/* SPDX-License-Identifier: GPL-2.0+ */ /* * Copyright (C) 2020 Stefan Roese */ #ifndef __CVMX_REGS_H__ #define __CVMX_REGS_H__ #include #include #include #include /* General defines */ #define CVMX_MAX_CORES 48 /* Maximum # of bits to define core in node */ #define CVMX_NODE_NO_SHIFT 7 #define CVMX_NODE_BITS 2 /* Number of bits to define a node */ #define CVMX_MAX_NODES (1 << CVMX_NODE_BITS) #define CVMX_NODE_MASK (CVMX_MAX_NODES - 1) #define CVMX_NODE_IO_SHIFT 36 #define CVMX_NODE_MEM_SHIFT 40 #define CVMX_NODE_IO_MASK ((u64)CVMX_NODE_MASK << CVMX_NODE_IO_SHIFT) #define CVMX_MIPS_MAX_CORE_BITS 10 /* Maximum # of bits to define cores */ #define CVMX_MIPS_MAX_CORES (1 << CVMX_MIPS_MAX_CORE_BITS) #define MAX_CORE_TADS 8 #define CASTPTR(type, v) ((type *)(long)(v)) #define CAST64(v) ((long long)(long)(v)) /* Regs */ #define CVMX_CIU3_NMI 0x0001010000000160ULL #define CVMX_MIO_BOOT_LOC_CFGX(x) (0x0001180000000080ULL + ((x) & 1) * 8) #define MIO_BOOT_LOC_CFG_BASE GENMASK_ULL(27, 3) #define MIO_BOOT_LOC_CFG_EN BIT_ULL(31) #define CVMX_MIO_BOOT_LOC_ADR 0x0001180000000090ULL #define MIO_BOOT_LOC_ADR_ADR GENMASK_ULL(7, 3) #define CVMX_MIO_BOOT_LOC_DAT 0x0001180000000098ULL #define CVMX_MIO_FUS_DAT2 0x0001180000001410ULL #define MIO_FUS_DAT2_NOCRYPTO BIT_ULL(26) #define MIO_FUS_DAT2_NOMUL BIT_ULL(27) #define MIO_FUS_DAT2_DORM_CRYPTO BIT_ULL(34) #define CVMX_MIO_FUS_RCMD 0x0001180000001500ULL #define MIO_FUS_RCMD_ADDR GENMASK_ULL(7, 0) #define MIO_FUS_RCMD_PEND BIT_ULL(12) #define MIO_FUS_RCMD_DAT GENMASK_ULL(23, 16) #define CVMX_RNM_CTL_STATUS 0x0001180040000000ULL #define RNM_CTL_STATUS_EER_VAL BIT_ULL(9) #define CVMX_IOBDMA_ORDERED_IO_ADDR 0xffffffffffffa200ull /* turn the variable name into a string */ #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x) #define CVMX_TMP_STR2(x) #x #define CVMX_RDHWR(result, regstr) \ asm volatile("rdhwr %[rt],$" CVMX_TMP_STR(regstr) : [rt] "=d"(result)) #define CVMX_RDHWRNV(result, regstr) \ asm("rdhwr %[rt],$" CVMX_TMP_STR(regstr) : [rt] "=d"(result)) #define CVMX_POP(result, input) \ asm("pop %[rd],%[rs]" : [rd] "=d"(result) : [rs] "d"(input)) #define CVMX_SYNC asm volatile("sync\n" : : : "memory") #define CVMX_SYNCW asm volatile("syncw\nsyncw\n" : : : "memory") #define CVMX_SYNCS asm volatile("syncs\n" : : : "memory") #define CVMX_SYNCWS asm volatile("syncws\n" : : : "memory") #define CVMX_CACHE_LINE_SIZE 128 // In bytes #define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) // In bytes #define CVMX_CACHE_LINE_ALIGNED __aligned(CVMX_CACHE_LINE_SIZE) #define CVMX_SYNCIOBDMA asm volatile("synciobdma" : : : "memory") #define CVMX_MF_CHORD(dest) CVMX_RDHWR(dest, 30) /* * The macros cvmx_likely and cvmx_unlikely use the * __builtin_expect GCC operation to control branch * probabilities for a conditional. For example, an "if" * statement in the code that will almost always be * executed should be written as "if (cvmx_likely(...))". * If the "else" section of an if statement is more * probable, use "if (cvmx_unlikey(...))". */ #define cvmx_likely(x) __builtin_expect(!!(x), 1) #define cvmx_unlikely(x) __builtin_expect(!!