#ifndef _LINUX_COMPAT_H_ #define _LINUX_COMPAT_H_ #include <console.h> #include <log.h> #include <malloc.h> #include <asm/processor.h> #include <linux/types.h> #include <linux/err.h> #include <linux/kernel.h> #ifdef CONFIG_XEN #include <xen/events.h> #endif struct unused {}; typedef struct unused unused_t; struct p_current{ int pid; }; extern struct p_current *current; #define GFP_ATOMIC ((gfp_t) 0) #define GFP_KERNEL ((gfp_t) 0) #define GFP_NOFS ((gfp_t) 0) #define GFP_USER ((gfp_t) 0) #define __GFP_NOWARN ((gfp_t) 0) #define __GFP_ZERO ((__force gfp_t)0x8000u) /* Return zeroed page on success */ void *kmalloc(size_t size, int flags); static inline void *kzalloc(size_t size, gfp_t flags) { return kmalloc(size, flags | __GFP_ZERO); } static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) { if (size != 0 && n > SIZE_MAX / size) return NULL; return kmalloc(n * size, flags | __GFP_ZERO); } static inline void *kcalloc(size_t n, size_t size, gfp_t flags) { return kmalloc_array(n, size, flags | __GFP_ZERO); } #define vmalloc(size) kmalloc(size, 0) #define __vmalloc(size, flags, pgsz) kmalloc(size, flags) static inline void *vzalloc(unsigned long size) { return kzalloc(size, 0); } static inline void kfree(const void *block) { free((void *)block); } static inline void vfree(const void *addr) { free((void *)addr); } struct kmem_cache { int sz; }; struct kmem_cache *get_mem(int element_sz); #define kmem_cache_create(a, sz, c, d, e) get_mem(sz) void *kmem_cache_alloc(struct kmem_cache *obj, int flag); static inline void kmem_cache_free(struct kmem_cache *cachep, void *obj) { free(obj); } static inline void kmem_cache_destroy(struct kmem_cache *cachep) { free(cachep); } #define DECLARE_WAITQUEUE(...) do { } while (0) #define add_wait_queue(...) do { } while (0) #define remove_wait_queue(...) do { } while (0) #ifndef CONFIG_XEN #define eventchn_poll() #endif #define __wait_event_timeout(condition, timeout, ret) \ ({ \ ulong __ret = ret; /* explicit shadow */ \ ulong start = get_timer(0); \ for (;;) { \ eventchn_poll(); \ if (condition) { \ __ret = 1; \ break; \ } \ if ((get_timer(start) > timeout) || ctrlc()) { \ __ret = 0; \ break; \ } \ cpu_relax(); \ } \ __ret; \ }) /** * wait_event_timeout() - Wait until the event occurs before the timeout. * @wr_head: The wait queue to wait on. * @condition: Expression for the event to wait for. * @timeout: Maximum waiting time. * * We wait until the @condition evaluates to %true (succeed) or * %false (@timeout elapsed). * * Return: * 0 - if the @condition evaluated to %false after the @timeout elapsed * 1 - if the @condition evaluated to %true */ #define wait_event_timeout(wq_head, condition, timeout) \ ({ \ ulong __ret; \ if (condition) \ __ret = 1; \ else \ __ret = __wait_event_timeout(condition, timeout, __ret);\ __ret; \ }) #define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c)) /* This is also defined in ARMv8's mmu.h */ #ifndef PAGE_SIZE #define PAGE_SIZE 4096 #endif /* drivers/char/random.c */ #define get_random_bytes(...) /* include/linux/leds.h */ struct led_trigger {}; #define DEFINE_LED_TRIGGER(x) static struct led_trigger *x; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255, }; static inline void led_trigger_register_simple(const char *name, struct led_trigger **trigger) {} static inline void led_trigger_unregister_simple(struct led_trigger *trigger) {} static inline void led_trigger_event(struct led_trigger *trigger, enum led_brightness event) {} /* uapi/linux/limits.h */ #define XATTR_LIST_MAX 65536 /* size of extended attribute namelist (64k) */ /** * The type used for indexing onto a disc or disc partition. * * Linux always considers sectors to be 512 bytes long independently * of the devices real block size. * * blkcnt_t is the type of the inode's block count. */ #ifdef CONFIG_LBDAF typedef u64 sector_t; typedef u64 blkcnt_t; #else typedef unsigned long sector_t; typedef unsigned long blkcnt_t; #endif /* module */ #define THIS_MODULE 0 #define try_module_get(...) 1 #define module_put(...) do { } while (0) #define module_init(...) #define module_exit(...) #define EXPORT_SYMBOL(...) #define EXPORT_SYMBOL_GPL(...) #define module_param(...) #define module_param_call(...) #define MODULE_PARM_DESC(...) #define MODULE_VERSION(...) #define MODULE_DESCRIPTION(...) #define MODULE_AUTHOR(...) #define MODULE_LICENSE(...) #define MODULE_ALIAS(...) #define __module_get(...) /* character device */ #define MKDEV(...) 0 #define MAJOR(dev) 0 #define MINOR(dev) 0 #define alloc_chrdev_region(...) 0 #define unregister_chrdev_region(...) #define class_create(...) __builtin_return_address(0) #define class_create_file(...) 0 #define class_register(...) 0 #define class_unregister(...) #define class_remove_file(...) #define class_destroy(...) #define misc_register(...) 0 #define misc_deregister(...) #define blocking_notifier_call_chain(...) 0 #define __initdata #define late_initcall(...) #define dev_set_name(...) do { } while (0) #define device_register(...) 