// SPDX-License-Identifier: GPL-2.0+ /* * USB HOST XHCI Controller stack * * Based on xHCI host controller driver in linux-kernel * by Sarah Sharp. * * Copyright (C) 2008 Intel Corp. * Author: Sarah Sharp * * Copyright (C) 2013 Samsung Electronics Co.Ltd * Authors: Vivek Gautam * Vikas Sajjan */ /** * This file gives the xhci stack for usb3.0 looking into * xhci specification Rev1.0 (5/21/10). * The quirk devices support hasn't been given yet. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct descriptor { struct usb_hub_descriptor hub; struct usb_device_descriptor device; struct usb_config_descriptor config; struct usb_interface_descriptor interface; struct usb_endpoint_descriptor endpoint; struct usb_ss_ep_comp_descriptor ep_companion; } __attribute__ ((packed)) descriptor = { { 0xc, /* bDescLength */ 0x2a, /* bDescriptorType: hub descriptor */ 2, /* bNrPorts -- runtime modified */ cpu_to_le16(0x8), /* wHubCharacteristics */ 10, /* bPwrOn2PwrGood */ 0, /* bHubCntrCurrent */ { /* Device removable */ } /* at most 7 ports! XXX */ }, { 0x12, /* bLength */ 1, /* bDescriptorType: UDESC_DEVICE */ cpu_to_le16(0x0300), /* bcdUSB: v3.0 */ 9, /* bDeviceClass: UDCLASS_HUB */ 0, /* bDeviceSubClass: UDSUBCLASS_HUB */ 3, /* bDeviceProtocol: UDPROTO_SSHUBSTT */ 9, /* bMaxPacketSize: 512 bytes 2^9 */ 0x0000, /* idVendor */ 0x0000, /* idProduct */ cpu_to_le16(0x0100), /* bcdDevice */ 1, /* iManufacturer */ 2, /* iProduct */ 0, /* iSerialNumber */ 1 /* bNumConfigurations: 1 */ }, { 0x9, 2, /* bDescriptorType: UDESC_CONFIG */ cpu_to_le16(0x1f), /* includes SS endpoint descriptor */ 1, /* bNumInterface */ 1, /* bConfigurationValue */ 0, /* iConfiguration */ 0x40, /* bmAttributes: UC_SELF_POWER */ 0 /* bMaxPower */ }, { 0x9, /* bLength */ 4, /* bDescriptorType: UDESC_INTERFACE */ 0, /* bInterfaceNumber */ 0, /* bAlternateSetting */ 1, /* bNumEndpoints */ 9, /* bInterfaceClass: UICLASS_HUB */ 0, /* bInterfaceSubClass: UISUBCLASS_HUB */ 0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */ 0 /* iInterface */ }, { 0x7, /* bLength */ 5, /* bDescriptorType: UDESC_ENDPOINT */ 0x81, /* bEndpointAddress: IN endpoint 1 */ 3, /* bmAttributes: UE_INTERRUPT */ 8, /* wMaxPacketSize */ 255 /* bInterval */ }, { 0x06, /* ss_bLength */ 0x30, /* ss_bDescriptorType: SS EP Companion */ 0x00, /* ss_bMaxBurst: allows 1 TX between ACKs */ /* ss_bmAttributes: 1 packet per service interval */ 0x00, /* ss_wBytesPerInterval: 15 bits for max 15 ports */ cpu_to_le16(0x02), }, }; struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev) { struct udevice *dev; /* Find the USB controller */ for (dev = udev->dev; device_get_uclass_id(dev) != UCLASS_USB; dev = dev->parent) ; return dev_get_priv(dev); } /** * Waits for as per specified amount of time * for the "result" to match with "done" * * @param ptr pointer to the register to be read * @param mask mask for the value read * @param done value to be campared with result * @param usec time to wait till * Return: 0 if handshake is success else < 0 on failure */ static int handshake(uint32_t volatile *ptr, uint32_t mask, uint32_t done, int usec) { uint32_t result; int ret; ret = readx_poll_sleep_timeout(xhci_readl, ptr, result, (result & mask) == done || result == U32_MAX, 1, usec); if (result == U32_MAX) /* card removed */ return -ENODEV; return ret; } /** * Set the run bit and wait for the host to be running. * * @param hcor pointer to host controller operation registers * Return: status of the Handshake */ static int xhci_start(struct xhci_hcor *hcor) { u32 temp; int ret; puts("Starting the controller\n"); temp = xhci_readl(&hcor->or_usbcmd); temp |= (CMD_RUN); xhci_writel(&hcor->or_usbcmd, temp); /* * Wait for the HCHalted Status bit to be 0 to indicate the host is * running. */ ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC); if (ret) debug("Host took too long to start, " "waited %u microseconds.\n", XHCI_MAX_HALT_USEC); return ret; } /** * Resets the XHCI Controller * * @param hcor pointer to host controller operation registers * Return: -EBUSY if XHCI Controller is not halted else status of handshake */ static int xhci_reset(struct xhci_hcor *hcor) { u32 cmd; u32 state; int ret; /* Halting the Host first */ debug("// Halt the HC: %p\n", hcor); state = xhci_readl(&hcor->or_usbsts) & STS_HALT; if (!state) { cmd = xhci_readl(&hcor->or_usbcmd); cmd &= ~CMD_RUN; xhci_writel(&hcor->or_usbcmd, cmd); } ret = handshake(&hcor->or_usbsts, STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); if (ret) { printf("Host not halted after %u microseconds.