/*- * Copyright (c) 2007-2008, Juniper Networks, Inc. * Copyright (c) 2008, Excito Elektronik i Skåne AB * Copyright (c) 2008, Michael Trimarchi * * All rights reserved. * * SPDX-License-Identifier: GPL-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include "ehci.h" #ifndef CONFIG_USB_MAX_CONTROLLER_COUNT #define CONFIG_USB_MAX_CONTROLLER_COUNT 1 #endif /* * EHCI spec page 20 says that the HC may take up to 16 uFrames (= 4ms) to halt. * Let's time out after 8 to have a little safety margin on top of that. */ #define HCHALT_TIMEOUT (8 * 1000) #ifndef CONFIG_DM_USB static struct ehci_ctrl ehcic[CONFIG_USB_MAX_CONTROLLER_COUNT]; #endif #define ALIGN_END_ADDR(type, ptr, size) \ ((unsigned long)(ptr) + roundup((size) * sizeof(type), USB_DMA_MINALIGN)) static struct descriptor { struct usb_hub_descriptor hub; struct usb_device_descriptor device; struct usb_linux_config_descriptor config; struct usb_linux_interface_descriptor interface; struct usb_endpoint_descriptor endpoint; } __attribute__ ((packed)) descriptor = { { 0x8, /* bDescLength */ 0x29, /* bDescriptorType: hub descriptor */ 2, /* bNrPorts -- runtime modified */ 0, /* wHubCharacteristics */ 10, /* bPwrOn2PwrGood */ 0, /* bHubCntrCurrent */ { /* Device removable */ } /* at most 7 ports! XXX */ }, { 0x12, /* bLength */ 1, /* bDescriptorType: UDESC_DEVICE */ cpu_to_le16(0x0200), /* bcdUSB: v2.0 */ 9, /* bDeviceClass: UDCLASS_HUB */ 0, /* bDeviceSubClass: UDSUBCLASS_HUB */ 1, /* bDeviceProtocol: UDPROTO_HSHUBSTT */ 64, /* bMaxPacketSize: 64 bytes */ 0x0000, /* idVendor */ 0x0000, /* idProduct */ cpu_to_le16(0x0100), /* bcdDevice */ 1, /* iManufacturer */ 2, /* iProduct */ 0, /* iSerialNumber */ 1 /* bNumConfigurations: 1 */ }, { 0x9, 2, /* bDescriptorType: UDESC_CONFIG */ cpu_to_le16(0x19), 1, /* bNumInterface */ 1, /* bConfigurationValue */ 0, /* iConfiguration */ 0x40, /* bmAttributes: UC_SELF_POWER */ 0 /* bMaxPower */ }, { 0x9, /* bLength */ 4, /* bDescriptorType: UDESC_INTERFACE */ 0, /* bInterfaceNumber */ 0, /* bAlternateSetting */ 1, /* bNumEndpoints */ 9, /* bInterfaceClass: UICLASS_HUB */ 0, /* bInterfaceSubClass: UISUBCLASS_HUB */ 0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */ 0 /* iInterface */ }, { 0x7, /* bLength */ 5, /* bDescriptorType: UDESC_ENDPOINT */ 0x81, /* bEndpointAddress: * UE_DIR_IN | EHCI_INTR_ENDPT */ 3, /* bmAttributes: UE_INTERRUPT */ 8, /* wMaxPacketSize */ 255 /* bInterval */ }, }; #if defined(CONFIG_EHCI_IS_TDI) #define ehci_is_TDI() (1) #else #define ehci_is_TDI() (0) #endif static struct ehci_ctrl *ehci_get_ctrl(struct usb_device *udev) { #ifdef CONFIG_DM_USB return dev_get_priv(usb_get_bus(udev->dev)); #else return udev->controller; #endif } static int ehci_get_port_speed(struct ehci_ctrl *ctrl, uint32_t reg) { return PORTSC_PSPD(reg); } static void ehci_set_usbmode(struct ehci_ctrl *ctrl) { uint32_t tmp; uint32_t *reg_ptr; reg_ptr = (uint32_t *)((u8 *)&ctrl->hcor->or_usbcmd + USBMODE); tmp = ehci_readl(reg_ptr); tmp |= USBMODE_CM_HC; #if defined(CONFIG_EHCI_MMIO_BIG_ENDIAN) tmp |= USBMODE_BE; #else tmp &= ~USBMODE_BE; #endif ehci_writel(reg_ptr, tmp); } static void ehci_powerup_fixup(struct ehci_ctrl *ctrl, uint32_t *status_reg, uint32_t *reg) { mdelay(50); } static uint32_t *ehci_get_portsc_register(struct ehci_ctrl *ctrl, int port) { int max_ports = HCS_N_PORTS(ehci_readl(&ctrl->hccr->cr_hcsparams)); if (port < 0 || port >= max_ports) { /* Printing the message would cause a scan failure! */ debug("The request port(%u) exceeds maximum port number\n", port); return NULL; } return (uint32_t *)&ctrl->hcor->or_portsc[port]; } static int handshake(uint32_t *ptr, uint32_t mask, uint32_t done, int usec) { uint32_t result; do { result = ehci_readl(ptr); udelay(5); if (result == ~(uint32_t)0) return -1; result &= mask; if (result == done) return 0; usec--; } while (usec > 0); return -1; } static int ehci_reset(struct ehci_ctrl *ctrl) { uint32_t cmd; int ret = 0; cmd = ehci_readl(&ctrl->hcor->or_usbcmd); cmd = (cmd & ~CMD_RUN) | CMD_RESET; ehci_writel(&ctrl->hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&ctrl->hcor->or_usbcmd, CMD_RESET, 0, 250 * 1000); if (ret < 0) { printf("EHCI fail to reset\n"); goto out; } if (ehci_is_TDI()) ctrl->ops.set_usb_mode(ctrl); #ifdef CONFIG_USB_EHCI_TXFIFO_THRESH cmd = ehci_readl(&ctrl->hcor->or_txfilltuning); cmd &= ~TXFIFO_THRESH_MASK; cmd |= TXFIFO_THRESH(CONFIG_USB_EHCI_TXFIFO_THRESH); ehci_writel(&ctrl->hcor->or_txfilltuning, cmd); #endif out: return ret; } static int ehci_shutdown(struct ehci_ctrl *ctrl) { int i, ret = 0; uint32_t cmd, reg; int max_ports = HCS_N_PORTS(ehci_readl(&ctrl->hccr->cr_hcsparams)); cmd = ehci_readl(&ctrl->hcor->or_usbcmd); /* If not run, directly return */ if (!(cmd & CMD_RUN)) return 0; cmd &= ~(CMD_PSE | CMD_ASE); ehci_writel(&ctrl->hcor->or_usbcmd, cmd); ret = handshake(&ctrl->hcor->or_usbsts, STS_ASS | STS_PSS, 0, 100 * 1000); if (!ret) { for (i = 0; i < max_ports; i++) { reg = ehci_readl(&ctrl->hcor->or_portsc[i]); reg |= EHCI_PS_SUSP; ehci_writel(&ctrl->hcor->or_portsc[i], reg); } cmd &= ~CMD_RUN; ehci_writel(&ctrl->hcor->or_usbcmd, cmd); ret = handshake(&ctrl->hcor->or_usbsts, STS_HALT, STS_HALT, HCHALT_TIMEOUT); } if (ret) puts("EHCI failed to shut down host controller.