// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2007-2011 * Allwinner Technology Co., Ltd. * Aaron * * MMC driver for allwinner sunxi platform. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CCM_MMC_CTRL_MODE_SEL_NEW #define CCM_MMC_CTRL_MODE_SEL_NEW 0 #endif struct sunxi_mmc_plat { struct mmc_config cfg; struct mmc mmc; }; struct sunxi_mmc_priv { unsigned mmc_no; uint32_t *mclkreg; unsigned fatal_err; struct gpio_desc cd_gpio; /* Change Detect GPIO */ struct sunxi_mmc *reg; struct mmc_config cfg; }; #if !CONFIG_IS_ENABLED(DM_MMC) /* support 4 mmc hosts */ struct sunxi_mmc_priv mmc_host[4]; static int sunxi_mmc_getcd_gpio(int sdc_no) { switch (sdc_no) { case 0: return sunxi_name_to_gpio(CONFIG_MMC0_CD_PIN); case 1: return sunxi_name_to_gpio(CONFIG_MMC1_CD_PIN); case 2: return sunxi_name_to_gpio(CONFIG_MMC2_CD_PIN); case 3: return sunxi_name_to_gpio(CONFIG_MMC3_CD_PIN); } return -EINVAL; } static int mmc_resource_init(int sdc_no) { struct sunxi_mmc_priv *priv = &mmc_host[sdc_no]; struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; int cd_pin, ret = 0; debug("init mmc %d resource\n", sdc_no); switch (sdc_no) { case 0: priv->reg = (struct sunxi_mmc *)SUNXI_MMC0_BASE; priv->mclkreg = &ccm->sd0_clk_cfg; break; case 1: priv->reg = (struct sunxi_mmc *)SUNXI_MMC1_BASE; priv->mclkreg = &ccm->sd1_clk_cfg; break; case 2: priv->reg = (struct sunxi_mmc *)SUNXI_MMC2_BASE; priv->mclkreg = &ccm->sd2_clk_cfg; break; #ifdef SUNXI_MMC3_BASE case 3: priv->reg = (struct sunxi_mmc *)SUNXI_MMC3_BASE; priv->mclkreg = &ccm->sd3_clk_cfg; break; #endif default: printf("Wrong mmc number %d\n", sdc_no); return -1; } priv->mmc_no = sdc_no; cd_pin = sunxi_mmc_getcd_gpio(sdc_no); if (cd_pin >= 0) { ret = gpio_request(cd_pin, "mmc_cd"); if (!ret) { sunxi_gpio_set_pull(cd_pin, SUNXI_GPIO_PULL_UP); ret = gpio_direction_input(cd_pin); } } return ret; } #endif /* * All A64 and later MMC controllers feature auto-calibration. This would * normally be detected via the compatible string, but we need something * which works in the SPL as well. */ static bool sunxi_mmc_can_calibrate(void) { return IS_ENABLED(CONFIG_MACH_SUN50I) || IS_ENABLED(CONFIG_MACH_SUN50I_H5) || IS_ENABLED(CONFIG_SUN50I_GEN_H6) || IS_ENABLED(CONFIG_MACH_SUN8I_R40); } static int mmc_set_mod_clk(struct sunxi_mmc_priv *priv, unsigned int hz) { unsigned int pll, pll_hz, div, n, oclk_dly, sclk_dly; bool new_mode = IS_ENABLED(CONFIG_MMC_SUNXI_HAS_NEW_MODE); u32 val = 0; /* A83T support new mode only on eMMC */ if (IS_ENABLED(CONFIG_MACH_SUN8I_A83T) && priv->mmc_no != 2) new_mode = false; if (hz <= 24000000) { pll = CCM_MMC_CTRL_OSCM24; pll_hz = 24000000; } else { #ifdef CONFIG_MACH_SUN9I pll = CCM_MMC_CTRL_PLL_PERIPH0; pll_hz = clock_get_pll4_periph0(); #else /* * SoCs since the A64 (H5, H6, H616) actually use the doubled * rate of PLL6/PERIPH0 as an input clock, but compensate for * that with a fixed post-divider of 2 in the