(x), 0) #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, to_us) \ ({ \ int result; \ do { \ u64 done = get_timer(0); \ type c; \ while (1) { \ c.u64 = csr_rd(address); \ if ((c.s.field)op(value)) { \ result = 0; \ break; \ } else if (get_timer(done) > ((to_us) / 1000)) { \ result = -1; \ break; \ } else \ udelay(100); \ } \ } while (0); \ result; \ }) #define CVMX_WAIT_FOR_FIELD64_NODE(node, address, type, field, op, value, to_us) \ ({ \ int result; \ do { \ u64 done = get_timer(0); \ type c; \ while (1) { \ c.u64 = csr_rd(address); \ if ((c.s.field)op(value)) { \ result = 0; \ break; \ } else if (get_timer(done) > ((to_us) / 1000)) { \ result = -1; \ break; \ } else \ udelay(100); \ } \ } while (0); \ result; \ }) /* ToDo: Currently only node = 0 supported */ #define cvmx_get_node_num() 0 static inline u64 csr_rd_node(int node, u64 addr) { void __iomem *base; base = ioremap_nocache(addr, 0x100); return ioread64(base); } static inline u32 csr_rd32_node(int node, u64 addr) { void __iomem *base; base = ioremap_nocache(addr, 0x100); return ioread32(base); } static inline u64 csr_rd(u64 addr) { return csr_rd_node(0, addr); } static inline u32 csr_rd32(u64 addr) { return csr_rd32_node(0, addr); } static inline void csr_wr_node(int node, u64 addr, u64 val) { void __iomem *base; base = ioremap_nocache(addr, 0x100); iowrite64(val, base); } static inline void csr_wr32_node(int node, u64 addr, u32 val) { void __iomem *base; base = ioremap_nocache(addr, 0x100); iowrite32(val, base); } static inline void csr_wr(u64 addr, u64 val) { csr_wr_node(0, addr, val); } static inline void csr_wr32(u64 addr, u32 val) { csr_wr32_node(0, addr, val); } /* * We need to use the volatile access here, otherwise the IO accessor * functions might swap the bytes */ static inline u64 cvmx_read64_uint64(u64 addr) { return *(volatile u64 *)addr; } static inline s64 cvmx_read64_int64(u64 addr) { return *(volatile s64 *)addr; } static inline void cvmx_write64_uint64(u64 addr, u64 val) { *(volatile u64 *)addr = val; } static inline void cvmx_write64_int64(u64 addr, s64 val) { *(volatile s64 *)addr = val; } static inline u32 cvmx_read64_uint32(u64 addr) { return *(volatile u32 *)addr; } static inline s32 cvmx_read64_int32(u64 addr) { return *(volatile s32 *)addr; } static inline void cvmx_write64_uint32(u64 addr, u32 val) { *(volatile u32 *)addr = val; } static inline void cvmx_write64_int32(u64 addr, s32 val) { *(volatile s32 *)addr = val; } static inline void cvmx_write64_int16(u64 addr, s16 val) { *(volatile s16 *)addr = val; } static inline void cvmx_write64_uint16(u64 addr, u16 val) { *(volatile u16 *)addr = val; } static inline void cvmx_write64_int8(u64 addr, int8_t val) { *(volatile int8_t *)addr = val; } static inline void cvmx_write64_uint8(u64 addr, u8 val) { *(volatile u8 *)addr = val; } static inline s16 cvmx_read64_int16(u64 addr) { return *(volatile s16 *)addr; } static inline u16 cvmx_read64_uint16(u64 addr) { return *(volatile u16 *)addr; } static inline int8_t cvmx_read64_int8(u64 addr) { return *(volatile int8_t *)addr; } static inline u8 cvmx_read64_uint8(u64 addr) { return *(volatile u8 *)addr; } static inline void cvmx_send_single(u64 data) { cvmx_write64_uint64(CVMX_IOBDMA_ORDERED_IO_ADDR, data); } /** * Perform a 64-bit write to an IO address * * @param io_addr I/O address to write to * @param val 64-bit value to write */ static inline void cvmx_write_io(u64 io_addr, u64 