\n"); return ret; } static int ehci_td_buffer(struct qTD *td, void *buf, size_t sz) { uint32_t delta, next; unsigned long addr = (unsigned long)buf; int idx; if (addr != ALIGN(addr, ARCH_DMA_MINALIGN)) debug("EHCI-HCD: Misaligned buffer address (%p)\n", buf); flush_dcache_range(addr, ALIGN(addr + sz, ARCH_DMA_MINALIGN)); idx = 0; while (idx < QT_BUFFER_CNT) { td->qt_buffer[idx] = cpu_to_hc32(virt_to_phys((void *)addr)); td->qt_buffer_hi[idx] = 0; next = (addr + EHCI_PAGE_SIZE) & ~(EHCI_PAGE_SIZE - 1); delta = next - addr; if (delta >= sz) break; sz -= delta; addr = next; idx++; } if (idx == QT_BUFFER_CNT) { printf("out of buffer pointers (%zu bytes left)\n", sz); return -1; } return 0; } static inline u8 ehci_encode_speed(enum usb_device_speed speed) { #define QH_HIGH_SPEED 2 #define QH_FULL_SPEED 0 #define QH_LOW_SPEED 1 if (speed == USB_SPEED_HIGH) return QH_HIGH_SPEED; if (speed == USB_SPEED_LOW) return QH_LOW_SPEED; return QH_FULL_SPEED; } static void ehci_update_endpt2_dev_n_port(struct usb_device *udev, struct QH *qh) { uint8_t portnr = 0; uint8_t hubaddr = 0; if (udev->speed != USB_SPEED_LOW && udev->speed != USB_SPEED_FULL) return; usb_find_usb2_hub_address_port(udev, &hubaddr, &portnr); qh->qh_endpt2 |= cpu_to_hc32(QH_ENDPT2_PORTNUM(portnr) | QH_ENDPT2_HUBADDR(hubaddr)); } static int ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer, int length, struct devrequest *req) { ALLOC_ALIGN_BUFFER(struct QH, qh, 1, USB_DMA_MINALIGN); struct qTD *qtd; int qtd_count = 0; int qtd_counter = 0; volatile struct qTD *vtd; unsigned long ts; uint32_t *tdp; uint32_t endpt, maxpacket, token, usbsts; uint32_t c, toggle; uint32_t cmd; int timeout; int ret = 0; struct ehci_ctrl *ctrl = ehci_get_ctrl(dev); debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe, buffer, length, req); if (req != NULL) debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n", req->request, req->request, req->requesttype, req->requesttype, le16_to_cpu(req->value), le16_to_cpu(req->value), le16_to_cpu(req->index)); #define PKT_ALIGN 512 /* * The USB transfer is split into qTD transfers. Eeach qTD transfer is * described by a transfer descriptor (the qTD). The qTDs form a linked * list with a queue head (QH). * * Each qTD transfer starts with a new USB packet, i.e. a packet cannot * have its beginning in a qTD transfer and its end in the following * one, so the qTD transfer lengths have to be chosen accordingly. * * Each qTD transfer uses up to QT_BUFFER_CNT data buffers, mapped to * single pages. The first data buffer can start at any offset within a * page (not considering the cache-line alignment issues), while the * following buffers must be page-aligned. There is no alignment * constraint on the size of a qTD transfer. */ if (req != NULL) /* 1 qTD will be needed for SETUP, and 1 for ACK. */ qtd_count += 1 + 1; if (length > 0 || req == NULL) { /* * Determine the qTD transfer size that will be used for the * data payload (not considering the first qTD transfer, which * may be longer or shorter, and the final one, which may be * shorter). * * In order to keep each packet within a qTD transfer, the qTD * transfer size is aligned to PKT_ALIGN, which is a multiple of * wMaxPacketSize (except in some cases for interrupt transfers, * see comment in submit_int_msg()). * * By default, i.e. if the input buffer is aligned to PKT_ALIGN, * QT_BUFFER_CNT full pages will be used. */ int xfr_sz = QT_BUFFER_CNT; /* * However, if the input buffer is not aligned to PKT_ALIGN, the * qTD transfer size will be one page shorter, and the first qTD * data buffer of each transfer will be page-unaligned. */ if ((unsigned long)buffer & (PKT_ALIGN - 1)) xfr_sz--; /* Convert the qTD transfer size to bytes. */ xfr_sz *= EHCI_PAGE_SIZE; /* * Approximate by excess the number of qTDs that will be * required for the data payload. The exact formula is way more * complicated and saves at most 2 qTDs, i.e. a total of 128 * bytes. */ qtd_count += 2 + length / xfr_sz; } /* * Threshold value based on the worst-case total size of the allocated qTDs for * a mass-storage transfer of 65535 blocks of 512 bytes. */ #if CONFIG_SYS_MALLOC_LEN <= 64 + 128 * 1024 #warning CONFIG_SYS_MALLOC_LEN may be too small for EHCI #endif qtd = memalign(USB_DMA_MINALIGN, qtd_count * sizeof(struct qTD)); if (qtd == NULL) { printf("unable to allocate TDs\n"); return -1; } memset(qh, 0, sizeof(struct QH)); memset(qtd, 0, qtd_count * sizeof(*qtd)); toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); /* * Setup QH (3.6 in ehci-r10.pdf) * * qh_link ................. 03-00 H * qh_endpt1 ............... 07-04 H * qh_endpt2 ............... 0B-08 H * - qh_curtd * qh_overlay.qt_next ...... 