0 #define device_unregister(...) #define volume_sysfs_init(...) 0 #define volume_sysfs_close(...) do { } while (0) #define init_waitqueue_head(...) do { } while (0) #define wait_event_interruptible(...) 0 #define wake_up_interruptible(...) do { } while (0) #define dump_stack(...) do { } while (0) #define task_pid_nr(x) 0 #define set_freezable(...) do { } while (0) #define try_to_freeze(...) 0 #define set_current_state(...) do { } while (0) #define kthread_should_stop(...) 0 #define schedule() do { } while (0) #define setup_timer(timer, func, data) do {} while (0) #define del_timer_sync(timer) do {} while (0) #define schedule_work(work) do {} while (0) #define INIT_WORK(work, fun) do {} while (0) struct work_struct {}; unsigned long copy_from_user(void *dest, const void *src, unsigned long count); typedef unused_t spinlock_t; typedef int wait_queue_head_t; #define spin_lock_init(lock) do {} while (0) #define spin_lock(lock) do {} while (0) #define spin_unlock(lock) do {} while (0) #define spin_lock_irqsave(lock, flags) do {} while (0) #define spin_unlock_irqrestore(lock, flags) do { flags = 0; } while (0) #define DEFINE_MUTEX(...) #define mutex_init(...) #define mutex_lock(...) #define mutex_unlock(...) #define init_rwsem(...) do { } while (0) #define down_read(...) do { } while (0) #define down_write(...) do { } while (0) #define down_write_trylock(...) 1 #define up_read(...) do { } while (0) #define up_write(...) do { } while (0) #define cond_resched() do { } while (0) #define yield() do { } while (0) #define __init #define __exit #define __devinit #define __devinitdata #define __devinitconst #define kthread_create(...) __builtin_return_address(0) #define kthread_stop(...) do { } while (0) #define wake_up_process(...) do { } while (0) struct rw_semaphore { int i; }; #define down_write(...) do { } while (0) #define up_write(...) do { } while (0) #define down_read(...) do { } while (0) #define up_read(...) do { } while (0) struct device { struct device *parent; struct class *class; dev_t devt; /* dev_t, creates the sysfs "dev" */ void (*release)(struct device *dev); /* This is used from drivers/usb/musb-new subsystem only */ void *driver_data; /* data private to the driver */ void *device_data; /* data private to the device */ }; struct mutex { int i; }; struct kernel_param { int i; }; struct cdev { int owner; dev_t dev; }; #define cdev_init(...) do { } while (0) #define cdev_add(...) 0 #define cdev_del(...) do { } while (0) #define prandom_u32(...) 0 typedef struct { uid_t val; } kuid_t; typedef struct { gid_t val; } kgid_t; /* from include/linux/types.h */ /** * struct callback_head - callback structure for use with RCU and task_work * @next: next update requests in a list * @func: actual update function to call after the grace period. */ struct callback_head { struct callback_head *next; void (*func)(struct callback_head *head); }; #define rcu_head callback_head enum writeback_sync_modes { WB_SYNC_NONE, /* Don't wait on anything */ WB_SYNC_ALL, /* Wait on every mapping */ }; /* from include/linux/writeback.h */ /* * A control structure which tells the writeback code what to do. These are * always on the stack, and hence need no locking. They are always initialised * in a manner such that unspecified fields are set to zero. */ struct writeback_control { long nr_to_write; /* Write this many pages, and decrement this for each page written */ long pages_skipped; /* Pages which were not written */ /* * For a_ops->writepages(): if start or end are non-zero then this is * a hint that the filesystem need only write out the pages inside that * byterange. The byte at `end' is included in the writeout request. */ loff_t range_start; loff_t range_end; enum writeback_sync_modes sync_mode; unsigned for_kupdate:1; /* A kupdate writeback */ unsigned for_background:1; /* A background writeback */ unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */ unsigned for_reclaim:1; /* Invoked from the page allocator */ unsigned range_cyclic:1; /* range_start is cyclic */ unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ }; void *kmemdup(const void *src, size_t len, gfp_t gfp); typedef int irqreturn_t; struct timer_list {}; struct notifier_block {}; typedef unsigned long dmaaddr_t; #define pm_runtime_get_sync(dev) do {} while (0) #define pm_runtime_put(dev) do {} while (0) #define pm_runtime_put_sync(dev) do {} while (0) #define pm_runtime_use_autosuspend(dev) do {} while (0) #define pm_runtime_set_autosuspend_delay(dev, delay) do {} while (0) #define pm_runtime_enable(dev) do {} while (0) #define IRQ_NONE 0 #define IRQ_HANDLED 1 #define IRQ_WAKE_THREAD 2 #define dev_set_drvdata(dev, data) do {} while (0) #define enable_irq(...) #define disable_irq(...) #define disable_irq_wake(irq) do {} while (0) #define enable_irq_wake(irq) -EINVAL #define free_irq(irq, data) do {} while (0) #define request_irq(nr, f, flags, nm, data) 0 #endif