\n", XHCI_MAX_HALT_USEC); return -EBUSY; } debug("// Reset the HC\n"); cmd = xhci_readl(&hcor->or_usbcmd); cmd |= CMD_RESET; xhci_writel(&hcor->or_usbcmd, cmd); ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC); if (ret) return ret; /* * xHCI cannot write to any doorbells or operational registers other * than status until the "Controller Not Ready" flag is cleared. */ return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC); } /** * Used for passing endpoint bitmasks between the core and HCDs. * Find the index for an endpoint given its descriptor. * Use the return value to right shift 1 for the bitmask. * * Index = (epnum * 2) + direction - 1, * where direction = 0 for OUT, 1 for IN. * For control endpoints, the IN index is used (OUT index is unused), so * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) * * @param desc USB enpdoint Descriptor * Return: index of the Endpoint */ static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc) { unsigned int index; if (usb_endpoint_xfer_control(desc)) index = (unsigned int)(usb_endpoint_num(desc) * 2); else index = (unsigned int)((usb_endpoint_num(desc) * 2) - (usb_endpoint_dir_in(desc) ? 0 : 1)); return index; } /* * Convert bInterval expressed in microframes (in 1-255 range) to exponent of * microframes, rounded down to nearest power of 2. */ static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval, unsigned int min_exponent, unsigned int max_exponent) { unsigned int interval; interval = fls(desc_interval) - 1; interval = clamp_val(interval, min_exponent, max_exponent); if ((1 << interval) != desc_interval) debug("rounding interval to %d microframes, "\ "ep desc says %d microframes\n", 1 << interval, desc_interval); return interval; } static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, struct usb_endpoint_descriptor *endpt_desc) { if (endpt_desc->bInterval == 0) return 0; return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15); } static unsigned int xhci_parse_frame_interval(struct usb_device *udev, struct usb_endpoint_descriptor *endpt_desc) { return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10); } /* * Convert interval expressed as 2^(bInterval - 1) == interval into * straight exponent value 2^n == interval. */ static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, struct usb_endpoint_descriptor *endpt_desc) { unsigned int interval; interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1; if (interval != endpt_desc->bInterval - 1) debug("ep %#x - rounding interval to %d %sframes\n", endpt_desc->bEndpointAddress, 1 << interval, udev->speed == USB_SPEED_FULL ? "" : "micro"); if (udev->speed == USB_SPEED_FULL) { /* * Full speed isoc endpoints specify interval in frames, * not microframes. We are using microframes everywhere, * so adjust accordingly. */ interval += 3; /* 1 frame = 2^3 uframes */ } return interval; } /* * Return the polling or NAK interval. * * The polling interval is expressed in "microframes". If xHCI's Interval field * is set to N, it will service the endpoint every 2^(Interval)*125us. * * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval * is set to 0. */ static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, struct usb_endpoint_descriptor *endpt_desc) { unsigned int interval = 0; switch (udev->speed) { case USB_SPEED_HIGH: /* Max NAK rate */ if (usb_endpoint_xfer_control(endpt_desc) || usb_endpoint_xfer_bulk(endpt_desc)) { interval = xhci_parse_microframe_interval(udev, endpt_desc); break; } /* Fall through - SS and HS isoc/int have same decoding */ case USB_SPEED_SUPER: if (usb_endpoint_xfer_int(endpt_desc) || usb_endpoint_xfer_isoc(endpt_desc)) { interval = xhci_parse_exponent_interval(udev, endpt_desc); } break; case USB_SPEED_FULL: if (usb_endpoint_xfer_isoc(endpt_desc)) { interval = xhci_parse_exponent_interval(udev, endpt_desc); break; } /* * Fall through for interrupt endpoint interval decoding * since it uses the same rules as low speed interrupt * endpoints. */ case USB_SPEED_LOW: if (usb_endpoint_xfer_int(endpt_desc) || usb_endpoint_xfer_isoc(endpt_desc)) { interval = xhci_parse_frame_interval(udev, endpt_desc); } break; default: BUG(); } return interval; } /* * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. * High speed endpoint descriptors can define "the number of additional * transaction opportunities per microframe", but that goes in the Max Burst * endpoint context field. */ static u32 xhci_get_endpoint_mult(struct usb_device *udev, struct usb_endpoint_descriptor *endpt_desc, struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc) { if (udev->speed < USB_SPEED_SUPER || !usb_endpoint_xfer_isoc(endpt_desc)) return 0; return ss_ep_comp_desc->bmAttributes; } static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, struct usb_endpoint_descriptor *endpt_desc, struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc) { /* Super speed and Plus have max burst in ep companion desc */ if (udev->speed >= USB_SPEED_SUPER) return ss_ep_comp_desc->bMaxBurst; if (udev->speed == USB_SPEED_HIGH && (usb_endpoint_xfer_isoc(endpt_desc) || usb_endpoint_xfer_int(endpt_desc))) return usb_endpoint_maxp_mult(endpt_desc) - 1; return 0; } /* * Return the maximum endpoint service interval time (ESIT) payload. * Basically, this is the maxpacket size, multiplied by the burst size * and mult size. */ static u32 xhci_get_max_esit_payload(struct usb_device *udev, struct usb_endpoint_descriptor *endpt_desc, struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc) { int max_burst; int max_packet; /* Only applies for interrupt or isochronous endpoints */ if (usb_endpoint_xfer_control(endpt_desc) || usb_endpoint_xfer_bulk(endpt_desc)) return 0; /* SuperSpeed Isoc ep with less than 48k per esit */ if (udev->speed >= USB_SPEED_SUPER) return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval); max_packet = usb_endpoint_maxp(endpt_desc); max_burst = usb_endpoint_maxp_mult(endpt_desc); /* A 0 in max burst means 1 transfer per ESIT */ return max_packet * max_burst; } /** * Issue a configure endpoint command or evaluate context command * and wait for it to finish. * * @param udev pointer to the Device Data Structure * @param ctx_change flag to indicate the Context has changed or NOT * Return: 0 on success, -1 on failure */ static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change) { struct xhci_container_ctx *in_ctx; struct xhci_virt_device *virt_dev; struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); union xhci_trb *event; virt_dev = ctrl->devs[udev->slot_id]; in_ctx = virt_dev->in_ctx; xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size); xhci_queue_command(ctrl, in_ctx->dma, udev->slot_id, 0, ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP); event = xhci_wait_for_event(ctrl, TRB_COMPLETION); BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != udev->slot_id); switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) { case COMP_SUCCESS: debug("Successful %s command\n", ctx_change ? "Evaluate Context" : "Configure Endpoint"); break; default: printf("ERROR: %s command returned completion code %d.\n", ctx_change ? "Evaluate Context" : "Configure Endpoint", GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))); return -EINVAL; } xhci_acknowledge_event(ctrl); return 0; } /** * Configure the endpoint, programming the device contexts. * * @param udev pointer to the USB device structure * Return: returns the status of the xhci_configure_endpoints */ static int xhci_set_configuration(struct usb_device *udev) { struct xhci_container_ctx *in_ctx; struct xhci_container_ctx *out_ctx; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM]; int cur_ep; int max_ep_flag = 0; int ep_index; unsigned int dir; unsigned int ep_type; struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); int num_of_ep; int ep_flag = 0; u64 trb_64 = 0; int slot_id = udev->slot_id; struct xhci_virt_device *virt_dev = ctrl->devs[slot_id]; struct usb_interface *ifdesc; u32 max_esit_payload; unsigned int interval; unsigned int mult; unsigned int max_burst; unsigned int avg_trb_len; unsigned int err_count = 0; out_ctx = virt_dev->out_ctx; in_ctx = virt_dev->in_ctx; num_of_ep = udev->config.if_desc[0].no_of_ep; ifdesc = &udev->config.if_desc[0]; ctrl_ctx = xhci_get_input_control_ctx(in_ctx); /* Initialize the input context control */ ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); ctrl_ctx->drop_flags = 0; /* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */ for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) { ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]); ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1)); if (max_ep_flag < ep_flag) max_ep_flag = ep_flag; } xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size); /* slot context */ xhci_slot_copy(ctrl, in_ctx, out_ctx); slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx); slot_ctx->dev_info &= ~(cpu_to_le32(LAST_CTX_MASK)); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0); xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0); /* filling up ep contexts */ for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) { struct usb_endpoint_descriptor *endpt_desc = NULL; struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL; endpt_desc = &ifdesc->ep_desc[cur_ep]; ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep]; trb_64 = 0; /* * Get values to fill the endpoint context, mostly from ep * descriptor. The average TRB buffer lengt for bulk endpoints * is unclear as we have no clue on scatter gather list entry * size. For Isoc and Int, set it to max available. * See xHCI 1.1 spec 4.14.1.1 for details. */ max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc, ss_ep_comp_desc); interval = xhci_get_endpoint_interval(udev, endpt_desc); mult = xhci_get_endpoint_mult(udev, endpt_desc, ss_ep_comp_desc); max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc, ss_ep_comp_desc); avg_trb_len = max_esit_payload; ep_index = xhci_get_ep_index(endpt_desc); ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, in_ctx, ep_index); /* Allocate the ep rings */ virt_dev->eps[ep_index].ring = xhci_ring_alloc(ctrl, 1, true); if (!virt_dev->eps[ep_index].ring) return -ENOMEM; /*NOTE: ep_desc[0] actually represents EP1 and so on */ dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7); ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2)); ep_ctx[ep_index]->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | EP_INTERVAL(interval) | EP_MULT(mult)); ep_ctx[ep_index]->ep_info2 = cpu_to_le32(EP_TYPE(ep_type)); ep_ctx[ep_index]->ep_info2 |= cpu_to_le32(MAX_PACKET (get_unaligned(&endpt_desc->wMaxPacketSize))); /* Allow 3 retries for everything but isoc, set CErr = 3 */ if (!usb_endpoint_xfer_isoc(endpt_desc)) err_count = 3; ep_ctx[ep_index]->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst) | ERROR_COUNT(err_count)); trb_64 = xhci_trb_virt_to_dma(virt_dev->eps[ep_index].ring->enq_seg, virt_dev->eps[ep_index].ring->enqueue); ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 | virt_dev->eps[ep_index].ring->cycle_state); /* * xHCI spec 6.2.3: * 'Average TRB Length' should be 8 for control endpoints. */ if (usb_endpoint_xfer_control(endpt_desc)) avg_trb_len = 8; ep_ctx[ep_index]->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | EP_AVG_TRB_LENGTH(avg_trb_len)); /* * The MediaTek xHCI defines some extra SW parameters which * are put into reserved DWs in Slot and Endpoint Contexts * for synchronous endpoints. */ if (ctrl->quirks & XHCI_MTK_HOST) { ep_ctx[ep_index]->reserved[0] = cpu_to_le32(EP_BPKTS(1) | EP_BBM(1)); } } return xhci_configure_endpoints(udev, false); } /** * Issue an Address Device command (which will issue a SetAddress request to * the device). * * @param udev pointer to the Device Data Structure * Return: 0 if successful else error code on failure */ static int xhci_address_device(struct usb_device *udev, int root_portnr) { int ret = 0; struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); struct xhci_slot_ctx *slot_ctx; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_virt_device *virt_dev; int slot_id = udev->slot_id; union xhci_trb *event; virt_dev = ctrl->devs[slot_id]; /* * This is the first Set Address since device plug-in * so setting up the slot context. */ debug("Setting up addressable devices %p\n", ctrl->dcbaa); xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr); ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); ctrl_ctx->drop_flags = 0; xhci_queue_command(ctrl, virt_dev->in_ctx->dma, slot_id, 0, TRB_ADDR_DEV); event = xhci_wait_for_event(ctrl, TRB_COMPLETION); BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id); switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) { case COMP_CTX_STATE: case COMP_EBADSLT: printf("Setup ERROR: address device command for slot %d.\n", slot_id); ret = -EINVAL; break; case COMP_TX_ERR: puts("Device not responding to set address.\n"); ret = -EPROTO; break; case COMP_DEV_ERR: puts("ERROR: Incompatible device" "for address device command.\n"); ret = -ENODEV; break; case COMP_SUCCESS: debug("Successful Address Device command\n"); udev->status = 0; break; default: printf("ERROR: unexpected command completion code 0x%x.\n", GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))); ret = -EINVAL; break; } xhci_acknowledge_event(ctrl); if (ret < 0) /* * TODO: Unsuccessful Address Device command shall leave the * slot in default state. So, issue Disable Slot command now. */ return ret; xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes, virt_dev->out_ctx->size); slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx); debug("xHC internal address is: %d\n", le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); return 0; } /** * Issue Enable slot command to the controller to allocate * device slot and assign the slot id. It fails if the xHC * ran out of device slots, the Enable Slot command timed out, * or allocating memory failed. * * @param udev pointer to the Device Data Structure * Return: Returns 0 on succes else return error code on failure */ static int _xhci_alloc_device(struct usb_device *udev) { struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); union xhci_trb *event; int ret; /* * Root hub will be first device to be initailized. * If this device is root-hub, don't do any xHC related * stuff. */ if (ctrl->rootdev == 0) { udev->speed = USB_SPEED_SUPER; return 0; } xhci_queue_command(ctrl, 0, 0, 0, TRB_ENABLE_SLOT); event = xhci_wait_for_event(ctrl, TRB_COMPLETION); BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)) != COMP_SUCCESS); udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)); xhci_acknowledge_event(ctrl); ret = xhci_alloc_virt_device(ctrl, udev->slot_id); if (ret < 0) { /* * TODO: Unsuccessful Address Device command shall leave * the slot in default. So, issue Disable Slot command now. */ puts("Could not allocate xHCI USB device data structures\n"); return ret; } return 0; } /* * Full speed devices may have a max packet size greater than 8 bytes, but the * USB core doesn't know that until it reads the first 8 bytes of the * descriptor. If the usb_device's max packet size changes after that point, * we need to issue an evaluate context command and wait on it. * * @param udev pointer to the Device Data Structure * Return: returns the status of the xhci_configure_endpoints */ int xhci_check_maxpacket(struct usb_device *udev) { struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); unsigned int slot_id = udev->slot_id; int ep_index = 0; /* control endpoint */ struct xhci_container_ctx *in_ctx; struct xhci_container_ctx *out_ctx; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_ep_ctx *ep_ctx; int max_packet_size; int hw_max_packet_size; int ret = 0; out_ctx = ctrl->devs[slot_id]->out_ctx; xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size); ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index); hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); max_packet_size = udev->epmaxpacketin[0]; if (hw_max_packet_size != max_packet_size) { debug("Max Packet Size for ep 0 changed.\n"); debug("Max packet size in usb_device = %d\n", max_packet_size); debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size); debug("Issuing evaluate context command.\n"); /* Set up the modified control endpoint 0 */ xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx, ctrl->devs[slot_id]->out_ctx, ep_index); in_ctx = ctrl->devs[slot_id]->in_ctx; ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index); ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET(MAX_PACKET_MASK)); ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); /* * Set up the input context flags for the command * FIXME: This won't work if a non-default control endpoint * changes max packet sizes. */ ctrl_ctx = xhci_get_input_control_ctx(in_ctx); ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); ctrl_ctx->drop_flags = 0; ret = xhci_configure_endpoints(udev, true); } return ret; } /** * Clears the Change bits of the Port Status Register * * @param wValue request value * @param wIndex request index * @param addr address of posrt status register * @param port_status state of port status register * Return: none */ static void xhci_clear_port_change_bit(u16 wValue, u16 wIndex, volatile uint32_t *addr, u32 port_status) { char *port_change_bit; u32 status; switch (wValue) { case USB_PORT_FEAT_C_RESET: status = PORT_RC; port_change_bit = "reset"; break; case USB_PORT_FEAT_C_CONNECTION: status = PORT_CSC; port_change_bit = "connect"; break; case USB_PORT_FEAT_C_OVER_CURRENT: status = PORT_OCC; port_change_bit = "over-current"; break; case USB_PORT_FEAT_C_ENABLE: status = PORT_PEC; port_change_bit = "enable/disable"; break; case USB_PORT_FEAT_C_SUSPEND: status = PORT_PLC; port_change_bit = "suspend/resume"; break; default: /* Should never happen */ return; } /* Change bits are all write 1 to clear */ xhci_writel(addr, port_status | status); port_status = xhci_readl(addr); debug("clear port %s change, actual port %d status = 0x%x\n", port_change_bit, wIndex, port_status); } /** * Save Read Only (RO) bits and save read/write bits where * writing a 0 clears the bit and writing a 1 sets the bit (RWS). * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect. * * @param state state of the Port Status and Control Regsiter * Return: a value that would result in the port being in the * same state, if the value was written to the port * status control register. */ static u32 xhci_port_state_to_neutral(u32 state) { /* Save read-only status and port state */ return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS); } /** * Submits the Requests to the XHCI Host Controller * * @param udev pointer to the USB device structure * @param pipe contains the DIR_IN or OUT , devnum * @param buffer buffer to be read/written based on the request * Return: returns 0 if successful else -1 on failure */ static int xhci_submit_root(struct usb_device *udev, unsigned long pipe, void *buffer, struct devrequest *req) { uint8_t tmpbuf[4]; u16 typeReq; void *srcptr = NULL; int len, srclen; uint32_t reg; volatile uint32_t *status_reg; struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); struct xhci_hccr *hccr = ctrl->hccr; struct xhci_hcor *hcor = ctrl->hcor; int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1)); if ((req->requesttype & USB_RT_PORT) && le16_to_cpu(req->index) > max_ports) { printf("The