// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #define LOG_CATEGORY UCLASS_RAM #include #include #include #include #include #include #include #include #include #include #include #include "stm32mp1_ddr.h" #include "stm32mp1_ddr_regs.h" #define RCC_DDRITFCR 0xD8 #define RCC_DDRITFCR_DDRCAPBRST (BIT(14)) #define RCC_DDRITFCR_DDRCAXIRST (BIT(15)) #define RCC_DDRITFCR_DDRCORERST (BIT(16)) #define RCC_DDRITFCR_DPHYAPBRST (BIT(17)) #define RCC_DDRITFCR_DPHYRST (BIT(18)) #define RCC_DDRITFCR_DPHYCTLRST (BIT(19)) struct reg_desc { const char *name; u16 offset; /* offset for base address */ u8 par_offset; /* offset for parameter array */ }; #define INVALID_OFFSET 0xFF #define DDRCTL_REG(x, y) \ {#x,\ offsetof(struct stm32mp1_ddrctl, x),\ offsetof(struct y, x)} #define DDRPHY_REG(x, y) \ {#x,\ offsetof(struct stm32mp1_ddrphy, x),\ offsetof(struct y, x)} #define DDR_REG_DYN(x) \ {#x,\ offsetof(struct stm32mp1_ddrctl, x),\ INVALID_OFFSET} #define DDRPHY_REG_DYN(x) \ {#x,\ offsetof(struct stm32mp1_ddrphy, x),\ INVALID_OFFSET} /*********************************************************** * PARAMETERS: value get from device tree : * size / order need to be aligned with binding * modification NOT ALLOWED !!! ***********************************************************/ #define DDRCTL_REG_REG_SIZE 25 /* st,ctl-reg */ #define DDRCTL_REG_TIMING_SIZE 12 /* st,ctl-timing */ #define DDRCTL_REG_MAP_SIZE 9 /* st,ctl-map */ #define DDRCTL_REG_PERF_SIZE 17 /* st,ctl-perf */ #define DDRPHY_REG_REG_SIZE 11 /* st,phy-reg */ #define DDRPHY_REG_TIMING_SIZE 10 /* st,phy-timing */ #define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg) static const struct reg_desc ddr_reg[DDRCTL_REG_REG_SIZE] = { DDRCTL_REG_REG(mstr), DDRCTL_REG_REG(mrctrl0), DDRCTL_REG_REG(mrctrl1), DDRCTL_REG_REG(derateen), DDRCTL_REG_REG(derateint), DDRCTL_REG_REG(pwrctl), DDRCTL_REG_REG(pwrtmg), DDRCTL_REG_REG(hwlpctl), DDRCTL_REG_REG(rfshctl0), DDRCTL_REG_REG(rfshctl3), DDRCTL_REG_REG(crcparctl0), DDRCTL_REG_REG(zqctl0), DDRCTL_REG_REG(dfitmg0), DDRCTL_REG_REG(dfitmg1), DDRCTL_REG_REG(dfilpcfg0), DDRCTL_REG_REG(dfiupd0), DDRCTL_REG_REG(dfiupd1), DDRCTL_REG_REG(dfiupd2), DDRCTL_REG_REG(dfiphymstr), DDRCTL_REG_REG(odtmap), DDRCTL_REG_REG(dbg0), DDRCTL_REG_REG(dbg1), DDRCTL_REG_REG(dbgcmd), DDRCTL_REG_REG(poisoncfg), DDRCTL_REG_REG(pccfg), }; #define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing) static const struct reg_desc ddr_timing[DDRCTL_REG_TIMING_SIZE] = { DDRCTL_REG_TIMING(rfshtmg), DDRCTL_REG_TIMING(dramtmg0), DDRCTL_REG_TIMING(dramtmg1), DDRCTL_REG_TIMING(dramtmg2), DDRCTL_REG_TIMING(dramtmg3), DDRCTL_REG_TIMING(dramtmg4), DDRCTL_REG_TIMING(dramtmg5), DDRCTL_REG_TIMING(dramtmg6), DDRCTL_REG_TIMING(dramtmg7), DDRCTL_REG_TIMING(dramtmg8), DDRCTL_REG_TIMING(dramtmg14), DDRCTL_REG_TIMING(odtcfg), }; #define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map) static const struct reg_desc ddr_map[DDRCTL_REG_MAP_SIZE] = { DDRCTL_REG_MAP(addrmap1), DDRCTL_REG_MAP(addrmap2), DDRCTL_REG_MAP(addrmap3), DDRCTL_REG_MAP(addrmap4), DDRCTL_REG_MAP(addrmap5), DDRCTL_REG_MAP(addrmap6), DDRCTL_REG_MAP(addrmap9), DDRCTL_REG_MAP(addrmap10), DDRCTL_REG_MAP(addrmap11), }; #define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf) static const struct reg_desc