl; /* on i.MX6/7/8/RT */ char reserved5[44]; uint hostver; /* Host controller version register */ char reserved6[4]; /* reserved */ uint dmaerraddr; /* DMA error address register */ char reserved7[4]; /* reserved */ uint dmaerrattr; /* DMA error attribute register */ char reserved8[4]; /* reserved */ uint hostcapblt2; /* Host controller capabilities register 2 */ char reserved9[8]; /* reserved */ uint tcr; /* Tuning control register */ char reserved10[28]; /* reserved */ uint sddirctl; /* SD direction control register */ char reserved11[712];/* reserved */ uint scr; /* eSDHC control register */ }; struct fsl_esdhc_plat { #if CONFIG_IS_ENABLED(OF_PLATDATA) /* Put this first since driver model will copy the data here */ struct dtd_fsl_esdhc dtplat; #endif struct mmc_config cfg; struct mmc mmc; }; struct esdhc_soc_data { u32 flags; }; /** * struct fsl_esdhc_priv * * @esdhc_regs: registers of the sdhc controller * @sdhc_clk: Current clk of the sdhc controller * @cfg: mmc config * @mmc: mmc * Following is used when Driver Model is enabled for MMC * @dev: pointer for the device * @broken_cd: 0: use GPIO for card detect; 1: Do not use GPIO for card detect * @wp_enable: 1: enable checking wp; 0: no check * @vs18_enable: 1: use 1.8V voltage; 0: use 3.3V * @flags: ESDHC_FLAG_xx in include/fsl_esdhc_imx.h * @caps: controller capabilities * @tuning_step: tuning step setting in tuning_ctrl register * @start_tuning_tap: the start point for tuning in tuning_ctrl register * @strobe_dll_delay_target: settings in strobe_dllctrl * @signal_voltage: indicating the current voltage * @signal_voltage_switch_extra_delay_ms: extra delay for IO voltage switch * @cd_gpio: gpio for card detection * @wp_gpio: gpio for write protection */ struct fsl_esdhc_priv { struct fsl_esdhc *esdhc_regs; unsigned int sdhc_clk; struct clk per_clk; unsigned int clock; unsigned int mode; #if !CONFIG_IS_ENABLED(DM_MMC) struct mmc *mmc; #endif struct udevice *dev; int broken_cd; int wp_enable; int vs18_enable; u32 flags; u32 caps; u32 tuning_step; u32 tuning_start_tap; u32 strobe_dll_delay_target; u32 signal_voltage; u32 signal_voltage_switch_extra_delay_ms; struct udevice *vqmmc_dev; struct udevice *vmmc_dev; #if CONFIG_IS_ENABLED(DM_GPIO) struct gpio_desc cd_gpio; struct gpio_desc wp_gpio; #endif dma_addr_t dma_addr; }; /* Return the XFERTYP flags for a given command and data packet */ static uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data) { uint xfertyp = 0; if (data) { xfertyp |= XFERTYP_DPSEL; if (!IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO) && cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK && cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK_HS200) xfertyp |= XFERTYP_DMAEN; if (data->blocks > 1) { xfertyp |= XFERTYP_MSBSEL; xfertyp |= XFERTYP_BCEN; if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC111)) xfertyp |= XFERTYP_AC12EN; } if (data->flags & MMC_DATA_READ) xfertyp |= XFERTYP_DTDSEL; } if (cmd->resp_type & MMC_RSP_CRC) xfertyp |= XFERTYP_CCCEN; if (cmd->resp_type & MMC_RSP_OPCODE) xfertyp |= XFERTYP_CICEN; if (cmd->resp_type & MMC_RSP_136) xfertyp |= XFERTYP_RSPTYP_136; else if (cmd->resp_type & MMC_RSP_BUSY) xfertyp |= XFERTYP_RSPTYP_48_BUSY; else if (cmd->resp_type & MMC_RSP_PRESENT) xfertyp |= XFERTYP_RSPTYP_48; if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) xfertyp |= XFERTYP_CMDTYP_ABORT; return XFERTYP_CMD(cmd->cmdidx) | xfertyp; } /* * PIO Read/Write Mode reduce the performace as DMA is not used in this mode. */ static void esdhc_pio_read_write(struct fsl_esdhc_priv *priv, struct mmc_data *data) { struct fsl_esdhc *regs = priv->esdhc_regs; uint blocks; char *buffer; uint databuf; uint size; uint irqstat; ulong start; if (data->flags & MMC_DATA_READ) { blocks = data->blocks; buffer = data->dest; while (blocks) { start = get_timer(0); size = data->blocksize; irqstat = esdhc_read32(®s->irqstat); while (!(esdhc_read32(®s->prsstat) & PRSSTAT_BREN)) { if (get_timer(start) > PIO_TIMEOUT) { printf("\nData Read Failed in PIO Mode."); return; } } while (size && (!(irqstat & IRQSTAT_TC))) { udelay(100); /* Wait before last byte transfer complete */ irqstat = esdhc_read32(®s->irqstat); databuf = in_le32(®s->datport); *((uint *)buffer) = databuf; buffer += 4; size -= 4; } blocks--; } } else { blocks = data->blocks; buffer = (char *)data->src; while (blocks) { start = get_timer(0); size = data->blocksize; irqstat = esdhc_read32(®s->irqstat); while (!(esdhc_read32(®s->prsstat) & PRSSTAT_BWEN)) { if (get_timer(start) > PIO_TIMEOUT) { printf("\nData Write Failed in PIO Mode."); return; } } while (size && (!