request port(%d) exceeds maximum port number\n", le16_to_cpu(req->index) - 1); return -EINVAL; } status_reg = (volatile uint32_t *) (&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc); srclen = 0; typeReq = req->request | req->requesttype << 8; switch (typeReq) { case DeviceRequest | USB_REQ_GET_DESCRIPTOR: switch (le16_to_cpu(req->value) >> 8) { case USB_DT_DEVICE: debug("USB_DT_DEVICE request\n"); srcptr = &descriptor.device; srclen = 0x12; break; case USB_DT_CONFIG: debug("USB_DT_CONFIG config\n"); srcptr = &descriptor.config; srclen = 0x19; break; case USB_DT_STRING: debug("USB_DT_STRING config\n"); switch (le16_to_cpu(req->value) & 0xff) { case 0: /* Language */ srcptr = "\4\3\11\4"; srclen = 4; break; case 1: /* Vendor String */ srcptr = "\16\3U\0-\0B\0o\0o\0t\0"; srclen = 14; break; case 2: /* Product Name */ srcptr = "\52\3X\0H\0C\0I\0 " "\0H\0o\0s\0t\0 " "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0"; srclen = 42; break; default: printf("unknown value DT_STRING %x\n", le16_to_cpu(req->value)); goto unknown; } break; default: printf("unknown value %x\n", le16_to_cpu(req->value)); goto unknown; } break; case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8): switch (le16_to_cpu(req->value) >> 8) { case USB_DT_HUB: case USB_DT_SS_HUB: debug("USB_DT_HUB config\n"); srcptr = &ctrl->hub_desc; srclen = 0x8; break; default: printf("unknown value %x\n", le16_to_cpu(req->value)); goto unknown; } break; case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8): debug("USB_REQ_SET_ADDRESS\n"); ctrl->rootdev = le16_to_cpu(req->value); break; case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: /* Do nothing */ break; case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8): tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */ tmpbuf[1] = 0; srcptr = tmpbuf; srclen = 2; break; case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8): memset(tmpbuf, 0, 4); reg = xhci_readl(status_reg); if (reg & PORT_CONNECT) { tmpbuf[0] |= USB_PORT_STAT_CONNECTION; switch (reg & DEV_SPEED_MASK) { case XDEV_FS: debug("SPEED = FULLSPEED\n"); break; case XDEV_LS: debug("SPEED = LOWSPEED\n"); tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8; break; case XDEV_HS: debug("SPEED = HIGHSPEED\n"); tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8; break; case XDEV_SS: debug("SPEED = SUPERSPEED\n"); tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8; break; } } if (reg & PORT_PE) tmpbuf[0] |= USB_PORT_STAT_ENABLE; if ((reg & PORT_PLS_MASK) == XDEV_U3) tmpbuf[0] |= USB_PORT_STAT_SUSPEND; if (reg & PORT_OC) tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT; if (reg & PORT_RESET) tmpbuf[0] |= USB_PORT_STAT_RESET; if (reg & PORT_POWER) /* * XXX: This Port power bit (for USB 3.0 hub) * we are faking in USB 2.0 hub port status; * since there's a change in bit positions in * two: * USB 2.0 port status PP is at position[8] * USB 3.0 port status PP is at position[9] * So, we are still keeping it at position [8] */ tmpbuf[1] |= USB_PORT_STAT_POWER >> 8; if (reg & PORT_CSC) tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION; if (reg & PORT_PEC) tmpbuf[2] |= USB_PORT_STAT_C_ENABLE; if (reg & PORT_OCC) tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT; if (reg & PORT_RC) tmpbuf[2] |= USB_PORT_STAT_C_RESET; srcptr = tmpbuf; srclen = 4; break; case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): reg = xhci_readl(status_reg); reg = xhci_port_state_to_neutral(reg); switch (le16_to_cpu(req->value)) { case USB_PORT_FEAT_ENABLE: reg |= PORT_PE; xhci_writel(status_reg, reg); break; case USB_PORT_FEAT_POWER: reg |= PORT_POWER; xhci_writel(status_reg, reg); break; case USB_PORT_FEAT_RESET: reg |= PORT_RESET; xhci_writel(status_reg, reg); break; default: printf("unknown feature %x\n", le16_to_cpu(req->value)); goto unknown; } break; case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): reg = xhci_readl(status_reg); reg = xhci_port_state_to_neutral(reg); switch (le16_to_cpu(req->value)) { case USB_PORT_FEAT_ENABLE: reg &= ~PORT_PE; break; case USB_PORT_FEAT_POWER: reg &= ~PORT_POWER; break; case USB_PORT_FEAT_C_RESET: case USB_PORT_FEAT_C_CONNECTION: case USB_PORT_FEAT_C_OVER_CURRENT: case USB_PORT_FEAT_C_ENABLE: xhci_clear_port_change_bit((le16_to_cpu(req->value)), le16_to_cpu(req->index), status_reg, reg); break; default: printf("unknown feature %x\n", le16_to_cpu(req->value)); goto unknown; } xhci_writel(status_reg, reg); break; default: puts("Unknown request\n"); goto unknown; } debug("scrlen = %d\n req->length = %d\n", srclen, le16_to_cpu(req->length)); len = min(srclen, (int)le16_to_cpu(req->length)); if (srcptr != NULL && len > 0) memcpy(buffer, srcptr, len); else debug("Len is 0\n"); udev->act_len = len; udev->status = 0; return 0; unknown: udev->act_len = 