// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015-2016 Marvell International Ltd. */ #include #include #include #include #include #include #include #include #include #include "comphy_a3700.h" DECLARE_GLOBAL_DATA_PTR; struct comphy_mux_data a3700_comphy_mux_data[] = { /* Lane 0 */ { 4, { { COMPHY_TYPE_UNCONNECTED, 0x0 }, { COMPHY_TYPE_SGMII1, 0x0 }, { COMPHY_TYPE_USB3_HOST0, 0x1 }, { COMPHY_TYPE_USB3_DEVICE, 0x1 } } }, /* Lane 1 */ { 3, { { COMPHY_TYPE_UNCONNECTED, 0x0}, { COMPHY_TYPE_SGMII0, 0x0}, { COMPHY_TYPE_PEX0, 0x1} } }, /* Lane 2 */ { 4, { { COMPHY_TYPE_UNCONNECTED, 0x0}, { COMPHY_TYPE_SATA0, 0x0}, { COMPHY_TYPE_USB3_HOST0, 0x1}, { COMPHY_TYPE_USB3_DEVICE, 0x1} } }, }; struct sgmii_phy_init_data_fix { u16 addr; u16 value; }; /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */ static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = { {0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000}, {0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030}, {0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC}, {0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA}, {0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550}, {0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0}, {0x104, 0x0C10} }; /* 40M1G25 mode init data */ static u16 sgmii_phy_init[512] = { /* 0 1 2 3 4 5 6 7 */ /*-----------------------------------------------------------*/ /* 8 9 A B C D E F */ 0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */ 0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */ 0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */ 0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */ 0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */ 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */ 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */ 0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */ 0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */ 0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */ 0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */ 0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */ 0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */ 0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */ 0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */ 0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */ 0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */ 0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */ 0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */ 0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */ 0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */ 0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */ 0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */ 0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */ 0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */ 0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */ 0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */ 0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */ 0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */ 0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */ 0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */ 0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */ 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */ 0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */ }; /* * comphy_poll_reg * * return: 1 on success, 0 on timeout */ static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type) { u32 rval = 0xDEAD, timeout; for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) { if (op_type == POLL_16B_REG) rval = readw(addr); /* 16 bit */ else rval = readl(addr) ; /* 32 bit */ if ((rval & mask) == val) return 1; udelay(10000); } debug("Time out waiting (%p = %#010x)\n", addr, rval); return 0; } /* * comphy_pcie_power_up * * return: 1 if PLL locked (OK), 0 otherwise (FAIL) */ static int comphy_pcie_power_up(u32 speed, u32 invert) { int ret; debug_enter(); /* * 1. Enable