(irqstat & IRQSTAT_TC))) { udelay(100); /* Wait before last byte transfer complete */ databuf = *((uint *)buffer); buffer += 4; size -= 4; irqstat = esdhc_read32(®s->irqstat); out_le32(®s->datport, databuf); } blocks--; } } } static void esdhc_setup_watermark_level(struct fsl_esdhc_priv *priv, struct mmc_data *data) { struct fsl_esdhc *regs = priv->esdhc_regs; uint wml_value = data->blocksize / 4; if (data->flags & MMC_DATA_READ) { if (wml_value > WML_RD_WML_MAX) wml_value = WML_RD_WML_MAX_VAL; esdhc_clrsetbits32(®s->wml, WML_RD_WML_MASK, wml_value); } else { if (wml_value > WML_WR_WML_MAX) wml_value = WML_WR_WML_MAX_VAL; esdhc_clrsetbits32(®s->wml, WML_WR_WML_MASK, wml_value << 16); } } static void esdhc_setup_dma(struct fsl_esdhc_priv *priv, struct mmc_data *data) { uint trans_bytes = data->blocksize * data->blocks; struct fsl_esdhc *regs = priv->esdhc_regs; void *buf; if (data->flags & MMC_DATA_WRITE) buf = (void *)data->src; else buf = data->dest; priv->dma_addr = dma_map_single(buf, trans_bytes, mmc_get_dma_dir(data)); if (upper_32_bits(priv->dma_addr)) printf("Cannot use 64 bit addresses with SDMA\n"); esdhc_write32(®s->dsaddr, lower_32_bits(priv->dma_addr)); esdhc_write32(®s->blkattr, data->blocks << 16 | data->blocksize); } static int esdhc_setup_data(struct fsl_esdhc_priv *priv, struct mmc *mmc, struct mmc_data *data) { int timeout; bool is_write = data->flags & MMC_DATA_WRITE; struct fsl_esdhc *regs = priv->esdhc_regs; if (is_write) { if (priv->wp_enable && !(esdhc_read32(®s->prsstat) & PRSSTAT_WPSPL)) { printf("Cannot write to locked SD card.\n"); return -EINVAL; } else { #if CONFIG_IS_ENABLED(DM_GPIO) if (dm_gpio_is_valid(&priv->wp_gpio) && dm_gpio_get_value(&priv->wp_gpio)) { printf("Cannot write to locked SD card.\n"); return -EINVAL; } #endif } } esdhc_setup_watermark_level(priv, data); if (!IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO)) esdhc_setup_dma(priv, data); /* Calculate the timeout period for data transactions */ /* * 1)Timeout period = (2^(timeout+13)) SD Clock cycles * 2)Timeout period should be minimum 0.250sec as per SD Card spec * So, Number of SD Clock cycles for 0.25sec should be minimum * (SD Clock/sec * 0.25 sec) SD Clock cycles * = (mmc->clock * 1/4) SD Clock cycles * As 1) >= 2) * => (2^(timeout+13)) >= mmc->clock * 1/4 * Taking log2 both the sides * => timeout + 13 >= log2(mmc->clock/4) * Rounding up to next power of 2 * => timeout + 13 = log2(mmc->clock/4) + 1 * => timeout + 13 = fls(mmc->clock/4) * * However, the MMC spec "It is strongly recommended for hosts to * implement more than 500ms timeout value even if the card * indicates the 250ms maximum busy length." Even the previous * value of 300ms is known to be insufficient for some cards. * So, we use * => timeout + 13 = fls(mmc->clock/2) */ timeout = fls(mmc->clock/2); timeout -= 13; if (timeout > 14) timeout = 14; if (timeout < 0) timeout = 0; if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC_A001) && (timeout == 4 || timeout == 8 || timeout == 12)) timeout++; if (IS_ENABLED(ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE)) timeout = 0xE; esdhc_clrsetbits32(®s->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16); return 0; } #if IS_ENABLED(CONFIG_MCF5441x) /* * Swaps 32-bit words to little-endian byte order. */ static inline void sd_swap_dma_buff(struct mmc_data *data) { int i, size = data->blocksize >> 2; u32 *buffer = (u32 *)data->dest; u32 sw; while (data->blocks--) { for (i = 0; i < size; i++) { sw = __sw32(*buffer); *buffer++ = sw; } } } #else static inline void sd_swap_dma_buff(struct mmc_data *data) { return; } #endif /* * Sends a command out on the bus. Takes the mmc pointer, * a command pointer, and an optional data pointer. */ static int esdhc_send_cmd_common(struct fsl_esdhc_priv *priv, struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { int err = 0; uint xfertyp; uint irqstat; u32 flags = IRQSTAT_CC | IRQSTAT_CTOE; struct fsl_esdhc *regs = priv->esdhc_regs; unsigned long start; if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC111) && cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) return 0; esdhc_write32(®s->irqstat, -1); sync(); /* Wait for the bus to be idle */ while ((esdhc_read32(®s->prsstat) & PRSSTAT_CICHB) || (esdhc_read32(®s->prsstat) & PRSSTAT_CIDHB)) ; while (esdhc_read32(®s->prsstat) & PRSSTAT_DLA) ; /* Set up for a data transfer if we have one */ if (data) { err = esdhc_setup_data(priv, mmc, data); if(err) return err; } /* Figure out the transfer arguments */ xfertyp = esdhc_xfertyp(cmd, data); /* Mask all irqs */ esdhc_write32(®s->irqsigen, 0); /* Send the command */ esdhc_write32(®s->cmdarg, cmd->cmdarg); if (IS_ENABLED(CONFIG_FSL_USDHC)) { u32 mixctrl = esdhc_read32(®s->mixctrl); esdhc_write32(®s->mixctrl, (mixctrl & 0xFFFFFF80) | (xfertyp & 0x7F) | (mmc->ddr_mode ? XFERTYP_DDREN : 0)); esdhc_write32(®s->xfertyp, xfertyp & 0xFFFF0000); } else { esdhc_write32(®s->xfertyp, xfertyp); } if ((cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK) || (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)) flags = IRQSTAT_BRR; /* Wait for the command to complete */ start = get_timer(0); while (!