0; udev->status = USB_ST_STALLED; return -ENODEV; } /** * Submits the INT request to XHCI Host cotroller * * @param udev pointer to the USB device * @param pipe contains the DIR_IN or OUT , devnum * @param buffer buffer to be read/written based on the request * @param length length of the buffer * @param interval interval of the interrupt * Return: 0 */ static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer, int length, int interval, bool nonblock) { if (usb_pipetype(pipe) != PIPE_INTERRUPT) { printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe)); return -EINVAL; } /* * xHCI uses normal TRBs for both bulk and interrupt. When the * interrupt endpoint is to be serviced, the xHC will consume * (at most) one TD. A TD (comprised of sg list entries) can * take several service intervals to transmit. */ return xhci_bulk_tx(udev, pipe, length, buffer); } /** * submit the BULK type of request to the USB Device * * @param udev pointer to the USB device * @param pipe contains the DIR_IN or OUT , devnum * @param buffer buffer to be read/written based on the request * @param length length of the buffer * Return: returns 0 if successful else -1 on failure */ static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer, int length) { if (usb_pipetype(pipe) != PIPE_BULK) { printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe)); return -EINVAL; } return xhci_bulk_tx(udev, pipe, length, buffer); } /** * submit the control type of request to the Root hub/Device based on the devnum * * @param udev pointer to the USB device * @param pipe contains the DIR_IN or OUT , devnum * @param buffer buffer to be read/written based on the request * @param length length of the buffer * @param setup Request type * @param root_portnr Root port number that this device is on * Return: returns 0 if successful else -1 on failure */ static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe, void *buffer, int length, struct devrequest *setup, int root_portnr) { struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); int ret = 0; if (usb_pipetype(pipe) != PIPE_CONTROL) { printf("non-control pipe (type=%lu)", usb_pipetype(pipe)); return -EINVAL; } if (usb_pipedevice(pipe) == ctrl->rootdev) return xhci_submit_root(udev, pipe, buffer, setup); if (setup->request == USB_REQ_SET_ADDRESS && (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) return xhci_address_device(udev, root_portnr); if (setup->request == USB_REQ_SET_CONFIGURATION && (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) { ret = xhci_set_configuration(udev); if (ret) { puts("Failed to configure xHCI endpoint\n"); return ret; } } return xhci_ctrl_tx(udev, pipe, setup, length, buffer); } static int xhci_lowlevel_init(struct xhci_ctrl *ctrl) { struct xhci_hccr *hccr; struct xhci_hcor *hcor; uint32_t val; uint32_t val2; uint32_t reg; hccr = ctrl->hccr; hcor = ctrl->hcor; /* * Program the Number of Device Slots Enabled field in the CONFIG * register with the max value of slots the HC can handle. */ val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK); val2 = xhci_readl(&hcor->or_config); val |= (val2 & ~HCS_SLOTS_MASK); xhci_writel(&hcor->or_config, val); /* initializing xhci data structures */ if (xhci_mem_init(ctrl, hccr, hcor) < 0) return -ENOMEM; ctrl->hub_desc = descriptor.hub; reg = xhci_readl(&hccr->cr_hcsparams1); ctrl->hub_desc.bNbrPorts = HCS_MAX_PORTS(reg); printf("Register %x NbrPorts %d\n", reg, ctrl->hub_desc.bNbrPorts); /* Port Indicators */ reg = xhci_readl(&hccr->cr_hccparams); if (HCS_INDICATOR(reg)) put_unaligned(get_unaligned(&ctrl->hub_desc.wHubCharacteristics) | 0x80, &ctrl->hub_desc.wHubCharacteristics); /* Port Power Control */ if (HCC_PPC(reg)) put_unaligned(get_unaligned(&ctrl->hub_desc.wHubCharacteristics) | 0x01, &ctrl->hub_desc.wHubCharacteristics); if (xhci_start(hcor)) { xhci_reset(hcor); return -ENODEV; } /* Zero'ing IRQ control register and IRQ pending register */ xhci_writel(&ctrl->ir_set->irq_control, 0x0); xhci_writel(&ctrl->ir_set->irq_pending, 0x0); reg = HC_VERSION(xhci_readl(&hccr->cr_capbase)); printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff); ctrl->hci_version = reg; return 0; } static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl) { u32 temp; xhci_reset(ctrl->hcor); debug("// Disabling event ring interrupts\n"); temp = xhci_readl(&ctrl->hcor->or_usbsts); xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT); temp = xhci_readl(&ctrl->ir_set->irq_pending); xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp)); return 0; } static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev, unsigned long pipe, void *buffer, int length, struct devrequest *setup) { struct usb_device *uhop; struct udevice *hub; int root_portnr = 0; debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__, dev->name, udev, udev->dev->name, udev->portnr); hub = udev->dev; if (device_get_uclass_id(hub) == UCLASS_USB_HUB) { /* Figure out our port number on the root hub */ if (usb_hub_is_root_hub(hub)) { root_portnr = udev->portnr; } else { while (!usb_hub_is_root_hub(hub->parent)) hub = hub->parent; uhop = dev_get_parent_priv(hub); root_portnr = uhop->portnr; } } /* struct usb_device *hop = udev; if (hop->parent) while (hop->parent->parent) hop = hop->parent; */ return _xhci_submit_control_msg(udev, pipe, buffer, length, setup, root_portnr); } static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev, unsigned long pipe, void *buffer, int length) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _xhci_submit_bulk_msg(udev, pipe, buffer, length); } static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev, unsigned long pipe, void *buffer, int length, int interval, bool nonblock) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _xhci_submit_int_msg(udev, pipe, buffer, length, interval, nonblock); } static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev) { debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); return _xhci_alloc_device(udev); } static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev) { struct xhci_ctrl *ctrl = dev_get_priv(dev); struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev); struct xhci_virt_device *virt_dev; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_container_ctx *out_ctx; struct xhci_container_ctx *in_ctx; struct xhci_slot_ctx *slot_ctx; int slot_id = udev->slot_id; unsigned think_time; debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); /* Ignore root hubs */ if (usb_hub_is_root_hub(udev->dev)) return 0; virt_dev = ctrl->devs[slot_id]; BUG_ON(!virt_dev); out_ctx = virt_dev->out_ctx; in_ctx = virt_dev->in_ctx; ctrl_ctx = xhci_get_input_control_ctx(in_ctx); /* Initialize the input context control */ ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); ctrl_ctx->drop_flags = 0; xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size); /* slot context */ xhci_slot_copy(ctrl, in_ctx, out_ctx); slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx); /* Update hub related fields */ slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); /* * refer to section 6.2.2: MTT should be 0 for full speed hub, * but it may be already set to 1 when setup an xHCI virtual * device, so clear it anyway. */ if (hub->tt.multi) slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); else if (udev->speed == USB_SPEED_FULL) slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild)); /* * Set TT think time - convert from ns to FS bit times. * Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns * * 0 = 8 FS bit times, 1 = 16 FS bit times, * 2 = 24 FS bit times, 3 = 32 FS bit times. * * This field shall be 0 if the device is not a high-spped hub. */ think_time = hub->tt.think_time; if (think_time != 0) think_time = (think_time / 666) - 1; if (udev->speed == USB_SPEED_HIGH) slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time)); slot_ctx->dev_state = 0; return xhci_configure_endpoints(udev, false); } static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size) { /* * xHCD allocates one segment which includes 64 TRBs for each endpoint * and the last TRB in this segment is configured as a link TRB to form * a TRB ring. Each TRB can transfer up to 64K bytes, however data * buffers referenced by transfer TRBs shall not span 64KB boundaries. * Hence the maximum number of TRBs we can use in one transfer is 62. */ *size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE; return 0; } int xhci_register(struct udevice *dev, struct xhci_hccr *hccr, struct xhci_hcor *hcor) { struct xhci_ctrl *ctrl = dev_get_priv(dev); struct usb_bus_priv *priv = dev_get_uclass_priv(dev); int ret; debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name, ctrl, hccr, hcor); ctrl->dev = dev; /* * XHCI needs to issue a Address device command to setup * proper device context structures, before it can interact * with the device. So a get_descriptor will fail before any * of that is done for XHCI unlike EHCI. */ priv->desc_before_addr = false; ret = xhci_reset(hcor); if (ret) goto err; ctrl->hccr = hccr; ctrl->hcor = hcor; ret = xhci_lowlevel_init(ctrl); if (ret) goto err; return 0; err: free(ctrl); debug("%s: failed, ret=%d\n", __func__, ret); return ret; } int xhci_deregister(struct udevice *dev) { struct xhci_ctrl *ctrl = dev_get_priv(dev); xhci_lowlevel_stop(ctrl); xhci_cleanup(ctrl); return 0; } struct dm_usb_ops xhci_usb_ops = { .control = xhci_submit_control_msg, .bulk = xhci_submit_bulk_msg, .interrupt = xhci_submit_int_msg, .alloc_device = xhci_alloc_device, .update_hub_device = xhci_update_hub_device, .get_max_xfer_size = xhci_get_max_xfer_size, };