max PLL. */ reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0); /* * 2. Select 20 bit SERDES interface. */ reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0); /* * 3. Force to use reg setting for PCIe mode */ reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0); /* * 4. Change RX wait */ reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF); /* * 5. Enable idle sync */ reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF); /* * 6. Enable the output of 100M/125M/500M clock */ reg_set16(phy_addr(PCIE, MISC_REG0), 0xA00D | rb_clk500m_en | rb_txdclk_2x_sel | rb_clk100m_125m_en, 0xFFFF); /* * 7. Enable TX */ reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF); /* * 8. Check crystal jumper setting and program the Power and PLL * Control accordingly */ if (get_ref_clk() == 40) { /* 40 MHz */ reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF); } else { /* 25 MHz */ reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF); } /* * 9. Override Speed_PLL value and use MAC PLL */ reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate, 0xFFFF); /* * 10. Check the Polarity invert bit */ if (invert & COMPHY_POLARITY_TXD_INVERT) reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0); else reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_txd_inv); if (invert & COMPHY_POLARITY_RXD_INVERT) reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0); else reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_rxd_inv); /* * 11. Release SW reset */ reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0), rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32, bf_soft_rst | bf_mode_refdiv); /* Wait for > 55 us to allow PCLK be enabled */ udelay(PLL_SET_DELAY_US); /* Assert PCLK enabled */ ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1), /* address */ rb_txdclk_pclk_en, /* value */ rb_txdclk_pclk_en, /* mask */ POLL_16B_REG); /* 16bit */ if (!ret) printf("Failed to lock PCIe PLL\n"); debug_exit(); /* Return the status of the PLL */ return ret; } /* * reg_set_indirect * * return: void */ static void reg_set_indirect(u32 reg, u16 data, u16 mask) { reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF); reg_set(rh_vsreg_data, data, mask); } /* * comphy_sata_power_up * * return: 1 if PLL locked (OK), 0 otherwise (FAIL) */ static int comphy_sata_power_up(u32 invert) { int ret; u32 data = 0; debug_enter(); /* * 0. Check the Polarity invert bits */ if (invert & COMPHY_POLARITY_TXD_INVERT) data |= bs_txd_inv; if (invert & COMPHY_POLARITY_RXD_INVERT) data |= bs_rxd_inv; reg_set_indirect(vphy_sync_pattern_reg, data, bs_txd_inv | bs_rxd_inv); /* * 1. Select 40-bit data width width */ reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit); /* * 2. Select reference clock and PHY mode (SATA) */ if (get_ref_clk() == 40) { /* 40 MHz */ reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF); } else { /* 20 MHz */ reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF); } /* * 3. Use maximum PLL rate (no power save) */ reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate); /* * 4. Reset reserved bit (??) */ reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin); /* * 5. Set vendor-specific configuration (??) */ reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF); reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll); /* Wait for > 55 us to allow PLL be enabled */ udelay(PLL_SET_DELAY_US); /* Assert SATA PLL enabled */ reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF); ret = comphy_poll_reg(rh_vsreg_data, /* address */ bs_pll_ready_tx, /* value */ bs_pll_ready_tx, /* mask */ POLL_32B_REG); /* 32bit */ if (!ret) printf("Failed to lock SATA PLL\n"); debug_exit(); return ret; } /* * usb3_reg_set16 * * return: void */ static void usb3_reg_set16(u32 reg, u16 data, u16 mask, u32 lane) { /* * When Lane 2 PHY is for USB3, access the PHY registers * through indirect Address and Data registers INDIR_ACC_PHY_ADDR * (RD00E0178h [31:0]) and