(esdhc_read32(®s->irqstat) & flags)) { if (get_timer(start) > 1000) { err = -ETIMEDOUT; goto out; } } irqstat = esdhc_read32(®s->irqstat); if (irqstat & CMD_ERR) { err = -ECOMM; goto out; } if (irqstat & IRQSTAT_CTOE) { err = -ETIMEDOUT; goto out; } /* Workaround for ESDHC errata ENGcm03648 */ if (!data && (cmd->resp_type & MMC_RSP_BUSY)) { int timeout = 50000; /* Poll on DATA0 line for cmd with busy signal for 5000 ms */ while (timeout > 0 && !(esdhc_read32(®s->prsstat) & PRSSTAT_DAT0)) { udelay(100); timeout--; } if (timeout <= 0) { printf("Timeout waiting for DAT0 to go high!\n"); err = -ETIMEDOUT; goto out; } } /* Copy the response to the response buffer */ if (cmd->resp_type & MMC_RSP_136) { u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0; cmdrsp3 = esdhc_read32(®s->cmdrsp3); cmdrsp2 = esdhc_read32(®s->cmdrsp2); cmdrsp1 = esdhc_read32(®s->cmdrsp1); cmdrsp0 = esdhc_read32(®s->cmdrsp0); cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24); cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24); cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24); cmd->response[3] = (cmdrsp0 << 8); } else cmd->response[0] = esdhc_read32(®s->cmdrsp0); /* Wait until all of the blocks are transferred */ if (data) { if (IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO)) { esdhc_pio_read_write(priv, data); } else { flags = DATA_COMPLETE; if (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK || cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200) flags = IRQSTAT_BRR; do { irqstat = esdhc_read32(®s->irqstat); if (irqstat & IRQSTAT_DTOE) { err = -ETIMEDOUT; goto out; } if (irqstat & DATA_ERR) { err = -ECOMM; goto out; } } while ((irqstat & flags) != flags); /* * Need invalidate the dcache here again to avoid any * cache-fill during the DMA operations such as the * speculative pre-fetching etc. */ dma_unmap_single(priv->dma_addr, data->blocks * data->blocksize, mmc_get_dma_dir(data)); if (IS_ENABLED(CONFIG_MCF5441x) && (data->flags & MMC_DATA_READ)) sd_swap_dma_buff(data); } } out: /* Reset CMD and DATA portions on error */ if (err) { esdhc_write32(®s->sysctl, esdhc_read32(®s->sysctl) | SYSCTL_RSTC); while (esdhc_read32(®s->sysctl) & SYSCTL_RSTC) ; if (data) { esdhc_write32(®s->sysctl, esdhc_read32(®s->sysctl) | SYSCTL_RSTD); while ((esdhc_read32(®s->sysctl) & SYSCTL_RSTD)) ; } /* If this was CMD11, then notify that power cycle is needed */ if (cmd->cmdidx == SD_CMD_SWITCH_UHS18V) printf("CMD11 to switch to 1.8V mode failed, card requires power cycle.\n"); } esdhc_write32(®s->irqstat, -1); return err; } static void set_sysctl(struct fsl_esdhc_priv *priv, struct mmc *mmc, uint clock) { struct fsl_esdhc *regs = priv->esdhc_regs; int div = 1; u32 tmp; int ret, pre_div; int ddr_pre_div = mmc->ddr_mode ? 2 : 1; int sdhc_clk = priv->sdhc_clk; uint clk; #if IS_ENABLED(CONFIG_MX53) /* For i.MX53 eSDHCv3, SYSCTL.SDCLKFS may not be set to 0. */ pre_div = (regs == (struct fsl_esdhc *)MMC_SDHC3_BASE_ADDR) ? 2 : 1; #else pre_div = 1; #endif while (sdhc_clk / (16 * pre_div * ddr_pre_div) > clock && pre_div < 256) pre_div *= 2; while (sdhc_clk / (div * pre_div * ddr_pre_div) > clock && div < 16) div++; mmc->clock = sdhc_clk / pre_div / div / ddr_pre_div; pre_div >>= 1; div -= 1; clk = (pre_div << 8) | (div << 4); if (IS_ENABLED(CONFIG_FSL_USDHC)) esdhc_clrbits32(®s->vendorspec, VENDORSPEC_CKEN); else esdhc_clrbits32(®s->sysctl, SYSCTL_CKEN); esdhc_clrsetbits32(®s->sysctl, SYSCTL_CLOCK_MASK, clk); ret = readx_poll_timeout(esdhc_read32, ®s->prsstat, tmp, tmp & PRSSTAT_SDSTB, 100); if (ret) pr_warn("fsl_esdhc_imx: Internal clock never stabilised.\n"); if (IS_ENABLED(CONFIG_FSL_USDHC)) esdhc_setbits32(®s->vendorspec, VENDORSPEC_PEREN | VENDORSPEC_CKEN); else esdhc_setbits32(®s->sysctl, SYSCTL_PEREN | SYSCTL_CKEN); priv->clock = clock; } #ifdef MMC_SUPPORTS_TUNING static int esdhc_change_pinstate(struct udevice *dev) { struct fsl_esdhc_priv *priv = dev_get_priv(dev); int ret; switch (priv->mode) { case UHS_SDR50: case UHS_DDR50: ret = pinctrl_select_state(dev, "state_100mhz"); break; case UHS_SDR104: case MMC_HS_200: case MMC_HS_400: case MMC_HS_400_ES: ret = pinctrl_select_state(dev, "state_200mhz"); break; default: ret = pinctrl_select_state(dev, "default"); break; } if (ret) printf("%s %d error\n", __func__, priv->mode); return ret; } static void esdhc_reset_tuning(struct mmc *mmc) { struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev); struct fsl_esdhc *regs = priv->esdhc_regs; if (priv->flags & ESDHC_FLAG_USDHC) { if (priv->flags & ESDHC_FLAG_STD_TUNING) { esdhc_clrbits32(®s->autoc12err, MIX_CTRL_SMPCLK_SEL | MIX_CTRL_EXE_TUNE); } } } static void esdhc_set_strobe_dll(struct mmc *mmc) { struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev); struct fsl_esdhc *regs = priv->esdhc_regs; u32 val; if (priv->clock > ESDHC_STROBE_DLL_CLK_FREQ) { esdhc_write32(®s->strobe_dllctrl, ESDHC_STROBE_DLL_CTRL_RESET); /* clear the reset bit on strobe dll before any setting */ esdhc_write32(®s->strobe_dllctrl, 0); /* * enable strobe dll ctrl and adjust the delay target * for the uSDHC loopback read clock */ val = ESDHC_STROBE_DLL_CTRL_ENABLE | ESDHC_STROBE_DLL_CTRL_SLV_UPDATE_INT_DEFAULT | (priv->strobe_dll_delay_target << ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_SHIFT); esdhc_write32(®s->strobe_dllctrl, val); /* wait 5us to make sure strobe dll status register stable */ mdelay(5); val = esdhc_read32(®s->strobe_dllstat); if (!