val) { cvmx_write64_uint64(io_addr, val); } /** * Builds a memory address for I/O based on the Major and Sub DID. * * @param major_did 5 bit major did * @param sub_did 3 bit sub did * @return I/O base address */ static inline u64 cvmx_build_io_address(u64 major_did, u64 sub_did) { return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40)); } /** * Builds a bit mask given the required size in bits. * * @param bits Number of bits in the mask * @return The mask */ static inline u64 cvmx_build_mask(u64 bits) { if (bits == 64) return -1; return ~((~0x0ull) << bits); } /** * Extract bits out of a number * * @param input Number to extract from * @param lsb Starting bit, least significant (0-63) * @param width Width in bits (1-64) * * @return Extracted number */ static inline u64 cvmx_bit_extract(u64 input, int lsb, int width) { u64 result = input >> lsb; result &= cvmx_build_mask(width); return result; } /** * Perform mask and shift to place the supplied value into * the supplied bit rage. * * Example: cvmx_build_bits(39,24,value) *
 * 6       5       4       3       3       2       1
 * 3       5       7       9       1       3       5       7      0
 * +-------+-------+-------+-------+-------+-------+-------+------+
 * 000000000000000000000000___________value000000000000000000000000
 * 
* * @param high_bit Highest bit value can occupy (inclusive) 0-63 * @param low_bit Lowest bit value can occupy inclusive 0-high_bit * @param value Value to use * @return Value masked and shifted */ static inline u64 cvmx_build_bits(u64 high_bit, u64 low_bit, u64 value) { return ((value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit); } static inline u64 cvmx_mask_to_localaddr(u64 addr) { return (addr & 0xffffffffff); } static inline u64 cvmx_addr_on_node(u64 node, u64 addr) { return (node << 40) | cvmx_mask_to_localaddr(addr); } static inline void *cvmx_phys_to_ptr(u64 addr) { return (void *)CKSEG0ADDR(addr); } static inline u64 cvmx_ptr_to_phys(void *ptr) { return virt_to_phys(ptr); } /** * Number of the Core on which the program is currently running. * * @return core number */ static inline unsigned int cvmx_get_core_num(void) { unsigned int core_num; CVMX_RDHWRNV(core_num, 0); return core_num; } /** * Node-local number of the core on which the program is currently running. * * @return core number on local node */ static inline unsigned int cvmx_get_local_core_num(void) { unsigned int core_num, core_mask; CVMX_RDHWRNV(core_num, 0); /* note that MAX_CORES may not be power of 2 */ core_mask = (1 << CVMX_NODE_NO_SHIFT) - 1; return core_num & core_mask; } /** * Returns the number of bits set in the provided value. * Simple wrapper for POP instruction. * * @param val 32 bit value to count set bits in * * @return Number of bits set */ static inline u32 cvmx_pop(u32 val) { u32 pop; CVMX_POP(pop, val); return pop; } #define cvmx_read_csr_node(node, addr) csr_rd(addr) #define cvmx_write_csr_node(node, addr, val) csr_wr(addr, val) #define cvmx_printf printf #define cvmx_vprintf vprintf #if defined(DEBUG) void cvmx_warn(const char *format, ...) __printf(1, 2); #else void cvmx_warn(const char *format, ...); #endif #define cvmx_warn_if(expression, format, ...) \ if (expression) \ cvmx_warn(format, ##__VA_ARGS__) #endif /* __CVMX_REGS_H__ */