INDIR_ACC_PHY_DATA (RD00E017Ch [31:0]) * within the SATA Host Controller registers, Lane 2 base register * offset is 0x200 */ if (lane == 2) reg_set_indirect(USB3PHY_LANE2_REG_BASE_OFFSET + reg, data, mask); else reg_set16(phy_addr(USB3, reg), data, mask); } /* * comphy_usb3_power_up * * return: 1 if PLL locked (OK), 0 otherwise (FAIL) */ static int comphy_usb3_power_up(u32 lane, u32 type, u32 speed, u32 invert) { int ret; debug_enter(); /* * 1. Power up OTG module */ reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0); /* * 2. Set counter for 100us pulse in USB3 Host and Device * restore default burst size limit (Reference Clock 31:24) */ reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns); /* 0xd005c300 = 0x1001 */ /* set PRD_TXDEEMPH (3.5db de-emph) */ usb3_reg_set16(LANE_CFG0, 0x1, 0xFF, lane); /* * Set BIT0: enable transmitter in high impedance mode * Set BIT[3:4]: delay 2 clock cycles for HiZ off latency * Set BIT6: Tx detect Rx at HiZ mode * Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db * together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR * register */ usb3_reg_set16(LANE_CFG1, tx_det_rx_mode | gen2_tx_data_dly_deft | tx_elec_idle_mode_en, prd_txdeemph1_mask | tx_det_rx_mode | gen2_tx_data_dly_mask | tx_elec_idle_mode_en, lane); /* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */ usb3_reg_set16(LANE_CFG4, bf_spread_spectrum_clock_en, 0x80, lane); /* * set Override Margining Controls From the MAC: Use margining signals * from lane configuration */ usb3_reg_set16(TEST_MODE_CTRL, rb_mode_margin_override, 0xFFFF, lane); /* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */ /* set Mode Clock Source = PCLK is generated from REFCLK */ usb3_reg_set16(GLOB_CLK_SRC_LO, 0x0, 0xFF, lane); /* set G2 Spread Spectrum Clock Amplitude at 4K */ usb3_reg_set16(GEN2_SETTINGS_2, g2_tx_ssc_amp, 0xF000, lane); /* * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register * Master Current Select */ usb3_reg_set16(GEN2_SETTINGS_3, 0x0, 0xFFFF, lane); /* * 3. Check crystal jumper setting and program the Power and PLL * Control accordingly * 4. Change RX wait */ if (get_ref_clk() == 40) { /* 40 MHz */ usb3_reg_set16(PWR_PLL_CTRL, 0xFCA3, 0xFFFF, lane); usb3_reg_set16(PWR_MGM_TIM1, 0x10C, 0xFFFF, lane); } else { /* 25 MHz */ usb3_reg_set16(PWR_PLL_CTRL, 0xFCA2, 0xFFFF, lane); usb3_reg_set16(PWR_MGM_TIM1, 0x107, 0xFFFF, lane); } /* * 5. Enable idle sync */ usb3_reg_set16(UNIT_CTRL, 0x60 | rb_idle_sync_en, 0xFFFF, lane); /* * 6. Enable the output of 500M clock */ usb3_reg_set16(MISC_REG0, 0xA00D | rb_clk500m_en, 0xFFFF, lane); /* * 7. Set 20-bit data width */ usb3_reg_set16(DIG_LB_EN, 0x0400, 0xFFFF, lane); /* * 8. Override Speed_PLL value and use MAC PLL */ usb3_reg_set16(KVCO_CAL_CTRL, 0x0040 | rb_use_max_pll_rate, 0xFFFF, lane); /* * 9. Check the Polarity invert bit */ if (invert & COMPHY_POLARITY_TXD_INVERT) usb3_reg_set16(SYNC_PATTERN, phy_txd_inv, 0, lane); else usb3_reg_set16(SYNC_PATTERN, 0, phy_txd_inv, lane); if (invert & COMPHY_POLARITY_RXD_INVERT) usb3_reg_set16(SYNC_PATTERN, phy_rxd_inv, 0, lane); else usb3_reg_set16(SYNC_PATTERN, 0, phy_rxd_inv, lane); /* * 10. Set max speed generation to USB3.0 5Gbps */ usb3_reg_set16(SYNC_MASK_GEN, 0x0400, 0x0C00, lane); /* * 11. Set capacitor value for FFE gain peaking to 0xF */ usb3_reg_set16(GEN3_SETTINGS_3, 0xF, 0xF, lane); /* * 12. Release SW reset */ usb3_reg_set16(GLOB_PHY_CTRL0, rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32 | 0x20, 0xFFFF, lane); /* Wait for > 55 us to allow PCLK be enabled */ udelay(PLL_SET_DELAY_US); /* Assert PCLK enabled */ if (lane == 2) { reg_set(rh_vsreg_addr, LANE_STAT1 + USB3PHY_LANE2_REG_BASE_OFFSET, 0xFFFFFFFF); ret = comphy_poll_reg(rh_vsreg_data, /* address */ rb_txdclk_pclk_en, /* value */ rb_txdclk_pclk_en, /* mask */ POLL_32B_REG); /* 32bit */ } else { ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */ rb_txdclk_pclk_en, /* value */ rb_txdclk_pclk_en, /* mask */ POLL_16B_REG); /* 