(val & ESDHC_STROBE_DLL_STS_REF_LOCK)) pr_warn("HS400 strobe DLL status REF not lock!\n"); if (!(val & ESDHC_STROBE_DLL_STS_SLV_LOCK)) pr_warn("HS400 strobe DLL status SLV not lock!\n"); } } static int esdhc_set_timing(struct mmc *mmc) { struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev); struct fsl_esdhc *regs = priv->esdhc_regs; u32 mixctrl; mixctrl = esdhc_read32(®s->mixctrl); mixctrl &= ~(MIX_CTRL_DDREN | MIX_CTRL_HS400_EN); switch (mmc->selected_mode) { case MMC_LEGACY: esdhc_reset_tuning(mmc); esdhc_write32(®s->mixctrl, mixctrl); break; case MMC_HS_400: case MMC_HS_400_ES: mixctrl |= MIX_CTRL_DDREN | MIX_CTRL_HS400_EN; esdhc_write32(®s->mixctrl, mixctrl); break; case MMC_HS: case MMC_HS_52: case MMC_HS_200: case SD_HS: case UHS_SDR12: case UHS_SDR25: case UHS_SDR50: case UHS_SDR104: esdhc_write32(®s->mixctrl, mixctrl); break; case UHS_DDR50: case MMC_DDR_52: mixctrl |= MIX_CTRL_DDREN; esdhc_write32(®s->mixctrl, mixctrl); break; default: printf("Not supported %d\n", mmc->selected_mode); return -EINVAL; } priv->mode = mmc->selected_mode; return esdhc_change_pinstate(mmc->dev); } static int esdhc_set_voltage(struct mmc *mmc) { struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev); struct fsl_esdhc *regs = priv->esdhc_regs; int ret; priv->signal_voltage = mmc->signal_voltage; switch (mmc->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: if (priv->vs18_enable) return -ENOTSUPP; if (CONFIG_IS_ENABLED(DM_REGULATOR) && !IS_ERR_OR_NULL(priv->vqmmc_dev)) { ret = regulator_set_value(priv->vqmmc_dev, 3300000); if (ret) { printf("Setting to 3.3V error"); return -EIO; } mdelay(5); } esdhc_clrbits32(®s->vendorspec, ESDHC_VENDORSPEC_VSELECT); if (!(esdhc_read32(®s->vendorspec) & ESDHC_VENDORSPEC_VSELECT)) return 0; return -EAGAIN; case MMC_SIGNAL_VOLTAGE_180: if (CONFIG_IS_ENABLED(DM_REGULATOR) && !IS_ERR_OR_NULL(priv->vqmmc_dev)) { ret = regulator_set_value(priv->vqmmc_dev, 1800000); if (ret) { printf("Setting to 1.8V error"); return -EIO; } } esdhc_setbits32(®s->vendorspec, ESDHC_VENDORSPEC_VSELECT); /* * some board like imx8mm-evk need about 18ms to switch * the IO voltage from 3.3v to 1.8v, common code only * delay 10ms, so need to delay extra time to make sure * the IO voltage change to 1.8v. */ if (priv->signal_voltage_switch_extra_delay_ms) mdelay(priv->signal_voltage_switch_extra_delay_ms); if (esdhc_read32(®s->vendorspec) & ESDHC_VENDORSPEC_VSELECT) return 0; return -EAGAIN; case MMC_SIGNAL_VOLTAGE_120: return -ENOTSUPP; default: return 0; } } static void esdhc_stop_tuning(struct mmc *mmc) { struct mmc_cmd cmd; cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; mmc_send_cmd(mmc, &cmd, NULL); } static int fsl_esdhc_execute_tuning(struct udevice *dev, uint32_t opcode) { struct fsl_esdhc_plat *plat = dev_get_plat(dev); struct fsl_esdhc_priv *priv = dev_get_priv(dev); struct fsl_esdhc *regs = priv->esdhc_regs; struct mmc *mmc = &plat->mmc; u32 irqstaten = esdhc_read32(®s->irqstaten); u32 irqsigen = esdhc_read32(®s->irqsigen); int i, err, ret = -ETIMEDOUT; u32 val, mixctrl, tmp; /* clock tuning is not needed for upto 52MHz */ if (mmc->clock <= 52000000) return 0; /* make sure the card clock keep on */ esdhc_setbits32(®s->vendorspec, VENDORSPEC_FRC_SDCLK_ON); /* This is readw/writew SDHCI_HOST_CONTROL2 when tuning */ if (priv->flags & ESDHC_FLAG_STD_TUNING) { val = esdhc_read32(®s->autoc12err); mixctrl = esdhc_read32(®s->mixctrl); val &= ~MIX_CTRL_SMPCLK_SEL; mixctrl &= ~(MIX_CTRL_FBCLK_SEL | MIX_CTRL_AUTO_TUNE_EN); val |= MIX_CTRL_EXE_TUNE; mixctrl |= MIX_CTRL_FBCLK_SEL | MIX_CTRL_AUTO_TUNE_EN; esdhc_write32(®s->autoc12err, val); esdhc_write32(®s->mixctrl, mixctrl); } /* sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE); */ mixctrl = esdhc_read32(®s->mixctrl); mixctrl = MIX_CTRL_DTDSEL_READ | (mixctrl & ~MIX_CTRL_SDHCI_MASK); esdhc_write32(®s->mixctrl, mixctrl); esdhc_write32(®s->irqstaten, IRQSTATEN_BRR); esdhc_write32(®s->irqsigen, IRQSTATEN_BRR); /* * Issue opcode repeatedly till Execute Tuning is set to 0 or the number * of loops reaches 40 times. */ for (i = 0; i < MAX_TUNING_LOOP; i++) { u32 ctrl; if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) { if (mmc->bus_width == 8) esdhc_write32(®s->blkattr, 0x7080); else if (mmc->bus_width == 4) esdhc_write32(®s->blkattr, 0x7040); } else { esdhc_write32(®s->blkattr, 0x7040); } /* sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE) */ val = esdhc_read32(®s->mixctrl); val = MIX_CTRL_DTDSEL_READ | (val & ~MIX_CTRL_SDHCI_MASK); esdhc_write32(®s->mixctrl, val); /* We are using STD tuning, no need to check return value */ mmc_send_tuning(mmc, opcode, NULL); ctrl = esdhc_read32(®s->autoc12err); if ((!