ddr_perf[DDRCTL_REG_PERF_SIZE] = { DDRCTL_REG_PERF(sched), DDRCTL_REG_PERF(sched1), DDRCTL_REG_PERF(perfhpr1), DDRCTL_REG_PERF(perflpr1), DDRCTL_REG_PERF(perfwr1), DDRCTL_REG_PERF(pcfgr_0), DDRCTL_REG_PERF(pcfgw_0), DDRCTL_REG_PERF(pcfgqos0_0), DDRCTL_REG_PERF(pcfgqos1_0), DDRCTL_REG_PERF(pcfgwqos0_0), DDRCTL_REG_PERF(pcfgwqos1_0), DDRCTL_REG_PERF(pcfgr_1), DDRCTL_REG_PERF(pcfgw_1), DDRCTL_REG_PERF(pcfgqos0_1), DDRCTL_REG_PERF(pcfgqos1_1), DDRCTL_REG_PERF(pcfgwqos0_1), DDRCTL_REG_PERF(pcfgwqos1_1), }; #define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg) static const struct reg_desc ddrphy_reg[DDRPHY_REG_REG_SIZE] = { DDRPHY_REG_REG(pgcr), DDRPHY_REG_REG(aciocr), DDRPHY_REG_REG(dxccr), DDRPHY_REG_REG(dsgcr), DDRPHY_REG_REG(dcr), DDRPHY_REG_REG(odtcr), DDRPHY_REG_REG(zq0cr1), DDRPHY_REG_REG(dx0gcr), DDRPHY_REG_REG(dx1gcr), DDRPHY_REG_REG(dx2gcr), DDRPHY_REG_REG(dx3gcr), }; #define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing) static const struct reg_desc ddrphy_timing[DDRPHY_REG_TIMING_SIZE] = { DDRPHY_REG_TIMING(ptr0), DDRPHY_REG_TIMING(ptr1), DDRPHY_REG_TIMING(ptr2), DDRPHY_REG_TIMING(dtpr0), DDRPHY_REG_TIMING(dtpr1), DDRPHY_REG_TIMING(dtpr2), DDRPHY_REG_TIMING(mr0), DDRPHY_REG_TIMING(mr1), DDRPHY_REG_TIMING(mr2), DDRPHY_REG_TIMING(mr3), }; /************************************************************** * DYNAMIC REGISTERS: only used for debug purpose (read/modify) **************************************************************/ #ifdef CONFIG_STM32MP1_DDR_INTERACTIVE static const struct reg_desc ddr_dyn[] = { DDR_REG_DYN(stat), DDR_REG_DYN(init0), DDR_REG_DYN(dfimisc), DDR_REG_DYN(dfistat), DDR_REG_DYN(swctl), DDR_REG_DYN(swstat), DDR_REG_DYN(pctrl_0), DDR_REG_DYN(pctrl_1), }; #define DDR_REG_DYN_SIZE ARRAY_SIZE(ddr_dyn) static const struct reg_desc ddrphy_dyn[] = { DDRPHY_REG_DYN(pir), DDRPHY_REG_DYN(pgsr), DDRPHY_REG_DYN(zq0sr0), DDRPHY_REG_DYN(zq0sr1), DDRPHY_REG_DYN(dx0gsr0), DDRPHY_REG_DYN(dx0gsr1), DDRPHY_REG_DYN(dx0dllcr), DDRPHY_REG_DYN(dx0dqtr), DDRPHY_REG_DYN(dx0dqstr), DDRPHY_REG_DYN(dx1gsr0), DDRPHY_REG_DYN(dx1gsr1), DDRPHY_REG_DYN(dx1dllcr), DDRPHY_REG_DYN(dx1dqtr), DDRPHY_REG_DYN(dx1dqstr), DDRPHY_REG_DYN(dx2gsr0), DDRPHY_REG_DYN(dx2gsr1), DDRPHY_REG_DYN(dx2dllcr), DDRPHY_REG_DYN(dx2dqtr), DDRPHY_REG_DYN(dx2dqstr), DDRPHY_REG_DYN(dx3gsr0), DDRPHY_REG_DYN(dx3gsr1), DDRPHY_REG_DYN(dx3dllcr), DDRPHY_REG_DYN(dx3dqtr), DDRPHY_REG_DYN(dx3dqstr), }; #define DDRPHY_REG_DYN_SIZE ARRAY_SIZE(ddrphy_dyn) #endif /***************************************************************** * REGISTERS ARRAY: used to parse device tree and interactive mode *****************************************************************/ enum reg_type { REG_REG, REG_TIMING, REG_PERF, REG_MAP, REGPHY_REG, REGPHY_TIMING, #ifdef CONFIG_STM32MP1_DDR_INTERACTIVE /* dynamic registers => managed in driver or not changed, * can be dumped in interactive mode */ REG_DYN, REGPHY_DYN, #endif REG_TYPE_NB }; enum base_type { DDR_BASE, DDRPHY_BASE, NONE_BASE }; struct ddr_reg_info { const char *name; const struct reg_desc *desc; u8 size; enum base_type base; }; const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = { [REG_REG] = { "static", ddr_reg, DDRCTL_REG_REG_SIZE, DDR_BASE}, [REG_TIMING] = { "timing", ddr_timing, DDRCTL_REG_TIMING_SIZE, DDR_BASE}, [REG_PERF] = { "perf", ddr_perf, DDRCTL_REG_PERF_SIZE, DDR_BASE}, [REG_MAP] = { "map", ddr_map, DDRCTL_REG_MAP_SIZE, DDR_BASE}, [REGPHY_REG] = { "static", ddrphy_reg, DDRPHY_REG_REG_SIZE, DDRPHY_BASE}, [REGPHY_TIMING] = { "timing", ddrphy_timing, DDRPHY_REG_TIMING_SIZE, DDRPHY_BASE}, #ifdef CONFIG_STM32MP1_DDR_INTERACTIVE [REG_DYN] = { "dyn", ddr_dyn, DDR_REG_DYN_SIZE, DDR_BASE}, [REGPHY_DYN] = { "dyn", ddrphy_dyn, DDRPHY_REG_DYN_SIZE, DDRPHY_BASE}, #endif }; const