// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define BT_PASSOVER_TAG 0x504F struct pass_over_info_t *get_pass_over_info(void) { struct pass_over_info_t *p = (struct pass_over_info_t *)PASS_OVER_INFO_ADDR; if (p->barker != BT_PASSOVER_TAG || p->len != sizeof(struct pass_over_info_t)) return NULL; return p; } int arch_cpu_init(void) { #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_RECOVER_DATA_SECTION) spl_save_restore_data(); #endif #ifdef CONFIG_SPL_BUILD struct pass_over_info_t *pass_over; if (is_soc_rev(CHIP_REV_A)) { pass_over = get_pass_over_info(); if (pass_over && pass_over->g_ap_mu == 0) { /* * When ap_mu is 0, means the U-Boot booted * from first container */ sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS); } } #endif return 0; } int arch_cpu_init_dm(void) { struct udevice *devp; int node, ret; node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu"); ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp); if (ret) { printf("could not get scu %d\n", ret); return ret; } if (is_imx8qm()) { ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU, SC_PM_PW_MODE_ON); if (ret) return ret; } return 0; } int print_bootinfo(void) { enum boot_device bt_dev = get_boot_device(); puts("Boot: "); switch (bt_dev) { case SD1_BOOT: puts("SD0\n"); break; case SD2_BOOT: puts("SD1\n"); break; case SD3_BOOT: puts("SD2\n"); break; case MMC1_BOOT: puts("MMC0\n"); break; case MMC2_BOOT: puts("MMC1\n"); break; case MMC3_BOOT: puts("MMC2\n"); break; case FLEXSPI_BOOT: puts("FLEXSPI\n"); break; case SATA_BOOT: puts("SATA\n"); break; case NAND_BOOT: puts("NAND\n"); break; case USB_BOOT: puts("USB\n"); break; default: printf("Unknown device %u\n", bt_dev); break; } return 0; } enum boot_device get_boot_device(void) { enum boot_device boot_dev = SD1_BOOT; sc_rsrc_t dev_rsrc; sc_misc_get_boot_dev(-1, &dev_rsrc); switch (dev_rsrc) { case SC_R_SDHC_0: boot_dev = MMC1_BOOT; break; case SC_R_SDHC_1: boot_dev = SD2_BOOT; break; case SC_R_SDHC_2: boot_dev = SD3_BOOT; break; case SC_R_NAND: boot_dev = NAND_BOOT; break; case SC_R_FSPI_0: boot_dev = FLEXSPI_BOOT; break; case SC_R_SATA_0: boot_dev = SATA_BOOT; break; case SC_R_USB_0: case SC_R_USB_1: case SC_R_USB_2: boot_dev = USB_BOOT; break; default: break; } return boot_dev; } #ifdef CONFIG_SERIAL_TAG #define FUSE_UNIQUE_ID_WORD0 16 #define FUSE_UNIQUE_ID_WORD1 17 void get_board_serial(struct tag_serialnr *serialnr) { sc_err_t err; u32 val1 = 0, val2 = 0; u32 word1, word2; if (!serialnr) return; word1 = FUSE_UNIQUE_ID_WORD0; word2 = FUSE_UNIQUE_ID_WORD1; err = sc_misc_otp_fuse_read(-1, word1, &val1); if (err != SC_ERR_NONE) { printf("%s fuse %d read error: %d\n", __func__, word1, err); return; } err = sc_misc_otp_fuse_read(-1, word2, &val2); if (err != SC_ERR_NONE) { printf("%s fuse %d read error: %d\n", __func__, word2, err); return; } serialnr->low = val1; serialnr->high = val2; } #endif /*CONFIG_SERIAL_TAG*/ #ifdef CONFIG_ENV_IS_IN_MMC __weak int board_mmc_get_env_dev(int devno) { return CONFIG_SYS_MMC_ENV_DEV; } int mmc_get_env_dev(void) { sc_rsrc_t dev_rsrc; int devno; sc_misc_get_boot_dev(-1, &dev_rsrc); switch (dev_rsrc) { case SC_R_SDHC_0: devno = 0; break; case SC_R_SDHC_1: devno = 1; break; case SC_R_SDHC_2: devno = 2; break; default: /* If not boot from sd/mmc, use default value */ return CONFIG_SYS_MMC_ENV_DEV; } return board_mmc_get_env_dev(devno); } #endif #define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */ static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start, sc_faddr_t *addr_end) { sc_faddr_t start, end; int ret; bool owned; owned = sc_rm_is_memreg_owned(-1, mr); if (owned) { ret = sc_rm_get_memreg_info(-1, mr, &start, &end); if (ret) { printf("Memreg get info failed, %d\n", ret); return -EINVAL; } debug("0x%llx -- 0x%llx\n", start, end); *addr_start = start; *addr_end = end; return 0; } return -EINVAL; } phys_size_t get_effective_memsize(void) { sc_rm_mr_t mr; sc_faddr_t start, end, end1, start_aligned; int err; end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; for (mr = 0; mr < 64; mr++) { err = get_owned_memreg(mr, &start, &end); if (!err) { start_aligned = roundup(start, MEMSTART_ALIGNMENT); /* Too small memory region, not use it */ if (start_aligned > end) continue; /* Find the memory region runs the U-Boot */ if (start >= PHYS_SDRAM_1 && start <= end1 && (start <= CONFIG_SYS_TEXT_BASE && end >= CONFIG_SYS_TEXT_BASE)) { if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) return (end - PHYS_SDRAM_1 + 1); else return PHYS_SDRAM_1_SIZE; } } } return PHYS_SDRAM_1_SIZE; } int dram_init(void) { sc_rm_mr_t mr; sc_faddr_t start, end, end1, end2; int err; end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; for (mr = 0; mr < 64; mr++) { err = get_owned_memreg(mr, &start, &end); if (!err) { start = roundup(start, MEMSTART_ALIGNMENT); /* Too small memory region, not use it */ if (start > end) continue; if (start >= PHYS_SDRAM_1 && start <= end1) { if ((end + 1) <= end1) gd->ram_size += end - start + 1; else gd->ram_size += end1 - start; } else if (start >= PHYS_SDRAM_2 && start <= end2) { if ((end + 1) <= end2) gd->ram_size += end - start + 1; else gd->ram_size += end2 - start; } } } /* If error, set to the default value */ if (!gd->ram_size) { gd->ram_size = PHYS_SDRAM_1_SIZE; gd->ram_size += PHYS_SDRAM_2_SIZE; } return 0; } static void dram_bank_sort(int current_bank) { phys_addr_t start; phys_size_t size; while (current_bank > 0) { if (gd->bd->bi_dram[current_bank - 1].start > gd->bd->bi_dram[current_bank].start) { start = gd->bd->bi_dram[current_bank - 1].start; size = gd->bd->bi_dram[current_bank - 1].size; gd->bd->bi_dram[current_bank - 1].start = gd->bd->bi_dram[current_bank].start; gd->bd->bi_dram[current_bank - 1].size = gd->bd->bi_dram[current_bank].size; gd->bd->bi_dram[current_bank].start = start; gd->bd->bi_dram[current_bank].size = size; } current_bank--; } } int dram_init_banksize(void) { sc_rm_mr_t mr; sc_faddr_t start, end, end1, end2; int i = 0; int err; end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) { err = get_owned_memreg(mr, &start, &end); if (!err) { start = roundup(start, MEMSTART_ALIGNMENT); if (start > end) /* Small memory region, no use it */ continue; if (start >= PHYS_SDRAM_1 && start <= end1) { gd->bd->bi_dram[i].start = start; if ((end + 1) <= end1) gd->bd->bi_dram[i].size = end - start + 1; else gd->bd->bi_dram[i].size = end1 - start; dram_bank_sort(i); i++; } else if (start >= PHYS_SDRAM_2 && start <= end2) { gd->bd->bi_dram[i].start = start; if ((end + 1) <= end2) gd->bd->bi_dram[i].size = end - start + 1; else gd->bd->bi_dram[i].size = end2 - start; dram_bank_sort(i); i++; } } } /* If error, set to the default value */ if (!i) { gd->bd->bi_dram[0].start = PHYS_SDRAM_1; gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; gd->bd->bi_dram[1].start = PHYS_SDRAM_2; gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE; } return 0; } static u64 get_block_attrs(sc_faddr_t addr_start) { u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN; if ((addr_start >= PHYS_SDRAM_1 && addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) || (addr_start >= PHYS_SDRAM_2 && addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE))) return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE); return attr; } static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end) { sc_faddr_t end1, end2; end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) { if ((addr_end + 1) > end1) return end1 - addr_start; } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) { if ((addr_end + 1) > end2) return end2 - addr_start; } return (addr_end - addr_start + 1); } #define MAX_PTE_ENTRIES 