13-10 H * - qh_overlay.qt_altnext */ qh->qh_link = cpu_to_hc32(virt_to_phys(&ctrl->qh_list) | QH_LINK_TYPE_QH); c = (dev->speed != USB_SPEED_HIGH) && !usb_pipeendpoint(pipe); maxpacket = usb_maxpacket(dev, pipe); endpt = QH_ENDPT1_RL(8) | QH_ENDPT1_C(c) | QH_ENDPT1_MAXPKTLEN(maxpacket) | QH_ENDPT1_H(0) | QH_ENDPT1_DTC(QH_ENDPT1_DTC_DT_FROM_QTD) | QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) | QH_ENDPT1_ENDPT(usb_pipeendpoint(pipe)) | QH_ENDPT1_I(0) | QH_ENDPT1_DEVADDR(usb_pipedevice(pipe)); qh->qh_endpt1 = cpu_to_hc32(endpt); endpt = QH_ENDPT2_MULT(1) | QH_ENDPT2_UFCMASK(0) | QH_ENDPT2_UFSMASK(0); qh->qh_endpt2 = cpu_to_hc32(endpt); ehci_update_endpt2_dev_n_port(dev, qh); qh->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qh->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); tdp = &qh->qh_overlay.qt_next; if (req != NULL) { /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H * * [ buffer, buffer_hi ] loaded with "req". */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = QT_TOKEN_DT(0) | QT_TOKEN_TOTALBYTES(sizeof(*req)) | QT_TOKEN_IOC(0) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) | QT_TOKEN_PID(QT_TOKEN_PID_SETUP) | QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE); qtd[qtd_counter].qt_token = cpu_to_hc32(token); if (ehci_td_buffer(&qtd[qtd_counter], req, sizeof(*req))) { printf("unable to construct SETUP TD\n"); goto fail; } /* Update previous qTD! */ *tdp = cpu_to_hc32(virt_to_phys(&qtd[qtd_counter])); tdp = &qtd[qtd_counter++].qt_next; toggle = 1; } if (length > 0 || req == NULL) { uint8_t *buf_ptr = buffer; int left_length = length; do { /* * Determine the size of this qTD transfer. By default, * QT_BUFFER_CNT full pages can be used. */ int xfr_bytes = QT_BUFFER_CNT * EHCI_PAGE_SIZE; /* * However, if the input buffer is not page-aligned, the * portion of the first page before the buffer start * offset within that page is unusable. */ xfr_bytes -= (unsigned long)buf_ptr & (EHCI_PAGE_SIZE - 1); /* * In order to keep each packet within a qTD transfer, * align the qTD transfer size to PKT_ALIGN. */ xfr_bytes &= ~(PKT_ALIGN - 1); /* * This transfer may be shorter than the available qTD * transfer size that has just been computed. */ xfr_bytes = min(xfr_bytes, left_length); /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H * * [ buffer, buffer_hi ] loaded with "buffer". */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = QT_TOKEN_DT(toggle) | QT_TOKEN_TOTALBYTES(xfr_bytes) | QT_TOKEN_IOC(req == NULL) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) | QT_TOKEN_PID(usb_pipein(pipe) ? QT_TOKEN_PID_IN : QT_TOKEN_PID_OUT) | QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE); qtd[qtd_counter].qt_token = cpu_to_hc32(token); if (ehci_td_buffer(&qtd[qtd_counter], buf_ptr, xfr_bytes)) { printf("unable to construct DATA TD\n"); goto fail; } /* Update previous qTD! */ *tdp = cpu_to_hc32(virt_to_phys(&qtd[qtd_counter])); tdp = &qtd[qtd_counter++].qt_next; /* * Data toggle has to be adjusted since the qTD transfer * size is not always an even multiple of * wMaxPacketSize. */ if ((xfr_bytes / maxpacket) & 1) toggle ^= 1; buf_ptr += xfr_bytes; left_length -= xfr_bytes; } while (left_length > 0); } if (req != NULL) { /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = QT_TOKEN_DT(1) | QT_TOKEN_TOTALBYTES(0) | QT_TOKEN_IOC(1) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) | QT_TOKEN_PID(usb_pipein(pipe) ? QT_TOKEN_PID_OUT : QT_TOKEN_PID_IN) | QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE); qtd[qtd_counter].qt_token = cpu_to_hc32(token); /* Update previous qTD! */ *tdp = cpu_to_hc32(virt_to_phys(&qtd[qtd_counter])); tdp = &qtd[qtd_counter++].qt_next; } ctrl->qh_list.qh_link = cpu_to_hc32(virt_to_phys(qh) | QH_LINK_TYPE_QH); /* Flush dcache */ flush_dcache_range((unsigned long)&ctrl->qh_list, ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1)); flush_dcache_range((unsigned long)qh, ALIGN_END_ADDR(struct QH, qh, 1)); flush_dcache_range((unsigned long)qtd, ALIGN_END_ADDR(struct qTD, qtd, qtd_count)); /* Set async. queue head pointer. */ ehci_writel(&ctrl->hcor->or_asynclistaddr, virt_to_phys(&ctrl->qh_list)); usbsts = ehci_readl(&ctrl->hcor->or_usbsts); ehci_writel(&ctrl->hcor->or_usbsts, (usbsts & 0x3f)); /* Enable async. schedule. */ cmd = ehci_readl(&ctrl->hcor->or_usbcmd); cmd |= CMD_ASE; ehci_writel(&ctrl->hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, STS_ASS, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STS_ASS set\n"); goto fail; } /* Wait for TDs to be processed. */ ts = get_timer(0); vtd = &qtd[qtd_counter - 1]; timeout = USB_TIMEOUT_MS(pipe); do { /* Invalidate dcache */ invalidate_dcache_range((unsigned long)&ctrl->qh_list, ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1)); invalidate_dcache_range((unsigned long)qh, ALIGN_END_ADDR(struct QH, qh, 1)); invalidate_dcache_range((unsigned long)qtd, ALIGN_END_ADDR(struct qTD, qtd, qtd_count)); token = hc32_to_cpu(vtd->qt_token); if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)) break; WATCHDOG_RESET(); } while (get_timer(ts) < timeout); /* * Invalidate the memory area occupied by buffer * Don't try to fix the buffer alignment, if it isn't properly * aligned it's upper layer's fault so let invalidate_dcache_range() * vow about it. But we have to fix the length as it's actual * transfer length and can be unaligned. This is potentially * dangerous operation, it's responsibility of the calling * code to make sure enough space is reserved. */ invalidate_dcache_range((unsigned long)buffer, ALIGN((unsigned long)buffer + length, ARCH_DMA_MINALIGN)); /* Check that the TD processing happened */ if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE) printf("EHCI timed out on TD - token=%#x\n", token); /* Disable async schedule. */ cmd = ehci_readl(&ctrl->hcor->or_usbcmd); cmd &= ~CMD_ASE; ehci_writel(&ctrl->hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, 0, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STS_ASS reset\n"); goto fail; } token = hc32_to_cpu(qh->qh_overlay.qt_token); if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)) { debug("TOKEN=%#x\n", token); switch (QT_TOKEN_GET_STATUS(token) & ~(QT_TOKEN_STATUS_SPLITXSTATE | QT_TOKEN_STATUS_PERR)) { case 0: toggle = QT_TOKEN_GET_DT(token); usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), toggle); dev->status = 0; break; case QT_TOKEN_STATUS_HALTED: dev->status = USB_ST_STALLED; break; case QT_TOKEN_STATUS_ACTIVE | QT_TOKEN_STATUS_DATBUFERR: case QT_TOKEN_STATUS_DATBUFERR: dev->status = USB_ST_BUF_ERR; break; case QT_TOKEN_STATUS_HALTED | QT_TOKEN_STATUS_BABBLEDET: case QT_TOKEN_STATUS_BABBLEDET: dev->status = USB_ST_BABBLE_DET; break; default: dev->status = USB_ST_CRC_ERR; if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_HALTED) dev->status |= USB_ST_STALLED; break; } dev->act_len = length - QT_TOKEN_GET_TOTALBYTES(token); } else { dev->act_len = 0; #ifndef CONFIG_USB_EHCI_FARADAY debug("dev=%u, usbsts=%#x, p[1]=%#x, p[2]=%#x\n", dev->devnum, ehci_readl(&ctrl->hcor->or_usbsts), ehci_readl(&ctrl->hcor->or_portsc[0]), ehci_readl(&ctrl->hcor->or_portsc[1])); #endif } free(qtd); return (dev->status != USB_ST_NOT_PROC) ? 0 : -1; fail: free(qtd); return -1; } static int ehci_submit_root(struct usb_device *dev, unsigned long pipe, void *buffer, int length, struct devrequest *req) { uint8_t tmpbuf[4]; u16 typeReq; void *srcptr = NULL; int len, srclen; uint32_t reg; uint32_t *status_reg; int port = le16_to_cpu(req->index) & 0xff; struct ehci_ctrl *ctrl = ehci_get_ctrl(dev); srclen = 0; debug("req=%u (%#x), type=%u (%#x), value=%u, index=%u\n", req->request, req->request, req->requesttype, req->requesttype, le16_to_cpu(req->value), le16_to_cpu(req->index)); typeReq = req->request | req->requesttype << 8; switch (typeReq) { case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8): case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): status_reg = ctrl->ops.get_portsc_register(ctrl, port - 1); if (!status_reg) return -1; break; default: status_reg = NULL; break; } switch (typeReq) { case DeviceRequest | USB_REQ_GET_DESCRIPTOR: switch (le16_to_cpu(req->value) >> 8) { case USB_DT_DEVICE: debug("USB_DT_DEVICE request\n"); srcptr = &descriptor.device; srclen = descriptor.device.bLength; break; case USB_DT_CONFIG: debug("USB_DT_CONFIG config\n"); srcptr = &descriptor.config; srclen = descriptor.config.bLength + descriptor.interface.bLength + descriptor.endpoint.bLength; break; case USB_DT_STRING: debug("USB_DT_STRING config\n"); switch (le16_to_cpu(req->value) & 0xff) { case 0: /* Language */ srcptr = "\4\3\1\0"; srclen = 4; break; case 1: /* Vendor */ srcptr = "\16\3u\0-\0b\0o\0o\0t\0"; srclen = 14; break; case 2: /* Product */ srcptr = "\52\3E\0H\0C\0I\0 " "\0H\0o\0s\0t\0 " "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0"; srclen = 42; break; default: debug("unknown value DT_STRING %x\n", le16_to_cpu(req->value)); goto unknown; } break; default: debug("unknown value %x\n", le16_to_cpu(req->value)); goto unknown; } break; case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8): switch (le16_to_cpu(req->value) >> 8) { case USB_DT_HUB: debug("USB_DT_HUB config\n"); srcptr = &descriptor.hub; srclen = descriptor.hub.bLength; break; default: debug("unknown value %x\n", le16_to_cpu(req->value)); goto unknown; } break; case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8): debug("USB_REQ_SET_ADDRESS\n"); ctrl->rootdev = le16_to_cpu(req->value); break; case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: debug("USB_REQ_SET_CONFIGURATION\n"); /* Nothing to do */ break; case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8): tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */ tmpbuf[1] = 0; srcptr = tmpbuf; srclen = 2; break; case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8): memset(tmpbuf, 0, 4); reg = ehci_readl(status_reg); if (reg & EHCI_PS_CS) tmpbuf[0] |= USB_PORT_STAT_CONNECTION; if (reg & EHCI_PS_PE) tmpbuf[0] |= USB_PORT_STAT_ENABLE; if (reg & EHCI_PS_SUSP) tmpbuf[0] |= USB_PORT_STAT_SUSPEND; if (reg & EHCI_PS_OCA) tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT; if (reg & EHCI_PS_PR) tmpbuf[0] |= USB_PORT_STAT_RESET; if (reg & EHCI_PS_PP) tmpbuf[1] |= USB_PORT_STAT_POWER >> 8; if (ehci_is_TDI()) { switch (ctrl->ops.get_port_speed(ctrl, reg)) { case PORTSC_PSPD_FS: break; case PORTSC_PSPD_LS: tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8; break; case PORTSC_PSPD_HS: default: tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8; break; } } else { tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8; } if (reg & EHCI_PS_CSC) tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION; if (reg & EHCI_PS_PEC) tmpbuf[2] |= USB_PORT_STAT_C_ENABLE; if (reg & EHCI_PS_OCC) tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT; if (ctrl->portreset & (1 << port)) tmpbuf[2] |= USB_PORT_STAT_C_RESET; srcptr = tmpbuf; srclen = 4; break; case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): reg = ehci_readl(status_reg); reg &= ~EHCI_PS_CLEAR; switch (le16_to_cpu(req->value)) { case USB_PORT_FEAT_ENABLE: reg |= EHCI_PS_PE; ehci_writel(status_reg, reg); break; case USB_PORT_FEAT_POWER: if (HCS_PPC(ehci_readl(&ctrl->hccr->cr_hcsparams))) { reg |= EHCI_PS_PP; ehci_writel(status_reg, reg); } break; case USB_PORT_FEAT_RESET: if ((reg & (EHCI_PS_PE | EHCI_PS_CS)) == EHCI_PS_CS && !ehci_is_TDI() && EHCI_PS_IS_LOWSPEED(reg)) { /* Low speed device, give up ownership. */ debug("port %d low