char *base_name[] = { [DDR_BASE] = "ctl", [DDRPHY_BASE] = "phy", }; static u32 get_base_addr(const struct ddr_info *priv, enum base_type base) { if (base == DDRPHY_BASE) return (u32)priv->phy; else return (u32)priv->ctl; } static void set_reg(const struct ddr_info *priv, enum reg_type type, const void *param) { unsigned int i; unsigned int *ptr, value; enum base_type base = ddr_registers[type].base; u32 base_addr = get_base_addr(priv, base); const struct reg_desc *desc = ddr_registers[type].desc; log_debug("init %s\n", ddr_registers[type].name); for (i = 0; i < ddr_registers[type].size; i++) { ptr = (unsigned int *)(base_addr + desc[i].offset); if (desc[i].par_offset == INVALID_OFFSET) { log_err("invalid parameter offset for %s", desc[i].name); } else { value = *((u32 *)((u32)param + desc[i].par_offset)); writel(value, ptr); log_debug("[0x%x] %s= 0x%08x\n", (u32)ptr, desc[i].name, value); } } } #ifdef CONFIG_STM32MP1_DDR_INTERACTIVE static void stm32mp1_dump_reg_desc(u32 base_addr, const struct reg_desc *desc) { unsigned int *ptr; ptr = (unsigned int *)(base_addr + desc->offset); printf("%s= 0x%08x\n", desc->name, readl(ptr)); } static void stm32mp1_dump_param_desc(u32 par_addr, const struct reg_desc *desc) { unsigned int *ptr; ptr = (unsigned int *)(par_addr + desc->par_offset); printf("%s= 0x%08x\n", desc->name, readl(ptr)); } static const struct reg_desc *found_reg(const char *name, enum reg_type *type) { unsigned int i, j; const struct reg_desc *desc; for (i = 0; i < ARRAY_SIZE(ddr_registers); i++) { desc = ddr_registers[i].desc; for (j = 0; j < ddr_registers[i].size; j++) { if (strcmp(name, desc[j].name) == 0) { *type = i; return &desc[j]; } } } *type = REG_TYPE_NB; return NULL; } int stm32mp1_dump_reg(const struct ddr_info *priv, const char *name) { unsigned int i, j; const struct reg_desc *desc; u32 base_addr; enum base_type p_base; enum reg_type type; const char *p_name; enum base_type filter = NONE_BASE; int result = -1; if (name) { if (strcmp(name, base_name[DDR_BASE]) == 0) filter = DDR_BASE; else if (strcmp(name, base_name[DDRPHY_BASE]) == 0) filter = DDRPHY_BASE; } for (i = 0; i < ARRAY_SIZE(ddr_registers); i++) { p_base = ddr_registers[i].base; p_name = ddr_registers[i].name; if (!name || (filter == p_base || !strcmp(name, p_name))) { result = 0; desc = ddr_registers[i].desc; base_addr = get_base_addr(priv, p_base); printf("==%s.%s==\n", base_name[p_base], p_name); for (j = 0; j < ddr_registers[i].size; j++) stm32mp1_dump_reg_desc(base_addr, &desc[j]); } } if (result) { desc = found_reg(name, &type); if (desc) { p_base = ddr_registers[type].base; base_addr = get_base_addr(priv, p_base); stm32mp1_dump_reg_desc(base_addr, desc); result = 0; } } return result; } void stm32mp1_edit_reg(const struct ddr_info *priv, char *name, char *string) { unsigned long *ptr, value; enum reg_type type; enum base_type base; const struct reg_desc *desc; u32 base_addr; desc = found_reg(name, &type); if (!desc) { printf("%s not found\n", name); return; } if (strict_strtoul(string, 16, &value) < 0) { printf("invalid value %s\n", string); return; } base = ddr_registers[type].base; base_addr = get_base_addr(priv, base); ptr = (unsigned long *)(base_addr + desc->offset); writel(value, ptr); printf("%s= 0x%08x\n", desc->name, readl(ptr)); } static u32 get_par_addr(const struct stm32mp1_ddr_config *config, enum reg_type type) { u32 par_addr = 0x0; switch (type) { case REG_REG: par_addr = (u32)&config->c_reg; break; case REG_TIMING: par_addr = (u32)&config->c_timing; break; case