mod clock. * This cancels each other out, so for simplicity we just * pretend it's always PLL6 without a post divider here. */ pll = CCM_MMC_CTRL_PLL6; pll_hz = clock_get_pll6(); #endif } div = pll_hz / hz; if (pll_hz % hz) div++; n = 0; while (div > 16) { n++; div = (div + 1) / 2; } if (n > 3) { printf("mmc %u error cannot set clock to %u\n", priv->mmc_no, hz); return -1; } /* determine delays */ if (hz <= 400000) { oclk_dly = 0; sclk_dly = 0; } else if (hz <= 25000000) { oclk_dly = 0; sclk_dly = 5; } else { if (IS_ENABLED(CONFIG_MACH_SUN9I)) { if (hz <= 52000000) oclk_dly = 5; else oclk_dly = 2; } else { if (hz <= 52000000) oclk_dly = 3; else oclk_dly = 1; } sclk_dly = 4; } if (new_mode) { val |= CCM_MMC_CTRL_MODE_SEL_NEW; setbits_le32(&priv->reg->ntsr, SUNXI_MMC_NTSR_MODE_SEL_NEW); } if (!sunxi_mmc_can_calibrate()) { /* * Use hardcoded delay values if controller doesn't support * calibration */ val = CCM_MMC_CTRL_OCLK_DLY(oclk_dly) | CCM_MMC_CTRL_SCLK_DLY(sclk_dly); } writel(CCM_MMC_CTRL_ENABLE| pll | CCM_MMC_CTRL_N(n) | CCM_MMC_CTRL_M(div) | val, priv->mclkreg); debug("mmc %u set mod-clk req %u parent %u n %u m %u rate %u\n", priv->mmc_no, hz, pll_hz, 1u << n, div, pll_hz / (1u << n) / div); return 0; } static int mmc_update_clk(struct sunxi_mmc_priv *priv) { unsigned int cmd; unsigned timeout_msecs = 2000; unsigned long start = get_timer(0); cmd = SUNXI_MMC_CMD_START | SUNXI_MMC_CMD_UPCLK_ONLY | SUNXI_MMC_CMD_WAIT_PRE_OVER; writel(cmd, &priv->reg->cmd); while (readl(&priv->reg->cmd) & SUNXI_MMC_CMD_START) { if (get_timer(start) > timeout_msecs) return -1; } /* clock update sets various irq status bits, clear these */ writel(readl(&priv->reg->rint), &priv->reg->rint); return 0; } static int mmc_config_clock(struct sunxi_mmc_priv *priv, struct mmc *mmc) { unsigned rval = readl(&priv->reg->clkcr); /* Disable Clock */ rval &= ~SUNXI_MMC_CLK_ENABLE; writel(rval, &priv->reg->clkcr); if (mmc_update_clk(priv)) return -1; /* Set mod_clk to new rate */ if (mmc_set_mod_clk(priv, mmc->clock)) return -1; /* Clear internal divider */ rval &= ~SUNXI_MMC_CLK_DIVIDER_MASK; writel(rval, &priv->reg->clkcr); #if defined(CONFIG_SUNXI_GEN_SUN6I) || defined(CONFIG_SUN50I_GEN_H6) /* A64 supports calibration of delays on MMC controller and we * have to set delay of zero before starting calibration. * Allwinner BSP driver sets a delay only in the case of * using HS400 which is not supported by mainline U-Boot or * Linux at the moment */ if (sunxi_mmc_can_calibrate()) writel(SUNXI_MMC_CAL_DL_SW_EN, &priv->reg->samp_dl); #endif /* Re-enable Clock */ rval |= SUNXI_MMC_CLK_ENABLE; writel(rval, &priv->reg->clkcr); if (mmc_update_clk(priv)) return -1; return 0; } static int sunxi_mmc_set_ios_common(struct sunxi_mmc_priv *priv, struct mmc *mmc) { debug("set ios: bus_width: %x, clock: %d\n", mmc->bus_width, mmc->clock); /* Change clock first */ if (mmc->clock && mmc_config_clock(priv, mmc) != 