// SPDX-License-Identifier: GPL-2.0+ /* * EFI application runtime services * * Copyright (c) 2016 Alexander Graf */ #include #include #include #include #include #include #include #include #include #include #include /* For manual relocation support */ DECLARE_GLOBAL_DATA_PTR; /* GUID of the runtime properties table */ static const efi_guid_t efi_rt_properties_table_guid = EFI_RT_PROPERTIES_TABLE_GUID; struct efi_runtime_mmio_list { struct list_head link; void **ptr; u64 paddr; u64 len; }; /* This list contains all runtime available mmio regions */ LIST_HEAD(efi_runtime_mmio); static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void); /* * TODO(sjg@chromium.org): These defines and structures should come from the ELF * header for each architecture (or a generic header) rather than being repeated * here. */ #if defined(__aarch64__) #define R_RELATIVE R_AARCH64_RELATIVE #define R_MASK 0xffffffffULL #define IS_RELA 1 #elif defined(__arm__) #define R_RELATIVE R_ARM_RELATIVE #define R_MASK 0xffULL #elif defined(__i386__) #define R_RELATIVE R_386_RELATIVE #define R_MASK 0xffULL #elif defined(__x86_64__) #define R_RELATIVE R_X86_64_RELATIVE #define R_MASK 0xffffffffULL #define IS_RELA 1 #elif defined(__riscv) #define R_RELATIVE R_RISCV_RELATIVE #define R_MASK 0xffULL #define IS_RELA 1 struct dyn_sym { ulong foo1; ulong addr; u32 foo2; u32 foo3; }; #if (__riscv_xlen == 32) #define R_ABSOLUTE R_RISCV_32 #define SYM_INDEX 8 #elif (__riscv_xlen == 64) #define R_ABSOLUTE R_RISCV_64 #define SYM_INDEX 32 #else #error unknown riscv target #endif #else #error Need to add relocation awareness #endif struct elf_rel { ulong *offset; ulong info; }; struct elf_rela { ulong *offset; ulong info; long addend; }; static __efi_runtime_data struct efi_mem_desc *efi_virtmap; static __efi_runtime_data efi_uintn_t efi_descriptor_count; static __efi_runtime_data efi_uintn_t efi_descriptor_size; /* * EFI runtime code lives in two stages. In the first stage, U-Boot and an EFI * payload are running concurrently at the same time. In this mode, we can * handle a good number of runtime callbacks */ /** * efi_init_runtime_supported() - create runtime properties table * * Create a configuration table specifying which services are available at * runtime. * * Return: status code */ efi_status_t efi_init_runtime_supported(void) { efi_status_t ret; struct efi_rt_properties_table *rt_table; ret = efi_allocate_pool(EFI_RUNTIME_SERVICES_DATA, sizeof(struct efi_rt_properties_table), (void **)&rt_table); if (ret != EFI_SUCCESS) return ret; rt_table->version = EFI_RT_PROPERTIES_TABLE_VERSION; rt_table->length = sizeof(struct efi_rt_properties_table); rt_table->runtime_services_supported = EFI_RT_SUPPORTED_GET_VARIABLE | EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME | EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP | EFI_RT_SUPPORTED_CONVERT_POINTER; /* * This value must be synced with efi_runtime_detach_list * as well as efi_runtime_services. */ #ifdef CONFIG_EFI_HAVE_RUNTIME_RESET rt_table->runtime_services_supported |= EFI_RT_SUPPORTED_RESET_SYSTEM; #endif ret = efi_install_configuration_table(&efi_rt_properties_table_guid, rt_table); return ret; } /** * efi_memcpy_runtime() - copy memory area * * At runtime memcpy() is not available. * * Overlapping memory areas can be copied safely if src >= dest. * * @dest: destination buffer * @src: source buffer * @n: number of bytes to copy * Return: pointer to destination buffer */ void __efi_runtime efi_memcpy_runtime(void *dest, const void *src, size_t n) { u8 *d = dest; const u8 *s = src; for (; n; --n) *d++ = *s++; } /** * efi_update_table_header_crc32() - Update crc32 in table header * * @table: EFI table */ void __efi_runtime efi_update_table_header_crc32(struct efi_table_hdr *table) { table->crc32 = 0; table->crc32 = crc32(0, (const unsigned char *)table, table->headersize); } /** * efi_reset_system_boottime() - reset system at boot time * * This function implements the ResetSystem() runtime service before * SetVirtualAddressMap() is called. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @reset_type: type of reset to perform * @reset_status: status code for the reset * @data_size: size of reset_data * @reset_data: information about the reset */ static void EFIAPI efi_reset_system_boottime( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { struct efi_event *evt; EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size, reset_data); /* Notify reset */ list_for_each_entry(evt, &efi_events, link) { if (evt->group && !guidcmp(evt->group, &efi_guid_event_group_reset_system)) { efi_signal_event(evt); break; } } switch (reset_type) { case EFI_RESET_COLD: case EFI_RESET_WARM: case EFI_RESET_PLATFORM_SPECIFIC: do_reset(NULL, 0, 0, NULL); break; case EFI_RESET_SHUTDOWN: #ifdef CONFIG_CMD_POWEROFF do_poweroff(NULL, 0, 0, NULL); #endif break; } while (1) { } } /** * efi_get_time_boottime() - get current time at boot time * * This function implements the GetTime runtime service before * SetVirtualAddressMap() is called. * * See the Unified Extensible Firmware Interface (UEFI) specification * for details. * * @time: pointer to structure to receive current time * @capabilities: pointer to structure to receive RTC properties * Returns: status code */ static efi_status_t EFIAPI efi_get_time_boottime( struct efi_time *time, struct efi_time_cap *capabilities) { #ifdef CONFIG_EFI_GET_TIME efi_status_t ret = EFI_SUCCESS; struct rtc_time tm; struct udevice *dev; EFI_ENTRY("%p %p", time, capabilities); if (!time) { ret = EFI_INVALID_PARAMETER; goto out; } if (uclass_get_device(UCLASS_RTC, 0, &dev) || dm_rtc_get(dev, &tm)) { ret = EFI_UNSUPPORTED; goto out; } if (dm_rtc_get(dev, &tm)) { ret = EFI_DEVICE_ERROR; goto out; } memset(time, 0, sizeof(*time)); time->year = tm.tm_year; time->month = tm.tm_mon; time->day = tm.tm_mday; time->hour = tm.tm_hour; time->minute = tm.tm_min; time->second = tm.tm_sec; if (tm.tm_isdst > 0) time->daylight = EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT; else if (!tm.tm_isdst) time->daylight = EFI_TIME_ADJUST_DAYLIGHT; else time->daylight = 0; time->timezone = EFI_UNSPECIFIED_TIMEZONE; if (capabilities) { /* Set reasonable dummy values */ capabilities->resolution = 1; /* 1 Hz */ capabilities->accuracy = 100000000; /* 100 ppm */ capabilities->sets_to_zero = false; } out: return EFI_EXIT(ret); #else EFI_ENTRY("%p %p", time, capabilities); return EFI_EXIT(EFI_UNSUPPORTED); #endif } #ifdef CONFIG_EFI_SET_TIME /** * efi_validate_time() - checks if timestamp is valid * * @time: timestamp to validate * Returns: 0 if timestamp is valid, 1 otherwise */ static int efi_validate_time(struct efi_time *time) { return (!time || time->year < 1900 || time->year > 9999 || !time->month || time->month > 12 || !time->day || time->day > rtc_month_days(time->month - 1, time->year) || time->hour > 23 || time->minute > 59 || time->second > 59 || time->nanosecond > 999999999 || time->daylight & ~(EFI_TIME_IN_DAYLIGHT | EFI_TIME_ADJUST_DAYLIGHT) || ((time->timezone < -1440 || time->timezone > 1440) && time->timezone != EFI_UNSPECIFIED_TIMEZONE)); } #endif /** * efi_set_time_boottime() - set current time * * This function implements the SetTime() runtime service before * SetVirtualAddressMap() is called. * * See the Unified Extensible Firmware Interface (UEFI) specification * for details. * * @time: pointer to structure to with current time * Returns: status code */ static efi_status_t EFIAPI efi_set_time_boottime(struct efi_time *time) { #ifdef CONFIG_EFI_SET_TIME efi_status_t ret = EFI_SUCCESS; struct rtc_time tm; struct udevice *dev; EFI_ENTRY("%p", time); if (efi_validate_time(time)) { ret = EFI_INVALID_PARAMETER; goto out; } if (uclass_get_device(UCLASS_RTC, 0, &dev)) { ret = EFI_UNSUPPORTED; goto out; } memset(&tm, 0, sizeof(tm)); tm.tm_year = time->year; tm.tm_mon = time->month; tm.tm_mday = time->day; tm.tm_hour = time->hour; tm.tm_min = time->minute; tm.tm_sec = time->second; switch (time->daylight) { case EFI_TIME_ADJUST_DAYLIGHT: tm.tm_isdst = 0; break; case EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT: tm.tm_isdst = 1; break; default: tm.tm_isdst = -1; break; } /* Calculate day of week */ rtc_calc_weekday(&tm); if (dm_rtc_set(dev, &tm)) ret = EFI_DEVICE_ERROR; out: return EFI_EXIT(ret); #else EFI_ENTRY("%p", time); return EFI_EXIT(EFI_UNSUPPORTED); #endif } /** * efi_reset_system() - reset system * * This function implements the ResetSystem() runtime service after * SetVirtualAddressMap() is called. As this placeholder cannot reset the * system it simply return to the caller. * * Boards may override the helpers below to implement reset functionality. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @reset_type: type of reset to perform * @reset_status: status code for the reset * @data_size: size of reset_data * @reset_data: information about the reset */ void __weak __efi_runtime EFIAPI efi_reset_system( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { return; } /** * efi_reset_system_init() - initialize the reset driver * * Boards may override this function to initialize the reset driver. */ efi_status_t __weak efi_reset_system_init(void) { return EFI_SUCCESS; } /** * efi_get_time() - get current time * * This function implements the GetTime runtime service after * SetVirtualAddressMap() is called. As the U-Boot driver are not available * anymore only an error code is returned. * * See the Unified Extensible Firmware Interface (UEFI) specification * for details. * * @time: pointer to structure to receive current time * @capabilities: pointer to structure to receive RTC properties * Returns: status code */ efi_status_t __weak __efi_runtime EFIAPI efi_get_time( struct efi_time *time, struct efi_time_cap *capabilities) { return EFI_UNSUPPORTED; } /** * efi_set_time() - set current time * * This function implements the SetTime runtime service after * SetVirtualAddressMap() is called. As the U-Boot driver are not available * anymore only an error code is returned. * * See the Unified Extensible Firmware Interface (UEFI) specification * for details. * * @time: pointer to structure to with current time * Returns: status code */ efi_status_t __weak __efi_runtime EFIAPI efi_set_time(struct efi_time *time) { return EFI_UNSUPPORTED; } /** * efi_update_capsule_unsupported() - process information from operating system * * This function implements the UpdateCapsule() runtime service. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @capsule_header_array: pointer to array of virtual pointers * @capsule_count: number of pointers in capsule_header_array * @scatter_gather_list: pointer to array of physical pointers * Returns: status code */ efi_status_t __efi_runtime EFIAPI efi_update_capsule_unsupported( struct efi_capsule_header **capsule_header_array, efi_uintn_t capsule_count, u64 scatter_gather_list) { return EFI_UNSUPPORTED; } /** * efi_query_capsule_caps_unsupported() - check if capsule is supported * * This function implements the QueryCapsuleCapabilities() runtime service. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @capsule_header_array: pointer to array of virtual pointers * @capsule_count: number of pointers in capsule_header_array * @maximum_capsule_size: maximum capsule size * @reset_type: type of reset needed for capsule update * Returns: status code */ efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps_unsupported( struct efi_capsule_header **capsule_header_array, efi_uintn_t capsule_count, u64 *maximum_capsule_size, u32 *reset_type) { return EFI_UNSUPPORTED; } /** * efi_is_runtime_service_pointer() - check if pointer points to runtime table * * @p: pointer to check * Return: true if the pointer points to a service function pointer in the * runtime table */ static bool efi_is_runtime_service_pointer(void *p) { return (p >= (void *)&efi_runtime_services.get_time && p <= (void *)&efi_runtime_services.query_variable_info) || p == (void *)&efi_events.prev || p == (void *)&efi_events.next; } /** * efi_runtime_detach() - detach unimplemented runtime functions */ void efi_runtime_detach(void) { efi_runtime_services.reset_system = efi_reset_system; efi_runtime_services.get_time = efi_get_time; efi_runtime_services.set_time = efi_set_time; if (IS_ENABLED(CONFIG_EFI_RUNTIME_UPDATE_CAPSULE)) { /* won't support at runtime */ efi_runtime_services.update_capsule = efi_update_capsule_unsupported; efi_runtime_services.query_capsule_caps = efi_query_capsule_caps_unsupported; } /* Update CRC32 */ efi_update_table_header_crc32(&efi_runtime_services.hdr); } /** * efi_set_virtual_address_map_runtime() - change from physical to virtual * mapping * * This function implements the SetVirtualAddressMap() runtime service after * it is first called. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @memory_map_size: size of the virtual map * @descriptor_size: size of an entry in the map * @descriptor_version: version of the map entries * @virtmap: virtual address mapping information * Return: status code EFI_UNSUPPORTED */ static __efi_runtime efi_status_t EFIAPI efi_set_virtual_address_map_runtime( efi_uintn_t memory_map_size, efi_uintn_t descriptor_size, uint32_t descriptor_version, struct efi_mem_desc *virtmap) { return EFI_UNSUPPORTED; } /** * efi_convert_pointer_runtime() - convert from physical to virtual pointer * * This function implements the ConvertPointer() runtime service after * the first call to SetVirtualAddressMap(). * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @debug_disposition: indicates if pointer may be converted to NULL * @address: pointer to be converted * Return: status code EFI_UNSUPPORTED */ static __efi_runtime efi_status_t EFIAPI efi_convert_pointer_runtime( efi_uintn_t debug_disposition, void **address) { return EFI_UNSUPPORTED; } /** * efi_convert_pointer() - convert from physical to virtual pointer * * This function implements the ConvertPointer() runtime service until * the first call to SetVirtualAddressMap(). * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @debug_disposition: indicates if pointer may be converted to NULL * @address: pointer to be converted * Return: status code */ __efi_runtime efi_status_t EFIAPI efi_convert_pointer(efi_uintn_t debug_disposition, void **address) { efi_physical_addr_t addr; efi_uintn_t i; efi_status_t ret = EFI_NOT_FOUND; if (!efi_virtmap) { ret = EFI_UNSUPPORTED; goto out; } if (!address) { ret = EFI_INVALID_PARAMETER; goto out; } if (!*address) { if (debug_disposition & EFI_OPTIONAL_PTR) return EFI_SUCCESS; else return EFI_INVALID_PARAMETER; } addr = (uintptr_t)*address; for (i = 0; i < efi_descriptor_count; i++) { struct efi_mem_desc *map = (void *)efi_virtmap + (efi_descriptor_size * i); if (addr >= map->physical_start && (addr < map->physical_start + (map->num_pages << EFI_PAGE_SHIFT))) { *address = (void *)(uintptr_t) (addr + map->virtual_start - map->physical_start); ret = EFI_SUCCESS; break; } } out: return ret; } static __efi_runtime void efi_relocate_runtime_table(ulong offset) { ulong patchoff; void **pos; /* Relocate the runtime services pointers */ patchoff = offset - gd->relocaddr; for (pos = (void **)&efi_runtime_services.get_time; pos <= (void **)&efi_runtime_services.query_variable_info; ++pos) { if (*pos) *pos += patchoff; } /* * The entry for SetVirtualAddress() must point to a physical address. * After the first execution the service must return EFI_UNSUPPORTED. */ efi_runtime_services.set_virtual_address_map = &efi_set_virtual_address_map_runtime; /* * The entry for ConvertPointer() must point to a physical address. * The service is not usable after SetVirtualAddress(). */ efi_runtime_services.convert_pointer = &efi_convert_pointer_runtime; /* * TODO: Update UEFI variable RuntimeServicesSupported removing flags * EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP and * EFI_RT_SUPPORTED_CONVERT_POINTER as required by the UEFI spec 2.8. */ /* Update CRC32 */ efi_update_table_header_crc32(&efi_runtime_services.hdr); } /* Relocate EFI runtime to uboot_reloc_base = offset */ void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map) { #ifdef IS_RELA struct elf_rela *rel = (void*)&__efi_runtime_rel_start; #else struct elf_rel *rel = (void*)&__efi_runtime_rel_start; static ulong lastoff = CONFIG_TEXT_BASE; #endif debug("%s: Relocating to offset=%lx\n", __func__, offset); for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) { ulong base = CONFIG_TEXT_BASE; ulong *p; ulong newaddr; p = (void*)((ulong)rel->offset - base) + gd->relocaddr; /* * The runtime services table is updated in * efi_relocate_runtime_table() */ if (map && efi_is_runtime_service_pointer(p)) continue; debug("%s: rel->info=%#lx *p=%#lx rel->offset=%p\n", __func__, rel->info, *p, rel->offset); switch (rel->info & R_MASK) { case R_RELATIVE: #ifdef IS_RELA newaddr = rel->addend + offset - CONFIG_TEXT_BASE; #else newaddr = *p - lastoff + offset; #endif break; #ifdef R_ABSOLUTE case R_ABSOLUTE: { ulong symidx = rel->info >> SYM_INDEX; extern struct dyn_sym __dyn_sym_start[]; newaddr = __dyn_sym_start[symidx].addr + offset; #ifdef IS_RELA newaddr -= CONFIG_TEXT_BASE; #endif break; } #endif default: printf("%s: Unknown relocation type %llx\n", __func__, rel->info & R_MASK); continue; } /* Check if the relocation is inside bounds */ if (map && ((newaddr < map->virtual_start) || newaddr > (map->virtual_start + (map->num_pages << EFI_PAGE_SHIFT)))) { printf("%s: Relocation at %p is out of range (%lx)\n", __func__, p, newaddr); continue; } debug("%s: Setting %p to %lx\n", __func__, p, newaddr); *p = newaddr; flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1), ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE)); } #ifndef IS_RELA lastoff = offset; #endif invalidate_icache_all(); } /** * efi_set_virtual_address_map() - change from physical to virtual mapping * * This function implements the SetVirtualAddressMap() runtime service. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @memory_map_size: size of the virtual map * @descriptor_size: size of an entry in the map * @descriptor_version: version of the map entries * @virtmap: virtual address mapping information * Return: status code */ static efi_status_t EFIAPI efi_set_virtual_address_map( efi_uintn_t memory_map_size, efi_uintn_t descriptor_size, uint32_t descriptor_version, struct efi_mem_desc *virtmap) { efi_uintn_t n = memory_map_size / descriptor_size; efi_uintn_t i; efi_status_t ret = EFI_INVALID_PARAMETER; int rt_code_sections = 0; struct efi_event *event; EFI_ENTRY("%zx %zx %x %p", memory_map_size, descriptor_size, descriptor_version, virtmap); if (descriptor_version != EFI_MEMORY_DESCRIPTOR_VERSION || descriptor_size < sizeof(struct efi_mem_desc)) goto out; efi_virtmap = virtmap; efi_descriptor_size = descriptor_size; efi_descriptor_count = n; /* * TODO: * Further down we are cheating. While really we should implement * SetVirtualAddressMap() events and ConvertPointer() to allow * dynamically loaded drivers to expose runtime services, we don't * today. * * So let's ensure we see exactly one single runtime section, as * that is the built-in one. If we see more (or less), someone must * have tried adding or removing to that which we don't support yet. * In that case, let's better fail rather than expose broken runtime * services. */ for (i = 0; i < n; i++) { struct efi_mem_desc *map = (void*)virtmap + (descriptor_size * i); if (map->type == EFI_RUNTIME_SERVICES_CODE) rt_code_sections++; } if (rt_code_sections != 1) { /* * We expose exactly one single runtime code section, so * something is definitely going wrong. */ goto out; } /* Notify EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE */ list_for_each_entry(event, &efi_events, link) { if (event->notify_function) EFI_CALL_VOID(event->notify_function( event, event->notify_context)); } /* Rebind mmio pointers */ for (i = 0; i < n; i++) { struct efi_mem_desc *map = (void*)virtmap + (descriptor_size * i); struct list_head *lhandle; efi_physical_addr_t map_start = map->physical_start; efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT; efi_physical_addr_t map_end = map_start + map_len; u64 off = map->virtual_start - map_start; /* Adjust all mmio pointers in this region */ list_for_each(lhandle, &efi_runtime_mmio) { struct efi_runtime_mmio_list *lmmio; lmmio = list_entry(lhandle, struct efi_runtime_mmio_list, link); if ((map_start <= lmmio->paddr) && (map_end >= lmmio->paddr)) { uintptr_t new_addr = lmmio->paddr + off; *lmmio->ptr = (void *)new_addr; } } if ((map_start <= (uintptr_t)systab.tables) && (map_end >= (uintptr_t)systab.tables)) { char *ptr = (char *)systab.tables; ptr += off; systab.tables = (struct efi_configuration_table *)ptr; } } /* Relocate the runtime. See TODO above */ for (i = 0; i < n; i++) { struct efi_mem_desc *map; map = (void*)virtmap + (descriptor_size * i); if (map->type == EFI_RUNTIME_SERVICES_CODE) { ulong new_offset = map->virtual_start - map->physical_start + gd->relocaddr; efi_relocate_runtime_table(new_offset); efi_runtime_relocate(new_offset, map); ret = EFI_SUCCESS; goto out; } } out: return EFI_EXIT(ret); } /** * efi_add_runtime_mmio() - add memory-mapped IO region * * This function adds a memory-mapped IO region to the memory map to make it * available at runtime. * * @mmio_ptr: pointer to a pointer to the start of the memory-mapped * IO region * @len: size of the memory-mapped IO region * Returns: status code */ efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len) { struct efi_runtime_mmio_list *newmmio; uint64_t addr = *(uintptr_t *)mmio_ptr; efi_status_t ret; ret = efi_add_memory_map(addr, len, EFI_MMAP_IO); if (ret != EFI_SUCCESS) return EFI_OUT_OF_RESOURCES; newmmio = calloc(1, sizeof(*newmmio)); if (!newmmio) return EFI_OUT_OF_RESOURCES; newmmio->ptr = mmio_ptr; newmmio->paddr = *(uintptr_t *)mmio_ptr; newmmio->len = len; list_add_tail(&newmmio->link, &efi_runtime_mmio); return EFI_SUCCESS; } /* * In the second stage, U-Boot has disappeared. To isolate our runtime code * that at this point still exists from the rest, we put it into a special * section. * * !!WARNING!! * * This means that we can not rely on any code outside of this file in any * function or variable below this line. * * Please keep everything fully self-contained and annotated with * __efi_runtime and __efi_runtime_data markers. */ /* * Relocate the EFI runtime stub to a different place. We need to call this * the first time we expose the runtime interface to a user and on set virtual * address map calls. */ /** * efi_unimplemented() - replacement function, returns EFI_UNSUPPORTED * * This function is used after SetVirtualAddressMap() is called as replacement * for services that are not available anymore due to constraints of the U-Boot * implementation. * * Return: EFI_UNSUPPORTED */ static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void) { return EFI_UNSUPPORTED; } struct efi_runtime_services __efi_runtime_data efi_runtime_services = { .hdr = { .signature = EFI_RUNTIME_SERVICES_SIGNATURE, .revision = EFI_SPECIFICATION_VERSION, .headersize = sizeof(struct efi_runtime_services), }, .get_time = &efi_get_time_boottime, .set_time = &efi_set_time_boottime, .get_wakeup_time = (void *)&efi_unimplemented, .set_wakeup_time = (void *)&efi_unimplemented, .set_virtual_address_map = &efi_set_virtual_address_map, .convert_pointer = efi_convert_pointer, .get_variable = efi_get_variable, .get_next_variable_name = efi_get_next_variable_name, .set_variable = efi_set_variable, .get_next_high_mono_count = (void *)&efi_unimplemented, .reset_system = &efi_reset_system_boottime, #ifdef CONFIG_EFI_RUNTIME_UPDATE_CAPSULE .update_capsule = efi_update_capsule, .query_capsule_caps = efi_query_capsule_caps, #else .update_capsule = efi_update_capsule_unsupported, .query_capsule_caps = efi_query_capsule_caps_unsupported, #endif .query_variable_info = efi_query_variable_info, };