REG_PERF: par_addr = (u32)&config->c_perf; break; case REG_MAP: par_addr = (u32)&config->c_map; break; case REGPHY_REG: par_addr = (u32)&config->p_reg; break; case REGPHY_TIMING: par_addr = (u32)&config->p_timing; break; case REG_DYN: case REGPHY_DYN: case REG_TYPE_NB: par_addr = (u32)NULL; break; } return par_addr; } int stm32mp1_dump_param(const struct stm32mp1_ddr_config *config, const char *name) { unsigned int i, j; const struct reg_desc *desc; u32 par_addr; enum base_type p_base; enum reg_type type; const char *p_name; enum base_type filter = NONE_BASE; int result = -EINVAL; if (name) { if (strcmp(name, base_name[DDR_BASE]) == 0) filter = DDR_BASE; else if (strcmp(name, base_name[DDRPHY_BASE]) == 0) filter = DDRPHY_BASE; } for (i = 0; i < ARRAY_SIZE(ddr_registers); i++) { par_addr = get_par_addr(config, i); if (!par_addr) continue; p_base = ddr_registers[i].base; p_name = ddr_registers[i].name; if (!name || (filter == p_base || !strcmp(name, p_name))) { result = 0; desc = ddr_registers[i].desc; printf("==%s.%s==\n", base_name[p_base], p_name); for (j = 0; j < ddr_registers[i].size; j++) stm32mp1_dump_param_desc(par_addr, &desc[j]); } } if (result) { desc = found_reg(name, &type); if (desc) { par_addr = get_par_addr(config, type); if (par_addr) { stm32mp1_dump_param_desc(par_addr, desc); result = 0; } } } return result; } void stm32mp1_edit_param(const struct stm32mp1_ddr_config *config, char *name, char *string) { unsigned long *ptr, value; enum reg_type type; const struct reg_desc *desc; u32 par_addr; desc = found_reg(name, &type); if (!desc) { printf("%s not found\n", name); return; } if (strict_strtoul(string, 16, &value) < 0) { printf("invalid value %s\n", string); return; } par_addr = get_par_addr(config, type); if (!par_addr) { printf("no parameter %s\n", name); return; } ptr = (unsigned long *)(par_addr + desc->par_offset); writel(value, ptr); printf("%s= 0x%08x\n", desc->name, readl(ptr)); } #endif __weak bool stm32mp1_ddr_interactive(void *priv, enum stm32mp1_ddr_interact_step step, const struct stm32mp1_ddr_config *config) { return false; } #define INTERACTIVE(step)\ stm32mp1_ddr_interactive(priv, step, config) static void ddrphy_idone_wait(struct stm32mp1_ddrphy *phy) { u32 pgsr; int ret; ret = readl_poll_timeout(&phy->pgsr, pgsr, pgsr & (DDRPHYC_PGSR_IDONE | DDRPHYC_PGSR_DTERR | DDRPHYC_PGSR_DTIERR | DDRPHYC_PGSR_DFTERR | DDRPHYC_PGSR_RVERR | DDRPHYC_PGSR_RVEIRR), 1000000); log_debug("\n[0x%08x] pgsr = 0x%08x ret=%d\n", (u32)&phy->pgsr, pgsr, ret); } static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, u32 pir) { pir |= DDRPHYC_PIR_INIT; writel(pir, &phy->pir); log_debug("[0x%08x] pir = 0x%08x -> 0x%08x\n", (u32)&phy->pir, pir, readl(&phy->pir)); /* need to wait 10 configuration clock before start polling */ udelay(10); /* Wait DRAM initialization and Gate Training Evaluation complete */ ddrphy_idone_wait(phy); } /* start quasi dynamic register update */ static void start_sw_done(struct stm32mp1_ddrctl *ctl) { clrbits_le32(&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); } /* wait quasi dynamic register update */ static void wait_sw_done_ack(struct stm32mp1_ddrctl *ctl) { int ret; u32 swstat; setbits_le32(&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); ret = readl_poll_timeout(&ctl->swstat, swstat, swstat & DDRCTRL_SWSTAT_SW_DONE_ACK, 1000000); if (ret) panic("Timeout initialising DRAM : DDR->swstat = %x\n", swstat); log_debug("[0x%08x] swstat = 0x%08x\n", (u32)&ctl->swstat, swstat); } /* wait quasi