// SPDX-License-Identifier: GPL-2.0+ /* * Allwinner DW HDMI bridge * * (C) Copyright 2017 Jernej Skrabec */ #include #include #include #include #include #include #include #include #include #include #include #include struct sunxi_dw_hdmi_priv { struct dw_hdmi hdmi; int mux; }; struct sunxi_hdmi_phy { u32 pol; u32 res1[3]; u32 read_en; u32 unscramble; u32 res2[2]; u32 ctrl; u32 unk1; u32 unk2; u32 pll; u32 clk; u32 unk3; u32 status; }; #define HDMI_PHY_OFFS 0x10000 static int sunxi_dw_hdmi_get_divider(uint clock) { /* * Due to missing documentaion of HDMI PHY, we know correct * settings only for following four PHY dividers. Select one * based on clock speed. */ if (clock <= 27000000) return 11; else if (clock <= 74250000) return 4; else if (clock <= 148500000) return 2; else return 1; } static void sunxi_dw_hdmi_phy_init(void) { struct sunxi_hdmi_phy * const phy = (struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS); unsigned long tmo; u32 tmp; /* * HDMI PHY settings are taken as-is from Allwinner BSP code. * There is no documentation. */ writel(0, &phy->ctrl); setbits_le32(&phy->ctrl, BIT(0)); udelay(5); setbits_le32(&phy->ctrl, BIT(16)); setbits_le32(&phy->ctrl, BIT(1)); udelay(10); setbits_le32(&phy->ctrl, BIT(2)); udelay(5); setbits_le32(&phy->ctrl, BIT(3)); udelay(40); setbits_le32(&phy->ctrl, BIT(19)); udelay(100); setbits_le32(&phy->ctrl, BIT(18)); setbits_le32(&phy->ctrl, 7 << 4); /* Note that Allwinner code doesn't fail in case of timeout */ tmo = timer_get_us() + 2000; while ((readl(&phy->status) & 0x80) == 0) { if (timer_get_us() > tmo) { printf("Warning: HDMI PHY init timeout!\n"); break; } } setbits_le32(&phy->ctrl, 0xf << 8); setbits_le32(&phy->ctrl, BIT(7)); writel(0x39dc5040, &phy->pll); writel(0x80084343, &phy->clk); udelay(10000); writel(1, &phy->unk3); setbits_le32(&phy->pll, BIT(25)); udelay(100000); tmp = (readl(&phy->status) & 0x1f800) >> 11; setbits_le32(&phy->pll, BIT(31) | BIT(30)); setbits_le32(&phy->pll, tmp); writel(0x01FF0F7F, &phy->ctrl); writel(0x80639000, &phy->unk1); writel(0x0F81C405, &phy->unk2); /* enable read access to HDMI controller */ writel(0x54524545, &phy->read_en); /* descramble register offsets */ writel(0x42494E47, &phy->unscramble); } static int sunxi_dw_hdmi_get_plug_in_status(void) { struct sunxi_hdmi_phy * const phy = (struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS); return !!(readl(&phy->status) & (1 << 19)); } static int sunxi_dw_hdmi_wait_for_hpd(void) { ulong start; start = get_timer(0); do { if (sunxi_dw_hdmi_get_plug_in_status()) return 0; udelay(100); } while (get_timer(start) < 300); return -1; } static void sunxi_dw_hdmi_phy_set(uint clock, int phy_div) { struct sunxi_hdmi_phy * const phy = (struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS); int div = sunxi_dw_hdmi_get_divider(clock); u32 tmp; /* * Unfortunately, we don't know much about those magic * numbers. They are taken from Allwinner BSP driver. */ switch (div) { case 1: writel(0x30dc5fc0, &phy->pll); writel(0x800863C0 | (phy_div - 1), &phy->clk); mdelay(10); writel(0x00000001, &phy->unk3); setbits_le32(&phy->pll, BIT(25)); mdelay(200); tmp = (readl(&phy->status) & 0x1f800) >> 11; setbits_le32(&phy->pll, BIT(31) | BIT(30)); if (tmp < 0x3d) setbits_le32(&phy->pll, tmp + 2); else setbits_le32(&phy->pll, 0x3f); mdelay(100); writel(0x01FFFF7F, &phy->ctrl); writel(0x8063b000, &phy->unk1); writel(0x0F8246B5, &phy->unk2); break; case 2: writel(0x39dc5040, &phy->pll); writel(0x80084380 | (phy_div - 1), &phy->clk); mdelay(10); writel(0x00000001, &phy->unk3); setbits_le32(&phy->pll, BIT(25)); mdelay(100); tmp = (readl(&phy->status) & 0x1f800) >> 11; setbits_le32(&phy->pll, BIT(31) | BIT(30)); setbits_le32(&phy->pll, tmp); writel(0x01FFFF7F, &phy->ctrl); writel(0x8063a800, &phy->unk1); writel(0x0F81C485, &phy->unk2); break; case 4: writel(0x39dc5040, &phy->pll); writel(0x80084340 | (phy_div - 1), &phy->clk); mdelay(10); writel(0x00000001, &phy->unk3); setbits_le32(&phy->pll, BIT(25)); mdelay(100); tmp = (readl(&phy->status) & 0x1f800) >> 11; setbits_le32(&phy->pll, BIT(31) | BIT(30)); setbits_le32(&phy->pll, tmp); writel(0x01FFFF7F, &phy->ctrl); writel(0x8063b000, &phy->unk1); writel(0x0F81C405, &phy->unk2); break; case 11: writel(0x39dc5040, &phy->pll); writel(0x80084300 | (phy_div - 1), &phy->clk); mdelay(10); writel(0x00000001, &phy->unk3); setbits_le32(&phy->pll, BIT(25)); mdelay(100); tmp = (readl(&phy->status) & 0x1f800) >> 11; setbits_le32(&phy->pll, BIT(31) | BIT(30)); setbits_le32(&phy->pll, tmp); writel(0x01FFFF7F, &phy->ctrl); writel(0x8063b000, &phy->unk1); writel(0x0F81C405, &phy->unk2); break; } } static void sunxi_dw_hdmi_pll_set(uint clk_khz, int *phy_div) { int value, n, m, div, diff; int best_n = 0, best_m = 0, best_div = 0, best_diff = 0x0FFFFFFF; /* * Find the lowest divider resulting in a matching clock. If there * is no match, pick the closest lower clock, as monitors tend to * not sync to higher frequencies. */ for (div = 1; div <= 16; div++) { int target = clk_khz * div; if (target < 192000) continue; if (target > 912000) continue; for (m = 1; m <= 16; m++) { n = (m * target) / 24000; if (n >= 1 && n <= 128) { value = (24000 * n) / m / div; diff = clk_khz - value; if (diff < best_diff) { best_diff = diff; best_m = m; best_n = n; best_div = div; } } } } *phy_div = best_div; clock_set_pll3_factors(best_m, best_n); debug("dotclock: %dkHz = %dkHz: (24MHz * %d) / %d / %d\n", clk_khz, (clock_get_pll3() / 1000) / best_div, best_n, best_m, best_div); } static void sunxi_dw_hdmi_lcdc_init(int mux, const struct display_timing *edid, int bpp) { struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; int div = DIV_ROUND_UP(clock_get_pll3(), edid->pixelclock.typ); struct sunxi_lcdc_reg *lcdc; if (mux == 0) { lcdc = (struct sunxi_lcdc_reg *)SUNXI_LCD0_BASE; /* Reset off */ setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_LCD0); /* Clock on */ setbits_le32(&ccm->ahb_gate1, 1 << AHB_GATE_OFFSET_LCD0); writel(CCM_LCD0_CTRL_GATE | CCM_LCD0_CTRL_M(div), &ccm->lcd0_clk_cfg); } else { lcdc = (struct sunxi_lcdc_reg *)SUNXI_LCD1_BASE; /* Reset off */ setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_LCD1); /* Clock on */ setbits_le32(&ccm->ahb_gate1, 1 << AHB_GATE_OFFSET_LCD1); writel(CCM_LCD1_CTRL_GATE | CCM_LCD1_CTRL_M(div), &ccm->lcd1_clk_cfg); } lcdc_init(lcdc); lcdc_tcon1_mode_set(lcdc, edid, false, false); lcdc_enable(lcdc, bpp); } static int sunxi_dw_hdmi_phy_cfg(struct dw_hdmi *hdmi, uint mpixelclock) { int phy_div; sunxi_dw_hdmi_pll_set(mpixelclock / 1000, &phy_div); sunxi_dw_hdmi_phy_set(mpixelclock, phy_div); return 0; } static int sunxi_dw_hdmi_read_edid(struct udevice *dev, u8 *buf, int buf_size) { struct sunxi_dw_hdmi_priv *priv = dev_get_priv(dev); return dw_hdmi_read_edid(&priv->hdmi, buf, buf_size); } static bool sunxi_dw_hdmi_mode_valid(struct udevice *dev, const struct display_timing *timing) { return timing->pixelclock.typ <= 297000000; } static int sunxi_dw_hdmi_enable(struct udevice *dev, int panel_bpp, const struct display_timing *edid) { struct sunxi_hdmi_phy * const phy = (struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS); struct sunxi_dw_hdmi_priv *priv = dev_get_priv(dev); int ret; ret = dw_hdmi_enable(&priv->hdmi, edid); if (ret) return ret; sunxi_dw_hdmi_lcdc_init(priv->mux, edid, panel_bpp); if (edid->flags & DISPLAY_FLAGS_VSYNC_LOW) setbits_le32(&phy->pol, 0x200); if (edid->flags & DISPLAY_FLAGS_HSYNC_LOW) setbits_le32(&phy->pol, 0x100); setbits_le32(&phy->ctrl, 0xf << 12); /* * This is last hdmi access before boot, so scramble addresses * again or othwerwise BSP driver won't work. Dummy read is * needed or otherwise last write doesn't get written correctly. */ (void)readb(SUNXI_HDMI_BASE); writel(0, &phy->unscramble); return 0; } static int sunxi_dw_hdmi_probe(struct udevice *dev) { struct display_plat *uc_plat = dev_get_uclass_plat(dev); struct sunxi_dw_hdmi_priv *priv = dev_get_priv(dev); struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; int ret; /* Set pll3 to 297 MHz */ clock_set_pll3(297000000); /* Set hdmi parent to pll3 */ clrsetbits_le32(&ccm->hdmi_clk_cfg, CCM_HDMI_CTRL_PLL_MASK, CCM_HDMI_CTRL_PLL3); /* Set ahb gating to pass */ setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_HDMI); setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_HDMI2); setbits_le32(&ccm->ahb_gate1, 1 << AHB_GATE_OFFSET_HDMI); setbits_le32(&ccm->hdmi_slow_clk_cfg, CCM_HDMI_SLOW_CTRL_DDC_GATE); /* Clock on */ setbits_le32(&ccm->hdmi_clk_cfg, CCM_HDMI_CTRL_GATE); sunxi_dw_hdmi_phy_init(); ret = sunxi_dw_hdmi_wait_for_hpd(); if (ret < 0) { debug("hdmi can not get hpd signal\n"); return -1; } priv->hdmi.ioaddr = SUNXI_HDMI_BASE; priv->hdmi.i2c_clk_high = 0xd8; priv->hdmi.i2c_clk_low = 0xfe; priv->hdmi.reg_io_width = 1; priv->hdmi.phy_set = sunxi_dw_hdmi_phy_cfg; priv->mux = uc_plat->source_id; uclass_get_device_by_phandle(UCLASS_I2C, dev, "ddc-i2c-bus", &priv->hdmi.ddc_bus); dw_hdmi_init(&priv->hdmi); return 0; } static const struct dm_display_ops sunxi_dw_hdmi_ops = { .read_edid = sunxi_dw_hdmi_read_edid, .enable = sunxi_dw_hdmi_enable, .mode_valid = sunxi_dw_hdmi_mode_valid, }; U_BOOT_DRIVER(sunxi_dw_hdmi) = { .name = "sunxi_dw_hdmi", .id = UCLASS_DISPLAY, .ops = &sunxi_dw_hdmi_ops, .probe = sunxi_dw_hdmi_probe, .priv_auto = sizeof(struct sunxi_dw_hdmi_priv), }; U_BOOT_DRVINFO(sunxi_dw_hdmi) = { .name = "sunxi_dw_hdmi" };