0) { priv->fatal_err = 1; return -EINVAL; } /* Change bus width */ if (mmc->bus_width == 8) writel(0x2, &priv->reg->width); else if (mmc->bus_width == 4) writel(0x1, &priv->reg->width); else writel(0x0, &priv->reg->width); return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) static int sunxi_mmc_core_init(struct mmc *mmc) { struct sunxi_mmc_priv *priv = mmc->priv; /* Reset controller */ writel(SUNXI_MMC_GCTRL_RESET, &priv->reg->gctrl); udelay(1000); return 0; } #endif static int mmc_trans_data_by_cpu(struct sunxi_mmc_priv *priv, struct mmc *mmc, struct mmc_data *data) { const int reading = !!(data->flags & MMC_DATA_READ); const uint32_t status_bit = reading ? SUNXI_MMC_STATUS_FIFO_EMPTY : SUNXI_MMC_STATUS_FIFO_FULL; unsigned i; unsigned *buff = (unsigned int *)(reading ? data->dest : data->src); unsigned word_cnt = (data->blocksize * data->blocks) >> 2; unsigned timeout_msecs = word_cnt >> 6; uint32_t status; unsigned long start; if (timeout_msecs < 2000) timeout_msecs = 2000; /* Always read / write data through the CPU */ setbits_le32(&priv->reg->gctrl, SUNXI_MMC_GCTRL_ACCESS_BY_AHB); start = get_timer(0); for (i = 0; i < word_cnt;) { unsigned int in_fifo; while ((status = readl(&priv->reg->status)) & status_bit) { if (get_timer(start) > timeout_msecs) return -1; } /* * For writing we do not easily know the FIFO size, so have * to check the FIFO status after every word written. * TODO: For optimisation we could work out a minimum FIFO * size across all SoCs, and use that together with the current * fill level to write chunks of words. */ if (!reading) { writel(buff[i++], &priv->reg->fifo); continue; } /* * The status register holds the current FIFO level, so we * can be sure to collect as many words from the FIFO * register without checking the status register after every * read. That saves half of the costly MMIO reads, effectively * doubling the read performance. * Some SoCs (A20) report a level of 0 if the FIFO is * completely full (value masked out?). Use a safe minimal * FIFO size in this case. */ in_fifo = SUNXI_MMC_STATUS_FIFO_LEVEL(status); if (in_fifo == 0 && (status & SUNXI_MMC_STATUS_FIFO_FULL)) in_fifo = 32; for (; in_fifo > 0; in_fifo--) buff[i++] = readl_relaxed(&priv->reg->fifo); dmb(); } return 0; } static int mmc_rint_wait(struct sunxi_mmc_priv *priv, struct mmc *mmc, uint timeout_msecs, uint done_bit, const char *what) { unsigned int status; unsigned long start = get_timer(0); do { status = readl(&priv->reg->rint); if ((get_timer(start) > timeout_msecs) || (status & SUNXI_MMC_RINT_INTERRUPT_ERROR_BIT)) { debug("%s timeout %x\n", what, status & SUNXI_MMC_RINT_INTERRUPT_ERROR_BIT); return -ETIMEDOUT; } } while (!