16bit */ } if (!ret) printf("Failed to lock USB3 PLL\n"); /* * Set Soft ID for Host mode (Device mode works with Hard ID * detection) */ if (type == COMPHY_TYPE_USB3_HOST0) { /* * set BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1) * clear BIT1: set SOFT_ID = Host * set BIT4: set INT_MODE = ID. Interrupt Mode: enable * interrupt by ID instead of using both interrupts * of HOST and Device ORed simultaneously * INT_MODE=ID in order to avoid unexpected * behaviour or both interrupts together */ reg_set(USB32_CTRL_BASE, usb32_ctrl_id_mode | usb32_ctrl_int_mode, usb32_ctrl_id_mode | usb32_ctrl_soft_id | usb32_ctrl_int_mode); } debug_exit(); return ret; } /* * comphy_usb2_power_up * * return: 1 if PLL locked (OK), 0 otherwise (FAIL) */ static int comphy_usb2_power_up(u8 usb32) { int ret; debug_enter(); if (usb32 != 0 && usb32 != 1) { printf("invalid usb32 value: (%d), should be either 0 or 1\n", usb32); debug_exit(); return 0; } /* * 0. Setup PLL. 40MHz clock uses defaults. * See "PLL Settings for Typical REFCLK" table */ if (get_ref_clk() == 25) { reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16), 0x3F | (0xFF << 16) | (0x3 << 28)); } /* * 1. PHY pull up and disable USB2 suspend */ reg_set(USB2_PHY_CTRL_ADDR(usb32), RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0); if (usb32 != 0) { /* * 2. Power up OTG module */ reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0); /* * 3. Configure PHY charger detection */ reg_set(USB2_PHY_CHRGR_DET_ADDR, 0, rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto | rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc); } /* Assert PLL calibration done */ ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32), rb_usb2phy_pllcal_done, /* value */ rb_usb2phy_pllcal_done, /* mask */ POLL_32B_REG); /* 32bit */ if (!ret) { printf("Failed to end USB2 PLL calibration\n"); goto out; } /* Assert impedance calibration done */ ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32), rb_usb2phy_impcal_done, /* value */ rb_usb2phy_impcal_done, /* mask */ POLL_32B_REG); /* 32bit */ if (!ret) { printf("Failed to end USB2 impedance calibration\n"); goto out; } /* Assert squetch calibration done */ ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32), rb_usb2phy_sqcal_done, /* value */ rb_usb2phy_sqcal_done, /* mask */ POLL_32B_REG); /* 32bit */ if (!ret) { printf("Failed to end USB2 unknown calibration\n"); goto out; } /* Assert PLL is ready */ ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32), rb_usb2phy_pll_ready, /* value */ rb_usb2phy_pll_ready, /* mask */ POLL_32B_REG); /* 32bit */ if (!ret) { printf("Failed to lock USB2 PLL\n"); goto out; } out: debug_exit(); return ret; } /* * comphy_emmc_power_up * * return: 1 if PLL locked (OK), 0 otherwise (FAIL) */ static int comphy_emmc_power_up(void) { debug_enter(); /* * 1. Bus power ON, Bus voltage 1.8V */ reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00); /* * 2. Set FIFO parameters */ reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF); /* * 3. Set Capabilities 1_2 */ reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF); /* * 4. Set Endian */ reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0); /* * 4. Init PHY */ reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000); reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000); /* * 5. DLL reset */ reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0); reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0); debug_exit(); return 1; } /* * comphy_sgmii_power_up * * return: */ static void comphy_sgmii_phy_init(u32 lane, u32 speed) { const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix); int addr, fix_idx; u16 val; fix_idx = 0; for (addr = 0; addr < 512; addr++) { /* * All PHY register values are defined in full for 3.125Gbps * SERDES speed. The values required for 1.25 Gbps are almost * the same and only few registers should be "fixed" in * comparison to 3.125 Gbps values. These register values