speed --> companion\n", port - 1); reg |= EHCI_PS_PO; ehci_writel(status_reg, reg); return -ENXIO; } else { int ret; reg |= EHCI_PS_PR; reg &= ~EHCI_PS_PE; ehci_writel(status_reg, reg); /* * caller must wait, then call GetPortStatus * usb 2.0 specification say 50 ms resets on * root */ ctrl->ops.powerup_fixup(ctrl, status_reg, ®); ehci_writel(status_reg, reg & ~EHCI_PS_PR); /* * A host controller must terminate the reset * and stabilize the state of the port within * 2 milliseconds */ ret = handshake(status_reg, EHCI_PS_PR, 0, 2 * 1000); if (!ret) { reg = ehci_readl(status_reg); if ((reg & (EHCI_PS_PE | EHCI_PS_CS)) == EHCI_PS_CS && !ehci_is_TDI()) { debug("port %d full speed --> companion\n", port - 1); reg &= ~EHCI_PS_CLEAR; reg |= EHCI_PS_PO; ehci_writel(status_reg, reg); return -ENXIO; } else { ctrl->portreset |= 1 << port; } } else { printf("port(%d) reset error\n", port - 1); } } break; case USB_PORT_FEAT_TEST: ehci_shutdown(ctrl); reg &= ~(0xf << 16); reg |= ((le16_to_cpu(req->index) >> 8) & 0xf) << 16; ehci_writel(status_reg, reg); break; default: debug("unknown feature %x\n", le16_to_cpu(req->value)); goto unknown; } /* unblock posted writes */ (void) ehci_readl(&ctrl->hcor->or_usbcmd); break; case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): reg = ehci_readl(status_reg); reg &= ~EHCI_PS_CLEAR; switch (le16_to_cpu(req->value)) { case USB_PORT_FEAT_ENABLE: reg &= ~EHCI_PS_PE; break; case USB_PORT_FEAT_C_ENABLE: reg |= EHCI_PS_PE; break; case USB_PORT_FEAT_POWER: if (HCS_PPC(ehci_readl(&ctrl->hccr->cr_hcsparams))) reg &= ~EHCI_PS_PP; break; case USB_PORT_FEAT_C_CONNECTION: reg |= EHCI_PS_CSC; break; case USB_PORT_FEAT_OVER_CURRENT: reg |= EHCI_PS_OCC; break; case USB_PORT_FEAT_C_RESET: ctrl->portreset &= ~(1 << port); break; default: debug("unknown feature %x\n", le16_to_cpu(req->value)); goto unknown; } ehci_writel(status_reg, reg); /* unblock posted write */ (void) ehci_readl(&ctrl->hcor->or_usbcmd); break; default: debug("Unknown request\n"); goto unknown; } mdelay(1); len = min3(srclen, (int)le16_to_cpu(req->length), length); if (srcptr != NULL && len > 0) memcpy(buffer, srcptr, len); else debug("Len is 0\n"); dev->act_len = len; dev->status = 0; return 0; unknown: debug("requesttype=%x, request=%x, value=%x, index=%x, length=%x\n", req->requesttype, req->request, le16_to_cpu(req->value), le16_to_cpu(req->index), le16_to_cpu(req->length)); dev->act_len = 0; dev->status = USB_ST_STALLED; return -1; } static const struct ehci_ops default_ehci_ops = { .set_usb_mode = ehci_set_usbmode, .get_port_speed = ehci_get_port_speed, .powerup_fixup = ehci_powerup_fixup, .get_portsc_register = ehci_get_portsc_register, }; static void ehci_setup_ops(struct ehci_ctrl *ctrl, const struct ehci_ops *ops) { if (!ops) { ctrl->ops = default_ehci_ops; } else { ctrl->ops = *ops; if (!ctrl->ops.set_usb_mode) ctrl->ops.set_usb_mode = ehci_set_usbmode; if (!ctrl->ops.get_port_speed) ctrl->ops.get_port_speed = ehci_get_port_speed; if (!ctrl->ops.powerup_fixup) ctrl->ops.powerup_fixup = ehci_powerup_fixup; if (!ctrl->ops.get_portsc_register) ctrl->ops.get_portsc_register = ehci_get_portsc_register; } } #ifndef CONFIG_DM_USB void ehci_set_controller_priv(int index, void *priv, const struct ehci_ops *ops) { struct ehci_ctrl *ctrl = &ehcic[index]; ctrl->priv = priv; ehci_setup_ops(ctrl, ops); } void *ehci_get_controller_priv(int index) { return ehcic[index].priv; } #endif static int ehci_common_init(struct ehci_ctrl *ctrl, uint tweaks) { struct QH *qh_list; struct QH *periodic; uint32_t reg; uint32_t cmd; int i; /* Set the high address word (aka segment) for 64-bit controller */ if (ehci_readl(&ctrl->hccr->cr_hccparams) & 1) ehci_writel(&ctrl->hcor->or_ctrldssegment, 0); qh_list = &ctrl->qh_list; /* Set head of reclaim list */ memset(qh_list, 0, sizeof(*qh_list)); qh_list->qh_link = cpu_to_hc32(virt_to_phys(qh_list) | QH_LINK_TYPE_QH); qh_list->qh_endpt1 = cpu_to_hc32(QH_ENDPT1_H(1) | QH_ENDPT1_EPS(USB_SPEED_HIGH)); qh_list->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qh_list->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); qh_list->qh_overlay.qt_token = cpu_to_hc32(QT_TOKEN_STATUS(QT_TOKEN_STATUS_HALTED)); flush_dcache_range((unsigned long)qh_list, ALIGN_END_ADDR(struct QH, qh_list, 1)); /* Set async. queue head pointer. */ ehci_writel(&ctrl->hcor->or_asynclistaddr, virt_to_phys(qh_list)); /* * Set up periodic list * Step 1: Parent QH for all periodic transfers. */ ctrl->periodic_schedules = 0; periodic = &ctrl->periodic_queue; memset(periodic, 0, sizeof(*periodic)); periodic->qh_link = cpu_to_hc32(QH_LINK_TERMINATE); periodic->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); periodic->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); flush_dcache_range((unsigned long)periodic, ALIGN_END_ADDR(struct QH, periodic, 1)); /* * Step 2: Setup frame-list: Every microframe, USB tries the same list. * In particular, device specifications on polling frequency * are disregarded. Keyboards seem to send NAK/NYet reliably * when polled with an empty buffer. * * Split Transactions will be spread across microframes using * S-mask and C-mask. */ if (ctrl->periodic_list == NULL) ctrl->periodic_list = memalign(4096, 1024 * 4); if (!ctrl->periodic_list) return -ENOMEM; for (i = 0; i < 1024; i++) { ctrl->periodic_list[i] = cpu_to_hc32((unsigned long)periodic | QH_LINK_TYPE_QH); } flush_dcache_range((unsigned long)ctrl->periodic_list, ALIGN_END_ADDR(uint32_t, ctrl->periodic_list, 1024)); /* Set periodic list base address */ ehci_writel(&ctrl->hcor->or_periodiclistbase, (unsigned long)ctrl->periodic_list); reg = ehci_readl(&ctrl->hccr->cr_hcsparams); descriptor.hub.bNbrPorts = HCS_N_PORTS(reg); debug("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts); /* Port Indicators */ if (HCS_INDICATOR(reg)) put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics) | 0x80, &descriptor.hub.wHubCharacteristics); /* Port Power Control */ if (HCS_PPC(reg)) put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics) | 0x01, &descriptor.hub.wHubCharacteristics); /* Start the host controller. */ cmd = ehci_readl(&ctrl->hcor->or_usbcmd); /* * Philips, Intel, and maybe others need CMD_RUN before the * root hub will detect new devices (why?); NEC doesn't */ cmd &= ~(CMD_LRESET|CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); cmd |= CMD_RUN; ehci_writel(&ctrl->hcor->or_usbcmd, cmd); if (!(tweaks & EHCI_TWEAK_NO_INIT_CF)) { /* take control over the ports */ cmd = ehci_readl(&ctrl->hcor->or_configflag); cmd |= FLAG_CF; ehci_writel(&ctrl->hcor->or_configflag, cmd); } /* unblock posted write */ cmd = ehci_readl(&ctrl->hcor->or_usbcmd); mdelay(5); reg = HC_VERSION(ehci_readl(&ctrl->hccr->cr_capbase)); printf("USB EHCI %x.%02x\n", reg >> 8, reg & 0xff); return 0; } #ifndef CONFIG_DM_USB int usb_lowlevel_stop(int index) { ehci_shutdown(&ehcic[index]); return ehci_hcd_stop(index); } int usb_lowlevel_init(int index, enum usb_init_type init, void **controller) { struct ehci_ctrl *ctrl = &ehcic[index]; uint tweaks = 0; int rc; /** * Set ops to default_ehci_ops, ehci_hcd_init should call * ehci_set_controller_priv to change any of these function pointers. */ ctrl->ops = default_ehci_ops; rc = ehci_hcd_init(index, init, &ctrl->hccr, &ctrl->hcor); if (rc) return rc; if (!ctrl->hccr || !ctrl->hcor) return -1; if (init == USB_INIT_DEVICE) goto done; /* EHCI spec section 4.1 */ if (ehci_reset(ctrl)) return -1; #if defined(CONFIG_EHCI_HCD_INIT_AFTER_RESET) rc = ehci_hcd_init(index, init, &ctrl->hccr, &ctrl->hcor); if (rc) return rc; #endif #ifdef CONFIG_USB_EHCI_FARADAY tweaks |= EHCI_TWEAK_NO_INIT_CF; #endif rc = ehci_common_init(ctrl, tweaks); if (rc) return rc; ctrl->rootdev = 0; done: *controller = &ehcic[index]; return 0; } #endif static int _ehci_submit_bulk_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int length) { if (usb_pipetype(pipe) != PIPE_BULK) { debug("non-bulk pipe (type=%lu)", usb_pipetype(pipe)); return -1; } return ehci_submit_async(dev, pipe, buffer, length, NULL); } static int _ehci_submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int length, struct devrequest *setup) { struct ehci_ctrl *ctrl = ehci_get_ctrl(dev); if (usb_pipetype(pipe) != PIPE_CONTROL) { debug("non-control pipe (type=%lu)", usb_pipetype(pipe)); return -1; } if (usb_pipedevice(pipe) == ctrl->rootdev) { if (!ctrl->rootdev) dev->speed = USB_SPEED_HIGH; return ehci_submit_root(dev, pipe, buffer, length, setup); } return ehci_submit_async(dev, pipe, buffer, length, setup); } struct int_queue { int elementsize; unsigned long pipe; struct QH *first; struct QH *current; struct QH *last; struct qTD *tds; }; #define NEXT_QH(qh) (struct QH *)((unsigned long)hc32_to_cpu((qh)->qh_link) & ~0x1f) static int enable_periodic(struct ehci_ctrl *ctrl) { uint32_t cmd; struct ehci_hcor *hcor = ctrl->hcor; int ret; cmd = ehci_readl(&hcor->or_usbcmd); cmd |= CMD_PSE; ehci_writel(&hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&hcor->or_usbsts, STS_PSS, STS_PSS, 100 * 1000); if (ret < 0) { printf("EHCI failed: timeout when enabling periodic list\n"); return -ETIMEDOUT; } udelay(1000); return 0; } static int disable_periodic(struct ehci_ctrl *ctrl) { uint32_t cmd; struct ehci_hcor *hcor = ctrl->hcor; int ret; cmd = ehci_readl(&hcor->or_usbcmd); cmd &= ~CMD_PSE; ehci_writel(&hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&hcor->or_usbsts, STS_PSS, 0, 100 * 1000); if (ret < 0) { printf("EHCI failed: timeout when disabling periodic list\n"); return -ETIMEDOUT; } return 0; } static struct int_queue *_ehci_create_int_queue(struct usb_device *dev, unsigned long pipe, int queuesize, int elementsize, void *buffer, int interval) { struct ehci_ctrl *ctrl = ehci_get_ctrl(dev); struct int_queue *result = NULL; uint32_t i, toggle; /* * Interrupt transfers requiring several transactions are not supported * because bInterval is ignored. * * Also, ehci_submit_async() relies on wMaxPacketSize being a power of 2 * <= PKT_ALIGN if several qTDs are required, while the USB * specification does not constrain this for interrupt transfers. That * means that ehci_submit_async() would support interrupt transfers * requiring several transactions only as long as the transfer size does * not require more than a single qTD. */ if (elementsize > usb_maxpacket(dev, pipe)) { printf("%s: xfers requiring several transactions are not supported.