(status & done_bit)); return 0; } static int sunxi_mmc_send_cmd_common(struct sunxi_mmc_priv *priv, struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { unsigned int cmdval = SUNXI_MMC_CMD_START; unsigned int timeout_msecs; int error = 0; unsigned int status = 0; unsigned int bytecnt = 0; if (priv->fatal_err) return -1; if (cmd->resp_type & MMC_RSP_BUSY) debug("mmc cmd %d check rsp busy\n", cmd->cmdidx); if (cmd->cmdidx == 12) return 0; if (!cmd->cmdidx) cmdval |= SUNXI_MMC_CMD_SEND_INIT_SEQ; if (cmd->resp_type & MMC_RSP_PRESENT) cmdval |= SUNXI_MMC_CMD_RESP_EXPIRE; if (cmd->resp_type & MMC_RSP_136) cmdval |= SUNXI_MMC_CMD_LONG_RESPONSE; if (cmd->resp_type & MMC_RSP_CRC) cmdval |= SUNXI_MMC_CMD_CHK_RESPONSE_CRC; if (data) { if ((u32)(long)data->dest & 0x3) { error = -1; goto out; } cmdval |= SUNXI_MMC_CMD_DATA_EXPIRE|SUNXI_MMC_CMD_WAIT_PRE_OVER; if (data->flags & MMC_DATA_WRITE) cmdval |= SUNXI_MMC_CMD_WRITE; if (data->blocks > 1) cmdval |= SUNXI_MMC_CMD_AUTO_STOP; writel(data->blocksize, &priv->reg->blksz); writel(data->blocks * data->blocksize, &priv->reg->bytecnt); } debug("mmc %d, cmd %d(0x%08x), arg 0x%08x\n", priv->mmc_no, cmd->cmdidx, cmdval | cmd->cmdidx, cmd->cmdarg); writel(cmd->cmdarg, &priv->reg->arg); if (!data) writel(cmdval | cmd->cmdidx, &priv->reg->cmd); /* * transfer data and check status * STATREG[2] : FIFO empty * STATREG[3] : FIFO full */ if (data) { int ret = 0; bytecnt = data->blocksize * data->blocks; debug("trans data %d bytes\n", bytecnt); writel(cmdval | cmd->cmdidx, &priv->reg->cmd); ret = mmc_trans_data_by_cpu(priv, mmc, data); if (ret) { error = readl(&priv->reg->rint) & SUNXI_MMC_RINT_INTERRUPT_ERROR_BIT; error = -ETIMEDOUT; goto out; } } error = mmc_rint_wait(priv, mmc, 1000, SUNXI_MMC_RINT_COMMAND_DONE, "cmd"); if (error) goto out; if (data) { timeout_msecs = 120; debug("cacl timeout %x msec\n", timeout_msecs); error = mmc_rint_wait(priv, mmc, timeout_msecs, data->blocks > 1 ? SUNXI_MMC_RINT_AUTO_COMMAND_DONE : SUNXI_MMC_RINT_DATA_OVER, "data"); if (error) goto out; } if (cmd->resp_type & MMC_RSP_BUSY) { unsigned long start = get_timer(0); timeout_msecs = 2000; do { status = readl(&priv->reg->status); if (get_timer(start) > timeout_msecs) { debug("busy timeout\n"); error = -ETIMEDOUT; goto out; } } while (status & SUNXI_MMC_STATUS_CARD_DATA_BUSY); } if (cmd->resp_type & MMC_RSP_136) { cmd->response[0] = readl(&priv->reg->resp3); cmd->response[1] = readl(&priv->reg->resp2); cmd->response[2] = readl(&priv->reg->resp1); cmd->response[3] = readl(&priv->reg->resp0); debug("mmc resp 0x%08x 0x%08x 0x%08x 0x%08x\n", cmd->response[3], cmd->response[2], cmd->response[1], cmd->response[0]); } else { cmd->response[0] = readl(&priv->reg->resp0); debug("mmc resp 0x%08x\n", cmd->response[0]); } out: if (error < 0) { writel(SUNXI_MMC_GCTRL_RESET, &priv->reg->gctrl); mmc_update_clk(priv); } writel(0xffffffff, &priv->reg->rint); writel(readl(&priv->reg->gctrl) | SUNXI_MMC_GCTRL_FIFO_RESET, &priv->reg->gctrl); return error; } #if !CONFIG_IS_ENABLED(DM_MMC) static int sunxi_mmc_set_ios_legacy(struct mmc *mmc) { struct sunxi_mmc_priv *priv = mmc->priv; return sunxi_mmc_set_ios_common(priv, mmc); } static