(ctrl & MIX_CTRL_EXE_TUNE)) && (ctrl & MIX_CTRL_SMPCLK_SEL)) { ret = 0; break; } } esdhc_write32(®s->irqstaten, irqstaten); esdhc_write32(®s->irqsigen, irqsigen); esdhc_stop_tuning(mmc); /* change to default setting, let host control the card clock */ esdhc_clrbits32(®s->vendorspec, VENDORSPEC_FRC_SDCLK_ON); err = readx_poll_timeout(esdhc_read32, ®s->prsstat, tmp, tmp & PRSSTAT_SDOFF, 100); if (err) dev_warn(dev, "card clock not gate off as expect.\n"); return ret; } #endif static int esdhc_set_ios_common(struct fsl_esdhc_priv *priv, struct mmc *mmc) { struct fsl_esdhc *regs = priv->esdhc_regs; int ret __maybe_unused; u32 clock; #ifdef MMC_SUPPORTS_TUNING /* * call esdhc_set_timing() before update the clock rate, * This is because current we support DDR and SDR mode, * Once the DDR_EN bit is set, the card clock will be * divide by 2 automatically. So need to do this before * setting clock rate. */ if (priv->mode != mmc->selected_mode) { ret = esdhc_set_timing(mmc); if (ret) { printf("esdhc_set_timing error %d\n", ret); return ret; } } #endif /* Set the clock speed */ clock = mmc->clock; if (clock < mmc->cfg->f_min) clock = mmc->cfg->f_min; if (priv->clock != clock) set_sysctl(priv, mmc, clock); if (mmc->clk_disable) { if (IS_ENABLED(CONFIG_FSL_USDHC)) esdhc_clrbits32(®s->vendorspec, VENDORSPEC_CKEN); else esdhc_clrbits32(®s->sysctl, SYSCTL_CKEN); } else { if (IS_ENABLED(CONFIG_FSL_USDHC)) esdhc_setbits32(®s->vendorspec, VENDORSPEC_PEREN | VENDORSPEC_CKEN); else esdhc_setbits32(®s->sysctl, SYSCTL_PEREN | SYSCTL_CKEN); } #ifdef MMC_SUPPORTS_TUNING /* * For HS400/HS400ES mode, make sure set the strobe dll in the * target clock rate. So call esdhc_set_strobe_dll() after the * clock updated. */ if (mmc->selected_mode == MMC_HS_400 || mmc->selected_mode == MMC_HS_400_ES) esdhc_set_strobe_dll(mmc); if (priv->signal_voltage != mmc->signal_voltage) { ret = esdhc_set_voltage(mmc); if (ret) { if (ret != -ENOTSUPP) printf("esdhc_set_voltage error %d\n", ret); return ret; } } #endif /* Set the bus width */ esdhc_clrbits32(®s->proctl, PROCTL_DTW_4 | PROCTL_DTW_8); if (mmc->bus_width == 4) esdhc_setbits32(®s->proctl, PROCTL_DTW_4); else if (mmc->bus_width == 8) esdhc_setbits32(®s->proctl, PROCTL_DTW_8); return 0; } static int esdhc_init_common(struct fsl_esdhc_priv *priv, struct mmc *mmc) { struct fsl_esdhc *regs = priv->esdhc_regs; ulong start; /* Reset the entire host controller */ esdhc_setbits32(®s->sysctl, SYSCTL_RSTA); /* Wait until the controller is available */ start = get_timer(0); while ((esdhc_read32(®s->sysctl) & SYSCTL_RSTA)) { if (get_timer(start) > 1000) return -ETIMEDOUT; } if (IS_ENABLED(CONFIG_FSL_USDHC)) { /* RSTA doesn't reset MMC_BOOT register, so manually reset it */ esdhc_write32(®s->mmcboot, 0x0); /* Reset MIX_CTRL and CLK_TUNE_CTRL_STATUS regs to 0 */ esdhc_write32(®s->mixctrl, 0x0); esdhc_write32(®s->clktunectrlstatus, 0x0); /* Put VEND_SPEC to default value */ if (priv->vs18_enable) esdhc_write32(®s->vendorspec, VENDORSPEC_INIT | ESDHC_VENDORSPEC_VSELECT); else esdhc_write32(®s->vendorspec, VENDORSPEC_INIT); /* Disable DLL_CTRL delay line */ esdhc_write32(®s->dllctrl, 0x0); } if (IS_ENABLED(CONFIG_FSL_USDHC)) esdhc_setbits32(®s->vendorspec, VENDORSPEC_HCKEN | VENDORSPEC_IPGEN); else esdhc_setbits32(®s->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN); /* Set the initial clock speed */ set_sysctl(priv, mmc, 400000); /* Disable the BRR and BWR bits in IRQSTAT */ esdhc_clrbits32(®s->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR); /* Put the PROCTL reg back to the default */ if (IS_ENABLED(CONFIG_MCF5441x)) esdhc_write32(®s->proctl, PROCTL_INIT | PROCTL_D3CD); else esdhc_write32(®s->proctl, PROCTL_INIT); /* Set timout to the maximum value */ esdhc_clrsetbits32(®s->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16); return 0; } static int esdhc_getcd_common(struct fsl_esdhc_priv *priv) { struct fsl_esdhc *regs = priv->esdhc_regs; int timeout = 1000; if (IS_ENABLED(CONFIG_ESDHC_DETECT_QUIRK)) return 1; if (CONFIG_IS_ENABLED(DM_MMC)) { if (priv->broken_cd) return 1; #if CONFIG_IS_ENABLED(DM_GPIO) if (dm_gpio_is_valid(&priv->cd_gpio)) return dm_gpio_get_value(&priv->cd_gpio); #endif } while (!(esdhc_read32(®s->prsstat) & PRSSTAT_CINS) && --timeout) udelay(1000); return timeout > 0; } static int esdhc_reset(struct fsl_esdhc *regs) { ulong start; /* reset the controller */ esdhc_setbits32(®s->sysctl, SYSCTL_RSTA); /* hardware clears the bit when it is done */ start = get_timer(0); while ((esdhc_read32(®s->sysctl) & SYSCTL_RSTA)) { if (get_timer(start) > 100) { printf("MMC/SD: Reset never completed.