\n", __func__); return NULL; } debug("Enter create_int_queue\n"); if (usb_pipetype(pipe) != PIPE_INTERRUPT) { debug("non-interrupt pipe (type=%lu)", usb_pipetype(pipe)); return NULL; } /* limit to 4 full pages worth of data - * we can safely fit them in a single TD, * no matter the alignment */ if (elementsize >= 16384) { debug("too large elements for interrupt transfers\n"); return NULL; } result = malloc(sizeof(*result)); if (!result) { debug("ehci intr queue: out of memory\n"); goto fail1; } result->elementsize = elementsize; result->pipe = pipe; result->first = memalign(USB_DMA_MINALIGN, sizeof(struct QH) * queuesize); if (!result->first) { debug("ehci intr queue: out of memory\n"); goto fail2; } result->current = result->first; result->last = result->first + queuesize - 1; result->tds = memalign(USB_DMA_MINALIGN, sizeof(struct qTD) * queuesize); if (!result->tds) { debug("ehci intr queue: out of memory\n"); goto fail3; } memset(result->first, 0, sizeof(struct QH) * queuesize); memset(result->tds, 0, sizeof(struct qTD) * queuesize); toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); for (i = 0; i < queuesize; i++) { struct QH *qh = result->first + i; struct qTD *td = result->tds + i; void **buf = &qh->buffer; qh->qh_link = cpu_to_hc32((unsigned long)(qh+1) | QH_LINK_TYPE_QH); if (i == queuesize - 1) qh->qh_link = cpu_to_hc32(QH_LINK_TERMINATE); qh->qh_overlay.qt_next = cpu_to_hc32((unsigned long)td); qh->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); qh->qh_endpt1 = cpu_to_hc32((0 << 28) | /* No NAK reload (ehci 4.9) */ (usb_maxpacket(dev, pipe) << 16) | /* MPS */ (1 << 14) | QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) | (usb_pipeendpoint(pipe) << 8) | /* Endpoint Number */ (usb_pipedevice(pipe) << 0)); qh->qh_endpt2 = cpu_to_hc32((1 << 30) | /* 1 Tx per mframe */ (1 << 0)); /* S-mask: microframe 0 */ if (dev->speed == USB_SPEED_LOW || dev->speed == USB_SPEED_FULL) { /* C-mask: microframes 2-4 */ qh->qh_endpt2 |= cpu_to_hc32((0x1c << 8)); } ehci_update_endpt2_dev_n_port(dev, qh); td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); debug("communication direction is '%s'\n", usb_pipein(pipe) ? "in" : "out"); td->qt_token = cpu_to_hc32( QT_TOKEN_DT(toggle) | (elementsize << 16) | ((usb_pipein(pipe) ? 1 : 0) << 8) | /* IN/OUT token */ 0x80); /* active */ td->qt_buffer[0] = cpu_to_hc32((unsigned long)buffer + i * elementsize); td->qt_buffer[1] = cpu_to_hc32((td->qt_buffer[0] + 0x1000) & ~0xfff); td->qt_buffer[2] = cpu_to_hc32((td->qt_buffer[0] + 0x2000) & ~0xfff); td->qt_buffer[3] = cpu_to_hc32((td->qt_buffer[0] + 0x3000) & ~0xfff); td->qt_buffer[4] = cpu_to_hc32((td->qt_buffer[0] + 0x4000) & ~0xfff); *buf = buffer + i * elementsize; toggle ^= 1; } flush_dcache_range((unsigned long)buffer, ALIGN_END_ADDR(char, buffer, queuesize * elementsize)); flush_dcache_range((unsigned long)result->first, ALIGN_END_ADDR(struct QH, result->first, queuesize)); flush_dcache_range((unsigned long)result->tds, ALIGN_END_ADDR(struct qTD, result->tds, queuesize)); if (ctrl->periodic_schedules > 0) { if (disable_periodic(ctrl) < 0) { debug("FATAL: periodic should never fail, but did"); goto fail3; } } /* hook up to periodic list */ struct QH *list = &ctrl->periodic_queue; result->last->qh_link = list->qh_link; list->qh_link = cpu_to_hc32((unsigned long)result->first | QH_LINK_TYPE_QH); flush_dcache_range((unsigned long)result->last, ALIGN_END_ADDR(struct QH, result->last, 1)); flush_dcache_range((unsigned long)list, ALIGN_END_ADDR(struct QH, list, 1)); if (enable_periodic(ctrl) < 0) { debug("FATAL: periodic should never fail, but did"); goto fail3; } ctrl->periodic_schedules++; debug("Exit create_int_queue\n"); return result; fail3: if (result->tds) free(result->tds); fail2: if (result->first) free(result->first); if (result) free(result); fail1: return NULL; } static void *_ehci_poll_int_queue(struct usb_device *dev, struct int_queue *queue) { struct QH *cur = queue->current; struct qTD *cur_td; uint32_t token, toggle; unsigned long pipe = queue->pipe; /* depleted queue */ if (cur == NULL) { debug("Exit poll_int_queue with completed queue\n"); return NULL; } /* still active */ cur_td = &queue->tds[queue->current - queue->first]; invalidate_dcache_range((unsigned long)cur_td, ALIGN_END_ADDR(struct qTD, cur_td, 1)); token = hc32_to_cpu(cur_td->qt_token); if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE) { debug("Exit poll_int_queue with no completed intr transfer. token is %x\n", token); return NULL; } toggle = QT_TOKEN_GET_DT(token); usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), toggle); if (!(cur->qh_link & QH_LINK_TERMINATE)) queue->current++; else queue->current = NULL; invalidate_dcache_range((unsigned long)cur->buffer, ALIGN_END_ADDR(char, cur->buffer, queue->elementsize)); debug("Exit poll_int_queue with completed intr transfer. token is %x at %p (first at %p)\n", token, cur, queue->first); return cur->buffer; } /* Do not free buffers associated with QHs, they're owned by someone else */ static int _ehci_destroy_int_queue(struct usb_device *dev, struct int_queue *queue) { struct ehci_ctrl *ctrl = ehci_get_ctrl(dev); int result = -1; unsigned long timeout; if (disable_periodic(ctrl) < 0) { debug("FATAL: periodic should never fail, but did"); goto out; } ctrl->periodic_schedules--; struct QH *cur = &ctrl->periodic_queue; timeout = get_timer(0) + 500; /* abort after 500ms */ while (!