dynamic register update */ static void wait_operating_mode(struct ddr_info *priv, int mode) { u32 stat, val, mask, val2 = 0, mask2 = 0; int ret; mask = DDRCTRL_STAT_OPERATING_MODE_MASK; val = mode; /* self-refresh due to software => check also STAT.selfref_type */ if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) { mask |= DDRCTRL_STAT_SELFREF_TYPE_MASK; val |= DDRCTRL_STAT_SELFREF_TYPE_SR; } else if (mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) { /* normal mode: handle also automatic self refresh */ mask2 = DDRCTRL_STAT_OPERATING_MODE_MASK | DDRCTRL_STAT_SELFREF_TYPE_MASK; val2 = DDRCTRL_STAT_OPERATING_MODE_SR | DDRCTRL_STAT_SELFREF_TYPE_ASR; } ret = readl_poll_timeout(&priv->ctl->stat, stat, ((stat & mask) == val) || (mask2 && ((stat & mask2) == val2)), 1000000); if (ret) panic("Timeout DRAM : DDR->stat = %x\n", stat); log_debug("[0x%08x] stat = 0x%08x\n", (u32)&priv->ctl->stat, stat); } static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl) { start_sw_done(ctl); /* quasi-dynamic register update*/ setbits_le32(&ctl->rfshctl3, DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); clrbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN | DDRCTRL_PWRCTL_SELFREF_EN); clrbits_le32(&ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); wait_sw_done_ack(ctl); } static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl, u32 rfshctl3, u32 pwrctl) { start_sw_done(ctl); if (!(rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH)) clrbits_le32(&ctl->rfshctl3, DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); if (pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) setbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN); if ((pwrctl & DDRCTRL_PWRCTL_SELFREF_EN)) setbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_SELFREF_EN); setbits_le32(&ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); wait_sw_done_ack(ctl); } /* board-specific DDR power initializations. */ __weak int board_ddr_power_init(enum ddr_type ddr_type) { return 0; } __maybe_unused void stm32mp1_ddr_init(struct ddr_info *priv, const struct stm32mp1_ddr_config *config) { u32 pir; int ret = -EINVAL; char bus_width; switch (config->c_reg.mstr & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK) { case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER: bus_width = 8; break; case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF: bus_width = 16; break; default: bus_width = 32; break; } if (config->c_reg.mstr & DDRCTRL_MSTR_DDR3) ret = board_ddr_power_init(STM32MP_DDR3); else if (config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) { if (bus_width == 32) ret = board_ddr_power_init(STM32MP_LPDDR2_32); else ret = board_ddr_power_init(STM32MP_LPDDR2_16); } else if (config->c_reg.mstr & DDRCTRL_MSTR_LPDDR3) { if (bus_width == 32) ret = board_ddr_power_init(STM32MP_LPDDR3_32); else ret = board_ddr_power_init(STM32MP_LPDDR3_16); } if (ret) panic("ddr power init failed\n"); start: log_debug("name = %s\n", config->info.name); log_debug("speed = %d kHz\n", config->info.speed); log_debug("size = 0x%x\n", config->info.size); /* * 1. Program the DWC_ddr_umctl2 registers * 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */ /* Assert All DDR part */ setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); /* 1.2. start CLOCK */ if (stm32mp1_ddr_clk_enable(priv, config->info.speed)) panic("invalid DRAM clock : %d kHz\n", config->info.speed); /* 1.3. deassert reset */ /* de-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST */ clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); /* De-assert presetn once the clocks are active * and stable via DDRCAPBRST bit */ clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); /* 1.4. wait 128 cycles to permit initialization of end logic */ udelay(2); /* for PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */ if (INTERACTIVE(STEP_DDR_RESET)) goto start; /* 1.5. initialize registers ddr_umctl2 */ /* Stop uMCTL2 before PHY is ready */ clrbits_le32(&priv->ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); log_debug("[0x%08x] dfimisc = 0x%08x\n", (u32)&priv->ctl->dfimisc, readl(&priv->ctl->dfimisc)); set_reg(priv, REG_REG, &config->c_reg); set_reg(priv, REG_TIMING, &config->c_timing); set_reg(priv, REG_MAP, &config->c_map); /* skip CTRL init, SDRAM init is done by PHY PUBL */ clrsetbits_le32(&priv->ctl->init0, DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK, DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL); set_reg(priv, REG_PERF, &config->c_perf); if (INTERACTIVE(STEP_CTL_INIT)) goto start; /* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */ clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); /* 3. start PHY init by accessing relevant PUBL registers * (DXGCR, DCR, PTR*, MR*, DTPR*) */ set_reg(priv, REGPHY_REG, &config->p_reg); set_reg(priv, REGPHY_TIMING, &config->p_timing); if (INTERACTIVE(STEP_PHY_INIT)) goto start; /* 4. Monitor PHY init status by polling PUBL register PGSR.IDONE * Perform DDR PHY DRAM initialization and Gate Training Evaluation */ ddrphy_idone_wait(priv->phy); /* 5. Indicate to PUBL that controller performs SDRAM initialization * by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE * DRAM init is done by PHY, init0.skip_dram.init = 1 */ pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL | DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC; if (config->c_reg.mstr & DDRCTRL_MSTR_DDR3) pir |= DDRPHYC_PIR_DRAMRST; /* only for DDR3 */ stm32mp1_ddrphy_init(priv->phy, pir); /* 6. SET DFIMISC.dfi_init_complete_en to 1 */ /* Enable quasi-dynamic register programming*/ start_sw_done(priv->ctl); setbits_le32(&priv->ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); wait_sw_done_ack(priv->ctl); /* 7. Wait for DWC_ddr_umctl2 to move to normal operation mode * by monitoring STAT.operating_mode signal */ /* wait uMCTL2 ready */ wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); log_debug("DDR DQS training : "); /* 8. Disable Auto refresh and power down by setting * - RFSHCTL3.dis_au_refresh = 1 * - PWRCTL.powerdown_en = 0 * - DFIMISC.dfiinit_complete_en = 0 */ stm32mp1_refresh_disable(priv->ctl); /* 9. Program PUBL PGCR to enable refresh during training and rank to train * not done => keep the programed value in PGCR */ /* 10. configure PUBL PIR register to specify which training step to run */ /* RVTRN is excuted only on LPDDR2/LPDDR3 */ if (config->c_reg.mstr & DDRCTRL_MSTR_DDR3) pir = DDRPHYC_PIR_QSTRN; else pir = DDRPHYC_PIR_QSTRN | DDRPHYC_PIR_RVTRN; stm32mp1_ddrphy_init(priv->phy, pir); /* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */ ddrphy_idone_wait(priv->phy); /* 12. set back registers in step 8 to the orginal values if desidered */ stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3, config->c_reg.pwrctl); /* enable uMCTL2 AXI port 0 and 1 */ setbits_le32(&priv->ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN); setbits_le32(&priv->ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN); if (INTERACTIVE(STEP_DDR_READY)) goto start; }