are * stored in "sgmii_phy_init_fix" array. */ if (speed != COMPHY_SPEED_1_25G && sgmii_phy_init_fix[fix_idx].addr == addr) { /* Use new value */ val = sgmii_phy_init_fix[fix_idx].value; if (fix_idx < fix_arr_sz) fix_idx++; } else { val = sgmii_phy_init[addr]; } reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF); } } /* * comphy_sgmii_power_up * * return: 1 if PLL locked (OK), 0 otherwise (FAIL) */ static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert) { int ret; u32 saved_selector; debug_enter(); /* * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0 */ saved_selector = readl(COMPHY_SEL_ADDR); reg_set(COMPHY_SEL_ADDR, 0, 0xFFFFFFFF); /* * 2. Reset PHY by setting PHY input port PIN_RESET=1. * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep * PHY TXP/TXN output to idle state during PHY initialization * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0. */ reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref, rb_pin_reset_core | rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx); /* * 5. Release reset to the PHY by setting PIN_RESET=0. */ reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy); /* * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide * COMPHY bit rate */ if (speed == COMPHY_SPEED_3_125G) { /* 3.125 GHz */ reg_set(COMPHY_PHY_CFG1_ADDR(lane), (0x8 << rf_gen_rx_sel_shift) | (0x8 << rf_gen_tx_sel_shift), rf_gen_rx_select | rf_gen_tx_select); } else if (speed == COMPHY_SPEED_1_25G) { /* 1.25 GHz */ reg_set(COMPHY_PHY_CFG1_ADDR(lane), (0x6 << rf_gen_rx_sel_shift) | (0x6 << rf_gen_tx_sel_shift), rf_gen_rx_select | rf_gen_tx_select); } else { printf("Unsupported COMPHY speed!\n"); return 0; } /* * 8. Wait 1mS for bandgap and reference clocks to stabilize; * then start SW programming. */ mdelay(10); /* 9. Program COMPHY register PHY_MODE */ reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL), PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask); /* * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK * source */ reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel); /* * 11. Set correct reference clock frequency in COMPHY register * REF_FREF_SEL. */ if (get_ref_clk() == 40) { reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL), 0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask); } else { /* 25MHz */ reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL), 0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask); } /* 12. Program COMPHY register PHY_GEN_MAX[1:0] */ /* * This step is mentioned in the flow received from verification team. * However the PHY_GEN_MAX value is only meaningful for other * interfaces (not SGMII). For instance, it selects SATA speed * 1.5/3/6 Gbps or PCIe speed 2.5/5 Gbps */ /* * 13. Program COMPHY register SEL_BITS to set correct parallel data * bus width */ /* 10bit */ reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask); /* * 14. As long as DFE function needs to be enabled in any mode, * COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F * for real chip during COMPHY power on. */ /* * The step 14 exists (and empty) in the original initialization flow * obtained from the verification team. According to the functional * specification DFE_UPDATE_EN already has the default value 0x3F */ /* * 15. Program COMPHY GEN registers. * These registers should be programmed based on the lab testing * result to achieve optimal performance. Please contact the CEA * group to get the related GEN table during real chip bring-up. * We only requred to run though the entire registers programming * flow defined by "comphy_sgmii_phy_init" when the REF clock is * 40 MHz. For REF clock 25 MHz the default values stored in PHY * registers are OK. */ debug("Running C-DPI phy init %s mode\n", speed == COMPHY_SPEED_3_125G ? "2G5" : "1G"); if (get_ref_clk() == 40) comphy_sgmii_phy_init(lane, speed); /* * 16. [Simulation Only] should not be used for real chip. * By pass power up calibration by programming