\n"); return -ETIMEDOUT; } } return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) static int esdhc_getcd(struct mmc *mmc) { struct fsl_esdhc_priv *priv = mmc->priv; return esdhc_getcd_common(priv); } static int esdhc_init(struct mmc *mmc) { struct fsl_esdhc_priv *priv = mmc->priv; return esdhc_init_common(priv, mmc); } static int esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct fsl_esdhc_priv *priv = mmc->priv; return esdhc_send_cmd_common(priv, mmc, cmd, data); } static int esdhc_set_ios(struct mmc *mmc) { struct fsl_esdhc_priv *priv = mmc->priv; return esdhc_set_ios_common(priv, mmc); } static const struct mmc_ops esdhc_ops = { .getcd = esdhc_getcd, .init = esdhc_init, .send_cmd = esdhc_send_cmd, .set_ios = esdhc_set_ios, }; #endif static int fsl_esdhc_init(struct fsl_esdhc_priv *priv, struct fsl_esdhc_plat *plat) { struct mmc_config *cfg; struct fsl_esdhc *regs; u32 caps; int ret; if (!priv) return -EINVAL; regs = priv->esdhc_regs; /* First reset the eSDHC controller */ ret = esdhc_reset(regs); if (ret) return ret; /* ColdFire, using SDHC_DATA[3] for card detection */ if (IS_ENABLED(CONFIG_MCF5441x)) esdhc_write32(®s->proctl, PROCTL_INIT | PROCTL_D3CD); if (IS_ENABLED(CONFIG_FSL_USDHC)) { esdhc_setbits32(®s->vendorspec, VENDORSPEC_PEREN | VENDORSPEC_HCKEN | VENDORSPEC_IPGEN | VENDORSPEC_CKEN); } else { esdhc_setbits32(®s->sysctl, SYSCTL_PEREN | SYSCTL_HCKEN | SYSCTL_IPGEN | SYSCTL_CKEN); /* Clearing tuning bits in case ROM has set it already */ esdhc_write32(®s->mixctrl, 0); esdhc_write32(®s->autoc12err, 0); esdhc_write32(®s->clktunectrlstatus, 0); } if (priv->vs18_enable) esdhc_setbits32(®s->vendorspec, ESDHC_VENDORSPEC_VSELECT); esdhc_write32(®s->irqstaten, SDHCI_IRQ_EN_BITS); cfg = &plat->cfg; if (!CONFIG_IS_ENABLED(DM_MMC)) memset(cfg, '\0', sizeof(*cfg)); caps = esdhc_read32(®s->hostcapblt); /* * MCF5441x RM declares in more points that sdhc clock speed must * never exceed 25 Mhz. From this, the HS bit needs to be disabled * from host capabilities. */ if (IS_ENABLED(CONFIG_MCF5441x)) caps &= ~HOSTCAPBLT_HSS; if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC135)) caps &= ~(HOSTCAPBLT_SRS | HOSTCAPBLT_VS18 | HOSTCAPBLT_VS30); if (IS_ENABLED(CONFIG_SYS_FSL_MMC_HAS_CAPBLT_VS33)) caps |= HOSTCAPBLT_VS33; if (caps & HOSTCAPBLT_VS18) cfg->voltages |= MMC_VDD_165_195; if (caps & HOSTCAPBLT_VS30) cfg->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31; if (caps & HOSTCAPBLT_VS33) cfg->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34; cfg->name = "FSL_SDHC"; #if !CONFIG_IS_ENABLED(DM_MMC) cfg->ops = &esdhc_ops; #endif if (IS_ENABLED(CONFIG_SYS_FSL_ESDHC_HAS_DDR_MODE)) cfg->host_caps |= MMC_MODE_DDR_52MHz; if (caps & HOSTCAPBLT_HSS) cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; cfg->host_caps |= priv->caps; cfg->f_min = 400000; cfg->f_max = min(priv->sdhc_clk, (u32)200000000); cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; esdhc_write32(®s->dllctrl, 0); if (priv->flags & ESDHC_FLAG_USDHC) { if (priv->flags & ESDHC_FLAG_STD_TUNING) { u32 val = esdhc_read32(®s->tuning_ctrl); val |= ESDHC_STD_TUNING_EN; val &= ~ESDHC_TUNING_START_TAP_MASK; val |= priv->tuning_start_tap; val &= ~ESDHC_TUNING_STEP_MASK; val |= (priv->tuning_step) << ESDHC_TUNING_STEP_SHIFT; /* Disable the CMD CRC check for tuning, if not, need to * add some delay after every tuning command, because * hardware standard tuning logic will directly go to next * step once it detect the CMD CRC error, will not wait for * the card side to finally send out the tuning data, trigger * the buffer read ready interrupt immediately. If usdhc send * the next tuning command some eMMC card will stuck, can't * response, block the tuning procedure or the first command * after the whole tuning procedure always can't get any response. */ val |= ESDHC_TUNING_CMD_CRC_CHECK_DISABLE; esdhc_write32(®s->tuning_ctrl, val); } /* * UHS doesn't have explicit ESDHC flags, so if it's * not supported, disable it in config. */ if (CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)) cfg->host_caps |= UHS_CAPS; if (CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)) { if (priv->flags & ESDHC_FLAG_HS200) cfg->host_caps |= MMC_CAP(MMC_HS_200); } if (CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)) { if (priv->flags & ESDHC_FLAG_HS400) cfg->host_caps |= MMC_CAP(MMC_HS_400); } if (CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)) { if (priv->flags & ESDHC_FLAG_HS400_ES) cfg->host_caps |= MMC_CAP(MMC_HS_400_ES); } } return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) int fsl_esdhc_initialize(struct bd_info *bis, struct fsl_esdhc_cfg *cfg) { struct fsl_esdhc_plat *plat; struct fsl_esdhc_priv *priv; struct mmc_config *mmc_cfg; struct mmc *mmc; int ret; if (!cfg) return -EINVAL; priv = calloc(sizeof(struct fsl_esdhc_priv), 1); if (!priv) return -ENOMEM; plat = calloc(sizeof(struct fsl_esdhc_plat), 1); if (!plat) { free(priv); return -ENOMEM; } priv->esdhc_regs = (struct fsl_esdhc *)(unsigned long)(cfg->esdhc_base); priv->sdhc_clk = cfg->sdhc_clk; priv->wp_enable = cfg->wp_enable; mmc_cfg = &plat->cfg; switch (cfg->max_bus_width) { case 0: /* Not set in config; assume everything is supported */ case 8: mmc_cfg->host_caps |= MMC_MODE_8BIT; fallthrough; case 4: mmc_cfg->host_caps |= MMC_MODE_4BIT; fallthrough; case 1: mmc_cfg->host_caps |= MMC_MODE_1BIT; break; default: printf("invalid max bus width %u\n", cfg->max_bus_width); return -EINVAL; } if (IS_ENABLED(CONFIG_ESDHC_DETECT_8_BIT_QUIRK)) mmc_cfg->host_caps &= ~MMC_MODE_8BIT; ret = fsl_esdhc_init(priv, plat); if (ret) { debug("%s init failure\n", __func__); free(plat); free(priv); return ret; } mmc = mmc_create(&plat->cfg, priv); if (!mmc) return -EIO; priv->mmc = mmc; return 0; } int fsl_esdhc_mmc_init(struct bd_info *bis) { struct fsl_esdhc_cfg *cfg; cfg = calloc(sizeof(struct fsl_esdhc_cfg), 1); cfg->esdhc_base = CONFIG_SYS_FSL_ESDHC_ADDR; cfg->sdhc_clk = gd->arch.sdhc_clk; return fsl_esdhc_initialize(bis, cfg); } #endif #if CONFIG_IS_ENABLED(OF_LIBFDT) __weak int esdhc_status_fixup(void *blob, const char *compat) { if (IS_ENABLED(FSL_ESDHC_PIN_MUX) && !hwconfig("esdhc")) { do_fixup_by_compat(blob, compat, "status", "disabled", sizeof("disabled"), 1); return 1; } return 0; } void fdt_fixup_esdhc(void *blob, struct bd_info *bd) { const char *compat = "fsl,esdhc"; if (esdhc_status_fixup(blob, compat)) return; do_fixup_by_compat_u32(blob, compat, "clock-frequency", gd->arch.sdhc_clk, 1); } #endif #if CONFIG_IS_ENABLED(DM_MMC) #include __weak void init_clk_usdhc(u32 index) { } static int fsl_esdhc_of_to_plat(struct udevice *dev) { struct fsl_esdhc_priv *priv = dev_get_priv(dev); struct udevice *vqmmc_dev; int ret; const void *fdt = gd->fdt_blob; int node = dev_of_offset(dev); fdt_addr_t addr; unsigned int val; if (!CONFIG_IS_ENABLED(OF_REAL)) return 0; addr = dev_read_addr(dev); if (addr == FDT_ADDR_T_NONE) return -EINVAL; priv->esdhc_regs = (struct fsl_esdhc *)addr; priv->dev = dev; priv->mode = -1; val = fdtdec_get_int(fdt, node, "fsl,tuning-step", 1); priv->tuning_step = val; val = fdtdec_get_int(fdt, node, "fsl,tuning-start-tap", ESDHC_TUNING_START_TAP_DEFAULT); priv->tuning_start_tap = val; val = fdtdec_get_int(fdt, node, "fsl,strobe-dll-delay-target", ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_DEFAULT); priv->strobe_dll_delay_target = val; val = fdtdec_get_int(fdt, node, "fsl,signal-voltage-switch-extra-delay-ms", 0); priv->signal_voltage_switch_extra_delay_ms = val; if (dev_read_bool(dev, "broken-cd")) priv->broken_cd = 1; if (dev_read_prop(dev, "fsl,wp-controller", NULL)) { priv->wp_enable = 1; } else { priv->wp_enable = 0; } #if CONFIG_IS_ENABLED(DM_GPIO) gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN); gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN); #endif priv->vs18_enable = 0; if (!CONFIG_IS_ENABLED(DM_REGULATOR)) return 0; /* * If emmc I/O has a fixed voltage at 1.8V, this must be provided, * otherwise, emmc will work abnormally. */ ret = device_get_supply_regulator(dev, "vqmmc-supply", &vqmmc_dev); if (ret) { dev_dbg(dev, "no vqmmc-supply\n"); } else { priv->vqmmc_dev = vqmmc_dev; ret = regulator_set_enable(vqmmc_dev, true); if (ret) { dev_err(dev, "fail to enable vqmmc-supply\n"); return ret; } if (regulator_get_value(vqmmc_dev) == 1800000) priv->vs18_enable = 1; } return 0; } static int fsl_esdhc_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct fsl_esdhc_plat *plat = dev_get_plat(dev); struct fsl_esdhc_priv *priv = dev_get_priv(dev); struct esdhc_soc_data *data = (struct esdhc_soc_data *)dev_get_driver_data(dev); struct mmc *mmc; int ret; #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_fsl_esdhc *dtplat = &plat->dtplat; priv->esdhc_regs = map_sysmem(dtplat->reg[0], dtplat->reg[1]); if (dtplat->non_removable) plat->cfg.host_caps |= MMC_CAP_NONREMOVABLE; else plat->cfg.host_caps &= ~MMC_CAP_NONREMOVABLE; if (CONFIG_IS_ENABLED(DM_GPIO) && !dtplat->non_removable) { struct udevice *gpiodev; ret = device_get_by_ofplat_idx(dtplat->cd_gpios->idx, &gpiodev); if (ret) return ret; ret = gpio_dev_request_index(gpiodev, gpiodev->name, "cd-gpios", dtplat->cd_gpios->arg[0], GPIOD_IS_IN, dtplat->cd_gpios->arg[1], &priv->cd_gpio); if (ret) return ret; } #endif if (data) priv->flags = data->flags; /* * TODO: * Because lack of clk driver, if SDHC clk is not enabled, * need to enable it first before this driver is invoked. * * we use MXC_ESDHC_CLK to get clk freq. * If one would like to make this function work, * the aliases should be provided in dts as this: * * aliases { * mmc0 = &usdhc1; * mmc1 = &usdhc2; * mmc2 = &usdhc3; * mmc3 = &usdhc4; * }; * Then if your board only