512 #define MAX_MEM_MAP_REGIONS 16 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS]; struct mm_region *mem_map = imx8_mem_map; void enable_caches(void) { sc_rm_mr_t mr; sc_faddr_t start, end; int err, i; /* Create map for registers access from 0x1c000000 to 0x80000000*/ imx8_mem_map[0].virt = 0x1c000000UL; imx8_mem_map[0].phys = 0x1c000000UL; imx8_mem_map[0].size = 0x64000000UL; imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN; i = 1; for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) { err = get_owned_memreg(mr, &start, &end); if (!err) { imx8_mem_map[i].virt = start; imx8_mem_map[i].phys = start; imx8_mem_map[i].size = get_block_size(start, end); imx8_mem_map[i].attrs = get_block_attrs(start); i++; } } if (i < MAX_MEM_MAP_REGIONS) { imx8_mem_map[i].size = 0; imx8_mem_map[i].attrs = 0; } else { puts("Error, need more MEM MAP REGIONS reserved\n"); icache_enable(); return; } for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) { debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n", i, imx8_mem_map[i].virt, imx8_mem_map[i].phys, imx8_mem_map[i].size, imx8_mem_map[i].attrs); } icache_enable(); dcache_enable(); } #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) u64 get_page_table_size(void) { u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); u64 size = 0; /* * For each memory region, the max table size: * 2 level 3 tables + 2 level 2 tables + 1 level 1 table */ size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt; /* * We need to duplicate our page table once to have an emergency pt to * resort to when splitting page tables later on */ size *= 2; /* * We may need to split page tables later on if dcache settings change, * so reserve up to 4 (random pick) page tables for that. */ size += one_pt * 4; return size; } #endif #if defined(CONFIG_IMX8QM) #define FUSE_MAC0_WORD0 452 #define FUSE_MAC0_WORD1 453 #define FUSE_MAC1_WORD0 454 #define FUSE_MAC1_WORD1 455 #elif defined(CONFIG_IMX8QXP) #define FUSE_MAC0_WORD0 708 #define FUSE_MAC0_WORD1 709 #define FUSE_MAC1_WORD0 710 #define FUSE_MAC1_WORD1 711 #endif void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) { u32 word[2], val[2] = {}; int i, ret; if (dev_id == 0) { word[0] = FUSE_MAC0_WORD0; word[1] = FUSE_MAC0_WORD1; } else { word[0] = FUSE_MAC1_WORD0; word[1] = FUSE_MAC1_WORD1; } for (i = 0; i < 2; i++) { ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]); if (ret < 0) goto err; } mac[0] = val[0]; mac[1] = val[0] >> 8; mac[2] = val[0] >> 16; mac[3] = val[0] >> 24; mac[4] = val[1]; mac[5] = val[1] >> 8; debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n", __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); return; err: printf("%s: fuse %d, err: %d\n", __func__, word[i], ret); } u32 get_cpu_rev(void) { u32 id = 0, rev = 0; int ret; ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id); if (ret) return 0; rev = (id >> 5) & 0xf; id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */ return (id << 12) | rev; } void board_boot_order(u32 *spl_boot_list) { spl_boot_list[0] = spl_boot_device(); if (spl_boot_list[0] == BOOT_DEVICE_SPI) { /* Check whether we own the flexspi0, if not, use NOR boot */ if (!sc_rm_is_resource_owned(-1, SC_R_FSPI_0)) spl_boot_list[0] = BOOT_DEVICE_NOR; } } bool m4_parts_booted(void) { sc_rm_pt_t m4_parts[2]; int err; err = sc_rm_get_resource_owner(-1, SC_R_M4_0_PID0, &m4_parts[0]); if (err) { printf("%s get resource [%d] owner error: %d\n", __func__, SC_R_M4_0_PID0, err); return false; } if (sc_pm_is_partition_started(-1, m4_parts[0])) return true; if (is_imx8qm()) { err = sc_rm_get_resource_owner(-1, SC_R_M4_1_PID0, &m4_parts[1]); if (err) { printf("%s get resource [%d] owner error: %d\n", __func__, SC_R_M4_1_PID0, err); return false; } if (sc_pm_is_partition_started(-1, m4_parts[1])) return true; } return false; }