EXT_FORCE_CAL_DONE * (R02h[9]) to 1 to shorten COMPHY simulation time. */ /* * 17. [Simulation Only: should not be used for real chip] * Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX * training simulation time. */ /* * 18. Check the PHY Polarity invert bit */ if (invert & COMPHY_POLARITY_TXD_INVERT) reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0); else reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_txd_inv); if (invert & COMPHY_POLARITY_RXD_INVERT) reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0); else reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_rxd_inv); /* * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1 * to start PHY power up sequence. All the PHY register * programming should be done before PIN_PU_PLL=1. There should be * no register programming for normal PHY operation from this point. */ reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx, rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx); /* * 20. Wait for PHY power up sequence to finish by checking output ports * PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1. */ ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */ rb_pll_ready_tx | rb_pll_ready_rx, /* value */ rb_pll_ready_tx | rb_pll_ready_rx, /* mask */ POLL_32B_REG); /* 32bit */ if (!ret) { printf("Failed to lock PLL for SGMII PHY %d\n", lane); goto out; } /* * 21. Set COMPHY input port PIN_TX_IDLE=0 */ reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle); /* * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1. * to start RX initialization. PIN_RX_INIT_DONE will be cleared to * 0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE * will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after * PIN_RX_INIT_DONE= 1. * Please refer to RX initialization part for details. */ reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0); ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */ rb_rx_init_done, /* value */ rb_rx_init_done, /* mask */ POLL_32B_REG); /* 32bit */ if (!ret) { printf("Failed to init RX of SGMII PHY %d\n", lane); goto out; } /* * Restore saved selector. */ reg_set(COMPHY_SEL_ADDR, saved_selector, 0xFFFFFFFF); out: debug_exit(); return ret; } void comphy_dedicated_phys_init(void) { int node, usb32, ret = 1; const void *blob = gd->fdt_blob; debug_enter(); for (usb32 = 0; usb32 <= 1; usb32++) { /* * There are 2 UTMI PHYs in this SOC. * One is independendent and one is paired with USB3 port (OTG) */ if (usb32 == 0) { node = fdt_node_offset_by_compatible( blob, -1, "marvell,armada3700-ehci"); } else { node = fdt_node_offset_by_compatible( blob, -1, "marvell,armada3700-xhci"); } if (node > 0) { if (fdtdec_get_is_enabled(blob, node)) { ret = comphy_usb2_power_up(usb32); if (!ret) printf("Failed to initialize UTMI PHY\n"); else debug("UTMI PHY init succeed\n"); } else { debug("USB%d node is disabled\n", usb32 == 0 ? 2 : 3); } } else { debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3); } } node = fdt_node_offset_by_compatible(blob, -1, "marvell,armada-8k-sdhci"); if (node <= 0) { node = fdt_node_offset_by_compatible( blob, -1, "marvell,armada-3700-sdhci"); } if (node > 0) { if (fdtdec_get_is_enabled(blob, node)) { ret = comphy_emmc_power_up(); if (!ret) printf("Failed to initialize SDIO/eMMC PHY\n"); else debug("SDIO/eMMC PHY init succeed\n"); } else { debug("SDIO/eMMC node is disabled\n"); } } else { debug("No SDIO/eMMC node in DT\n"); } debug_exit(); } static int find_available_node_by_compatible(int offset, const char *compatible) { do { offset = fdt_node_offset_by_compatible(gd->fdt_blob, offset, compatible); } while (offset > 0 && !fdtdec_get_is_enabled(gd->fdt_blob, offset)); return offset; } static bool comphy_a3700_find_lane(const int nodes[3], int node, int port, int *lane, int *invert) { int res, i, j; for (i = 0; ; i++) { struct fdtdec_phandle_args args; res = fdtdec_parse_phandle_with_args(gd->fdt_blob, node, "phys", "#phy-cells", 0, i, &args); if (res) return false; for (j = 0; j < 3; j++) { if (nodes[j] >= 0 && args.node == nodes[j] && (args.args_count >= 1 ? args.args[0] : 0) == port) { *lane = j; *invert = args.args_count >= 2 ? args.args[1] : 0; return true; } } } return false; } static void comphy_a3700_fill_cfg(struct chip_serdes_phy_config *cfg, const int nodes[3], const char *compatible, int type) { int node, lane, port, speed, invert; port = (type == COMPHY_TYPE_SGMII1) ? 