supports mmc2 and mmc3, but we can * correctly get the seq as 2 and 3, then let mxc_get_clock * work as expected. */ init_clk_usdhc(dev_seq(dev)); #if CONFIG_IS_ENABLED(CLK) /* Assigned clock already set clock */ ret = clk_get_by_name(dev, "per", &priv->per_clk); if (ret) { printf("Failed to get per_clk\n"); return ret; } ret = clk_enable(&priv->per_clk); if (ret) { printf("Failed to enable per_clk\n"); return ret; } priv->sdhc_clk = clk_get_rate(&priv->per_clk); #else priv->sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK + dev_seq(dev)); if (priv->sdhc_clk <= 0) { dev_err(dev, "Unable to get clk for %s\n", dev->name); return -EINVAL; } #endif ret = fsl_esdhc_init(priv, plat); if (ret) { dev_err(dev, "fsl_esdhc_init failure\n"); return ret; } if (CONFIG_IS_ENABLED(OF_REAL)) { ret = mmc_of_parse(dev, &plat->cfg); if (ret) return ret; } mmc = &plat->mmc; mmc->cfg = &plat->cfg; mmc->dev = dev; upriv->mmc = mmc; return esdhc_init_common(priv, mmc); } static int fsl_esdhc_get_cd(struct udevice *dev) { struct fsl_esdhc_plat *plat = dev_get_plat(dev); struct fsl_esdhc_priv *priv = dev_get_priv(dev); if (plat->cfg.host_caps & MMC_CAP_NONREMOVABLE) return 1; return esdhc_getcd_common(priv); } static int fsl_esdhc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct fsl_esdhc_plat *plat = dev_get_plat(dev); struct fsl_esdhc_priv *priv = dev_get_priv(dev); return esdhc_send_cmd_common(priv, &plat->mmc, cmd, data); } static int fsl_esdhc_set_ios(struct udevice *dev) { struct fsl_esdhc_plat *plat = dev_get_plat(dev); struct fsl_esdhc_priv *priv = dev_get_priv(dev); return esdhc_set_ios_common(priv, &plat->mmc); } static int __maybe_unused fsl_esdhc_set_enhanced_strobe(struct udevice *dev) { struct fsl_esdhc_priv *priv = dev_get_priv(dev); struct fsl_esdhc *regs = priv->esdhc_regs; u32 m; m = esdhc_read32(®s->mixctrl); m |= MIX_CTRL_HS400_ES; esdhc_write32(®s->mixctrl, m); return 0; } static int fsl_esdhc_wait_dat0(struct udevice *dev, int state, int timeout_us) { int ret, err; u32 tmp; struct fsl_esdhc_priv *priv = dev_get_priv(dev); struct fsl_esdhc *regs = priv->esdhc_regs; /* make sure the card clock keep on */ esdhc_setbits32(®s->vendorspec, VENDORSPEC_FRC_SDCLK_ON); ret = readx_poll_timeout(esdhc_read32, ®s->prsstat, tmp, !!(tmp & PRSSTAT_DAT0) == !!state, timeout_us); /* change to default setting, let host control the card clock */ esdhc_clrbits32(®s->vendorspec, VENDORSPEC_FRC_SDCLK_ON); err = readx_poll_timeout(esdhc_read32, ®s->prsstat, tmp, tmp & PRSSTAT_SDOFF, 100); if (err) dev_warn(dev, "card clock not gate off as expect.\n"); return ret; } static const struct dm_mmc_ops fsl_esdhc_ops = { .get_cd = fsl_esdhc_get_cd, .send_cmd = fsl_esdhc_send_cmd, .set_ios = fsl_esdhc_set_ios, #ifdef MMC_SUPPORTS_TUNING .execute_tuning = fsl_esdhc_execute_tuning, #endif #if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT) .set_enhanced_strobe = fsl_esdhc_set_enhanced_strobe, #endif .wait_dat0 = fsl_esdhc_wait_dat0, }; static struct esdhc_soc_data usdhc_imx7d_data = { .flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING | ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200 | ESDHC_FLAG_HS400, }; static struct esdhc_soc_data usdhc_imx7ulp_data = { .flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING | ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200 | ESDHC_FLAG_HS400, }; static struct esdhc_soc_data usdhc_imx8qm_data = { .flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING | ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200 | ESDHC_FLAG_HS400 | ESDHC_FLAG_HS400_ES, }; static const struct udevice_id fsl_esdhc_ids[] = { { .compatible = "fsl,imx51-esdhc", }, { .compatible = "fsl,imx53-esdhc", }, { .compatible = "fsl,imx6ul-usdhc", }, { .compatible = "fsl,imx6sx-usdhc", }, { .compatible = "fsl,imx6sl-usdhc", }, { .compatible = "fsl,imx6q-usdhc", }, { .compatible = "fsl,imx7d-usdhc", .data = (ulong)&usdhc_imx7d_data,}, { .compatible = "fsl,imx7ulp-usdhc", .data = (ulong)&usdhc_imx7ulp_data,}, { .compatible = "fsl,imx8qm-usdhc", .data = (ulong)&usdhc_imx8qm_data,}, { .compatible = "fsl,imx8mm-usdhc", .data = (ulong)&usdhc_imx8qm_data,}, { .compatible = "fsl,imx8mn-usdhc", .data = (ulong)&usdhc_imx8qm_data,}, { .compatible = "fsl,imx8mq-usdhc", .data = (ulong)&usdhc_imx8qm_data,}, { .compatible = "fsl,imxrt-usdhc", }, { .compatible = "fsl,esdhc", }, { /* sentinel */ } }; static int fsl_esdhc_bind(struct udevice *dev) { struct fsl_esdhc_plat *plat = dev_get_plat(dev); return mmc_bind(dev, &plat->mmc, &plat->cfg); } U_BOOT_DRIVER(fsl_esdhc) = { .name = "fsl_esdhc", .id = UCLASS_MMC, .of_match = fsl_esdhc_ids, .of_to_plat = fsl_esdhc_of_to_plat, .ops = &fsl_esdhc_ops, .bind = fsl_esdhc_bind, .probe = fsl_esdhc_probe, .plat_auto = sizeof(struct fsl_esdhc_plat), .priv_auto = sizeof(struct fsl_esdhc_priv), }; DM_DRIVER_ALIAS(fsl_esdhc, fsl_imx6q_usdhc) #endif