int sunxi_mmc_send_cmd_legacy(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct sunxi_mmc_priv *priv = mmc->priv; return sunxi_mmc_send_cmd_common(priv, mmc, cmd, data); } static int sunxi_mmc_getcd_legacy(struct mmc *mmc) { struct sunxi_mmc_priv *priv = mmc->priv; int cd_pin; cd_pin = sunxi_mmc_getcd_gpio(priv->mmc_no); if (cd_pin < 0) return 1; return !gpio_get_value(cd_pin); } static const struct mmc_ops sunxi_mmc_ops = { .send_cmd = sunxi_mmc_send_cmd_legacy, .set_ios = sunxi_mmc_set_ios_legacy, .init = sunxi_mmc_core_init, .getcd = sunxi_mmc_getcd_legacy, }; struct mmc *sunxi_mmc_init(int sdc_no) { struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; struct sunxi_mmc_priv *priv = &mmc_host[sdc_no]; struct mmc_config *cfg = &priv->cfg; int ret; memset(priv, '\0', sizeof(struct sunxi_mmc_priv)); cfg->name = "SUNXI SD/MMC"; cfg->ops = &sunxi_mmc_ops; cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34; cfg->host_caps = MMC_MODE_4BIT; if ((IS_ENABLED(CONFIG_MACH_SUN50I) || IS_ENABLED(CONFIG_MACH_SUN8I) || IS_ENABLED(CONFIG_SUN50I_GEN_H6)) && (sdc_no == 2)) cfg->host_caps = MMC_MODE_8BIT; cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; cfg->f_min = 400000; cfg->f_max = 52000000; if (mmc_resource_init(sdc_no) != 0) return NULL; /* config ahb clock */ debug("init mmc %d clock and io\n", sdc_no); #if !defined(CONFIG_SUN50I_GEN_H6) setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MMC(sdc_no)); #ifdef CONFIG_SUNXI_GEN_SUN6I /* unassert reset */ setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MMC(sdc_no)); #endif #if defined(CONFIG_MACH_SUN9I) /* sun9i has a mmc-common module, also set the gate and reset there */ writel(SUNXI_MMC_COMMON_CLK_GATE | SUNXI_MMC_COMMON_RESET, SUNXI_MMC_COMMON_BASE + 4 * sdc_no); #endif #else /* CONFIG_SUN50I_GEN_H6 */ setbits_le32(&ccm->sd_gate_reset, 1 << sdc_no); /* unassert reset */ setbits_le32(&ccm->sd_gate_reset, 1 << (RESET_SHIFT + sdc_no)); #endif ret = mmc_set_mod_clk(priv, 24000000); if (ret) return NULL; return mmc_create(cfg, priv); } #else static int sunxi_mmc_set_ios(struct udevice *dev) { struct sunxi_mmc_plat *plat = dev_get_plat(dev); struct sunxi_mmc_priv *priv = dev_get_priv(dev); return sunxi_mmc_set_ios_common(priv, &plat->mmc); } static int sunxi_mmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct sunxi_mmc_plat *plat = dev_get_plat(dev); struct sunxi_mmc_priv *priv = dev_get_priv(dev); return sunxi_mmc_send_cmd_common(priv, &plat->mmc, cmd, data); } static int sunxi_mmc_getcd(struct udevice *dev) { struct mmc *mmc = mmc_get_mmc_dev(dev); struct sunxi_mmc_priv *priv = dev_get_priv(dev); /* If polling, assume that the card is always present. */ if ((mmc->cfg->host_caps & MMC_CAP_NONREMOVABLE) || (mmc->cfg->host_caps & MMC_CAP_NEEDS_POLL)) return 1; if (dm_gpio_is_valid(&priv->cd_gpio)) { int cd_state = dm_gpio_get_value(&priv->cd_gpio); if (mmc->cfg->host_caps & MMC_CAP_CD_ACTIVE_HIGH) return !cd_state; else return cd_state; } return 1; } static const struct dm_mmc_ops sunxi_mmc_ops = { .send_cmd = sunxi_mmc_send_cmd, .set_ios = sunxi_mmc_set_ios, .get_cd = sunxi_mmc_getcd, }; static unsigned get_mclk_offset(void) { if (IS_ENABLED(CONFIG_MACH_SUN9I_A80)) return 0x410; if (IS_ENABLED(CONFIG_SUN50I_GEN_H6)) return 0x830; return 0x88; }; static int sunxi_mmc_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct sunxi_mmc_plat *plat = dev_get_plat(dev); struct sunxi_mmc_priv *priv = dev_get_priv(dev); struct reset_ctl_bulk reset_bulk; struct clk gate_clk; struct mmc_config *cfg = &plat->cfg; struct ofnode_phandle_args args; u32 *ccu_reg; int ret; cfg->name = dev->name; cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34; cfg->host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS; cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; cfg->f_min = 400000; cfg->f_max = 52000000; ret = mmc_of_parse(dev, cfg); if (ret) return ret; priv->reg = dev_read_addr_ptr(dev); /* We don't have a sunxi clock driver so find the clock address here */ ret = dev_read_phandle_with_args(dev, "clocks", "#clock-cells", 0, 1, &args); if (ret) return ret; ccu_reg = (u32 *)(uintptr_t)ofnode_get_addr(args.node); priv->mmc_no = ((uintptr_t)priv->reg - SUNXI_MMC0_BASE) / 0x1000; priv->mclkreg = (void *)ccu_reg + get_mclk_offset() + priv->mmc_no * 4; ret = clk_get_by_name(dev, "ahb", &gate_clk); if (!ret) clk_enable(&gate_clk); ret = reset_get_bulk(dev, &reset_bulk); if (!ret) reset_deassert_bulk(&reset_bulk); ret = mmc_set_mod_clk(priv, 24000000); if (ret) return ret; /* This GPIO is optional */ if (!gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN)) { int cd_pin = gpio_get_number(&priv->cd_gpio); sunxi_gpio_set_pull(cd_pin, SUNXI_GPIO_PULL_UP); } upriv->mmc = &plat->mmc; /* Reset controller */ writel(SUNXI_MMC_GCTRL_RESET, &priv->reg->gctrl); udelay(1000); return 0; } static int sunxi_mmc_bind(struct udevice *dev) { struct sunxi_mmc_plat *plat = dev_get_plat(dev); return mmc_bind(dev, &plat->mmc, &plat->cfg); } static const struct udevice_id sunxi_mmc_ids[] = { { .compatible = "allwinner,sun4i-a10-mmc" }, { .compatible = "allwinner,sun5i-a13-mmc" }, { .compatible = "allwinner,sun7i-a20-mmc" }, { .compatible = "allwinner,sun8i-a83t-emmc" }, { .compatible = "allwinner,sun9i-a80-mmc" }, { .compatible = "allwinner,sun50i-a64-mmc" }, { .compatible = "allwinner,sun50i-a64-emmc" }, { .compatible = "allwinner,sun50i-h6-mmc" }, { .compatible = "allwinner,sun50i-h6-emmc" }, { .compatible = "allwinner,sun50i-a100-mmc" }, { .compatible = "allwinner,sun50i-a100-emmc" }, { /* sentinel */ } }; U_BOOT_DRIVER(sunxi_mmc_drv) = { .name = "sunxi_mmc", .id = UCLASS_MMC, .of_match = sunxi_mmc_ids, .bind = sunxi_mmc_bind, .probe = sunxi_mmc_probe, .ops = &sunxi_mmc_ops, .plat_auto = sizeof(struct sunxi_mmc_plat), .priv_auto = sizeof(struct sunxi_mmc_priv), }; #endif