1 : 0; node = -1; while (1) { node = find_available_node_by_compatible(node, compatible); if (node < 0) return; if (comphy_a3700_find_lane(nodes, node, port, &lane, &invert)) break; } if (cfg->comphy_map_data[lane].type != COMPHY_TYPE_UNCONNECTED) { printf("Error: More PHYs defined for lane %d, skipping\n", lane); return; } if (type == COMPHY_TYPE_SGMII0 || type == COMPHY_TYPE_SGMII1) { const char *phy_mode; phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL); if (phy_mode && !strcmp(phy_mode, phy_string_for_interface(PHY_INTERFACE_MODE_2500BASEX))) speed = COMPHY_SPEED_3_125G; else speed = COMPHY_SPEED_1_25G; } else if (type == COMPHY_TYPE_SATA0) { speed = COMPHY_SPEED_6G; } else { speed = COMPHY_SPEED_5G; } cfg->comphy_map_data[lane].type = type; cfg->comphy_map_data[lane].speed = speed; cfg->comphy_map_data[lane].invert = invert; } static const fdt32_t comphy_a3700_mux_lane_order[3] = { __constant_cpu_to_be32(1), __constant_cpu_to_be32(0), __constant_cpu_to_be32(2), }; int comphy_a3700_init_serdes_map(int node, struct chip_serdes_phy_config *cfg) { int comphy_nodes[3]; int child, i; for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++) comphy_nodes[i] = -FDT_ERR_NOTFOUND; fdt_for_each_subnode(child, gd->fdt_blob, node) { if (!fdtdec_get_is_enabled(gd->fdt_blob, child)) continue; i = fdtdec_get_int(gd->fdt_blob, child, "reg", -1); if (i < 0 || i >= ARRAY_SIZE(comphy_nodes)) continue; comphy_nodes[i] = child; } for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++) { cfg->comphy_map_data[i].type = COMPHY_TYPE_UNCONNECTED; cfg->comphy_map_data[i].speed = COMPHY_SPEED_INVALID; } comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-u3d", COMPHY_TYPE_USB3_DEVICE); comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-xhci", COMPHY_TYPE_USB3_HOST0); comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-pcie", COMPHY_TYPE_PEX0); comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-ahci", COMPHY_TYPE_SATA0); comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta", COMPHY_TYPE_SGMII0); comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta", COMPHY_TYPE_SGMII1); cfg->comphy_lanes_count = 3; cfg->comphy_mux_bitcount = 4; cfg->comphy_mux_lane_order = comphy_a3700_mux_lane_order; return 0; } int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg, struct comphy_map *serdes_map) { struct comphy_map *comphy_map; u32 comphy_max_count = chip_cfg->comphy_lanes_count; u32 lane, ret = 0; debug_enter(); /* Initialize PHY mux */ chip_cfg->mux_data = a3700_comphy_mux_data; comphy_mux_init(chip_cfg, serdes_map, COMPHY_SEL_ADDR); for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count; lane++, comphy_map++) { debug("Initialize serdes number %d\n", lane); debug("Serdes type = 0x%x invert=%d\n", comphy_map->type, comphy_map->invert); switch (comphy_map->type) { case COMPHY_TYPE_UNCONNECTED: continue; break; case COMPHY_TYPE_PEX0: ret = comphy_pcie_power_up(comphy_map->speed, comphy_map->invert); break; case COMPHY_TYPE_USB3_HOST0: case COMPHY_TYPE_USB3_DEVICE: ret = comphy_usb3_power_up(lane, comphy_map->type, comphy_map->speed, comphy_map->invert); break; case COMPHY_TYPE_SGMII0: case COMPHY_TYPE_SGMII1: ret = comphy_sgmii_power_up(lane, comphy_map->speed, comphy_map->invert); break; case COMPHY_TYPE_SATA0: ret = comphy_sata_power_up(comphy_map->invert); break; default: debug("Unknown SerDes type, skip initialize SerDes %d\n", lane); ret = 1; break; } if (!ret) printf("PLL is not locked - Failed to initialize lane %d\n", lane); } debug_exit(); return ret; }