(cur->qh_link & cpu_to_hc32(QH_LINK_TERMINATE))) { debug("considering %p, with qh_link %x\n", cur, cur->qh_link); if (NEXT_QH(cur) == queue->first) { debug("found candidate. removing from chain\n"); cur->qh_link = queue->last->qh_link; flush_dcache_range((unsigned long)cur, ALIGN_END_ADDR(struct QH, cur, 1)); result = 0; break; } cur = NEXT_QH(cur); if (get_timer(0) > timeout) { printf("Timeout destroying interrupt endpoint queue\n"); result = -1; goto out; } } if (ctrl->periodic_schedules > 0) { result = enable_periodic(ctrl); if (result < 0) debug("FATAL: periodic should never fail, but did"); } out: free(queue->tds); free(queue->first); free(queue); return result; } static int _ehci_submit_int_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int length, int interval) { void *backbuffer; struct int_queue *queue; unsigned long timeout; int result = 0, ret; debug("dev=%p, pipe=%lu, buffer=%p, length=%d, interval=%d", dev, pipe, buffer, length, interval); queue = _ehci_create_int_queue(dev, pipe, 1, length, buffer, interval); if (!queue) return -1; timeout = get_timer(0) + USB_TIMEOUT_MS(pipe); while ((backbuffer = _ehci_poll_int_queue(dev, queue)) == NULL) if (get_timer(0) > timeout) { printf("Timeout poll on interrupt endpoint\n"); result = -ETIMEDOUT; break; } if (backbuffer != buffer) { debug("got wrong buffer back (%p instead of %p)\n", backbuffer, buffer); return -EINVAL; } ret = _ehci_destroy_int_queue(dev, queue); if (ret < 0) return ret; /* everything worked out fine */ return result; } #ifndef CONFIG_DM_USB int submit_bulk_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int length) { return _ehci_submit_bulk_msg(dev, pipe, buffer, length); } int submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int length, struct devrequest *setup) { return _ehci_submit_control_msg(dev, pipe, buffer, length, setup); } int submit_int_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int length, int interval) { return _ehci_submit_int_msg(dev, pipe, buffer, length, interval); } struct int_queue *create_int_queue(struct usb_device *dev, unsigned long pipe, int queuesize, int elementsize, void *buffer, int interval) { return _ehci_create_int_queue(dev, pipe, queuesize, elementsize, buffer, interval); } void *poll_int_queue(struct usb_device *dev, struct int_queue *queue) { return _ehci_poll_int_queue(dev, queue); } int destroy_int_queue(struct usb_device *dev, struct int_queue *queue) { return _ehci_destroy_int_queue(dev, queue); } #endif #ifdef CONFIG_DM_USB static int ehci_submit_control_msg(struct udevice *dev, struct usb_device *udev, unsigned long pipe, void *buffer, int length, struct devrequest *setup) { debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__, dev->name, udev, udev->dev->name, udev->portnr); return _ehci_submit_control_msg(udev, pipe, buffer, length, setup); } static int ehci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev, unsigned long pipe, void *buffer, int length) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _ehci_submit_bulk_msg(udev, pipe, buffer, length); } static int ehci_submit_int_msg(struct udevice *dev, struct usb_device *udev, unsigned long pipe, void *buffer, int length, int interval) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _ehci_submit_int_msg(udev, pipe, buffer, length, interval); } static struct int_queue *ehci_create_int_queue(struct udevice *dev, struct usb_device *udev, unsigned long pipe, int queuesize, int elementsize, void *buffer, int interval) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _ehci_create_int_queue(udev, pipe, queuesize, elementsize, buffer, interval); } static void *ehci_poll_int_queue(struct udevice *dev, struct usb_device *udev, struct int_queue *queue) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _ehci_poll_int_queue(udev, queue); } static int ehci_destroy_int_queue(struct udevice *dev, struct usb_device *udev, struct int_queue *queue) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _ehci_destroy_int_queue(udev, queue); } static int ehci_get_max_xfer_size(struct udevice *dev, size_t *size) { /* * EHCD can handle any transfer length as long as there is enough * free heap space left, hence set the theoretical max number here. */ *size = SIZE_MAX; return 0; } int ehci_register(struct udevice *dev, struct ehci_hccr *hccr, struct ehci_hcor *hcor, const struct ehci_ops *ops, uint tweaks, enum usb_init_type init) { struct usb_bus_priv *priv = dev_get_uclass_priv(dev); struct ehci_ctrl *ctrl = dev_get_priv(dev); int ret = -1; debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p, init=%d\n", __func__, dev->name, ctrl, hccr, hcor, init); if (!ctrl || !hccr || !hcor) goto err; priv->desc_before_addr = true; ehci_setup_ops(ctrl, ops); ctrl->hccr = hccr; ctrl->hcor = hcor; ctrl->priv = ctrl; ctrl->init = init; if (ctrl->init == USB_INIT_DEVICE) goto done; ret = ehci_reset(ctrl); if (ret) goto err; if (ctrl->ops.init_after_reset) { ret = ctrl->ops.init_after_reset(ctrl); if (ret) goto err; } ret = ehci_common_init(ctrl, tweaks); if (ret) goto err; done: return 0; err: free(ctrl); debug("%s: failed, ret=%d\n", __func__, ret); return ret; } int ehci_deregister(struct udevice *dev) { struct ehci_ctrl *ctrl = dev_get_priv(dev); if (ctrl->init == USB_INIT_DEVICE) return 0; ehci_shutdown(ctrl); return 0; } struct dm_usb_ops ehci_usb_ops = { .control = ehci_submit_control_msg, .bulk = ehci_submit_bulk_msg, .interrupt = ehci_submit_int_msg, .create_int_queue = ehci_create_int_queue, .poll_int_queue = ehci_poll_int_queue, .destroy_int_queue = ehci_destroy_int_queue, .get_max_xfer_size = ehci_get_max_xfer_size, }; #endif