// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2011 The Chromium OS Authors. */ #define LOG_CATEGORY LOGC_SANDBOX #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* Enable access to PCI memory with map_sysmem() */ static bool enable_pci_map; #ifdef CONFIG_PCI /* Last device that was mapped into memory, and length of mapping */ static struct udevice *map_dev; unsigned long map_len; #endif void sandbox_exit(void) { /* Do this here while it still has an effect */ os_fd_restore(); if (state_uninit()) os_exit(2); /* This is considered normal termination for now */ os_exit(0); } /* delay x useconds */ void __udelay(unsigned long usec) { struct sandbox_state *state = state_get_current(); if (!state->skip_delays) os_usleep(usec); } int cleanup_before_linux(void) { return 0; } int cleanup_before_linux_select(int flags) { return 0; } /** * is_in_sandbox_mem() - Checks if a pointer is within sandbox's emulated DRAM * * This provides a way to check if a pointer is owned by sandbox (and is within * its RAM) or not. Sometimes pointers come from a test which conceptually runs * output sandbox, potentially with direct access to the C-library malloc() * function, or the sandbox stack (which is not actually within the emulated * DRAM. * * Such pointers obviously cannot be mapped into sandbox's DRAM, so we must * detect them an process them separately, by recording a mapping to a tag, * which we can use to map back to the pointer later. * * @ptr: Pointer to check * Return: true if this is within sandbox emulated DRAM, false if not */ static bool is_in_sandbox_mem(const void *ptr) { return (const uint8_t *)ptr >= gd->arch.ram_buf && (const uint8_t *)ptr < gd->arch.ram_buf + gd->ram_size; } /** * phys_to_virt() - Converts a sandbox RAM address to a pointer * * Sandbox uses U-Boot addresses from 0 to the size of DRAM. These index into * the emulated DRAM buffer used by sandbox. This function converts such an * address to a pointer into this buffer, which can be used to access the * memory. * * If the address is outside this range, it is assumed to be a tag */ void *phys_to_virt(phys_addr_t paddr) { struct sandbox_mapmem_entry *mentry; struct sandbox_state *state; /* If the address is within emulated DRAM, calculate the value */ if (paddr < gd->ram_size) return (void *)(gd->arch.ram_buf + paddr); /* * Otherwise search out list of tags for the correct pointer previously * created by map_to_sysmem() */ state = state_get_current(); list_for_each_entry(mentry, &state->mapmem_head, sibling_node) { if (mentry->tag == paddr) { debug("%s: Used map from %lx to %p\n", __func__, (ulong)paddr, mentry->ptr); return mentry->ptr; } } printf("%s: Cannot map sandbox address %lx (SDRAM from 0 to %lx)\n", __func__, (ulong)paddr, (ulong)gd->ram_size); os_abort(); /* Not reached */ return NULL; } struct sandbox_mapmem_entry *find_tag(const void *ptr) { struct sandbox_mapmem_entry *mentry; struct sandbox_state *state = state_get_current(); list_for_each_entry(mentry, &state->mapmem_head, sibling_node) { if (mentry->ptr == ptr) { debug("%s: Used map from %p to %lx\n", __func__, ptr, mentry->tag); return mentry; } } return NULL; } phys_addr_t virt_to_phys(void *ptr) { struct sandbox_mapmem_entry *mentry; /* * If it is in emulated RAM, don't bother looking for a tag. Just * calculate the pointer using the provides offset into the RAM buffer. */ if (is_in_sandbox_mem(ptr)) return (phys_addr_t)((uint8_t *)ptr - gd->arch.ram_buf); mentry = find_tag(ptr); if (!mentry) { /* Abort so that gdb can be used here */ printf("%s: Cannot map sandbox address %p (SDRAM from 0 to %lx)\n", __func__, ptr, (ulong)gd->ram_size); os_abort(); } debug("%s: Used map from %p to %lx\n", __func__, ptr, mentry->tag); return mentry->tag; } void *map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags) { #if defined(CONFIG_PCI) && !defined(CONFIG_SPL_BUILD) unsigned long plen = len; void *ptr; map_dev = NULL; if (enable_pci_map && !pci_map_physmem(paddr, &len, &map_dev, &ptr)) { if (plen != len) { printf("%s: Warning: partial map at %x, wanted %lx, got %lx\n", __func__, (uint)paddr, len, plen); } map_len = len; return ptr; } #endif return phys_to_virt(paddr); } void unmap_physmem(const void *ptr, unsigned long flags) { #ifdef CONFIG_PCI if (map_dev) { pci_unmap_physmem(ptr, map_len, map_dev); map_dev = NULL; } #endif } phys_addr_t map_to_sysmem(const void *ptr) { struct sandbox_mapmem_entry *mentry; /* * If it is in emulated RAM, don't bother creating a tag. Just return * the offset into the RAM buffer. */ if (is_in_sandbox_mem(ptr)) return (u8 *)ptr - gd->arch.ram_buf; /* * See if there is an existing tag with this pointer. If not, set up a * new one. */ mentry = find_tag(ptr); if (!mentry) { struct sandbox_state *state = state_get_current(); mentry = malloc(sizeof(*mentry)); if (!mentry) { printf("%s: Error: Out of memory\n", __func__); os_exit(ENOMEM); } mentry->tag = state->next_tag++; mentry->ptr = (void *)ptr; list_add_tail(&mentry->sibling_node, &state->mapmem_head); debug("%s: Added map from %p to %lx\n", __func__, ptr, (ulong)mentry->tag); } /* * Return the tag as the address to use. A later call to map_sysmem() * will return ptr */ return mentry->tag; } unsigned int sandbox_read(const void *addr, enum sandboxio_size_t size) { struct sandbox_state *state = state_get_current(); if (!state->allow_memio) return 0; switch (size) { case SB_SIZE_8: return *(u8 *)addr; case SB_SIZE_16: return *(u16 *)addr; case SB_SIZE_32: return *(u32 *)addr; case SB_SIZE_64: return *(u64 *)addr; } return 0; } void sandbox_write(void *addr, unsigned int val, enum sandboxio_size_t size) { struct sandbox_state *state = state_get_current(); if (!state->allow_memio) return; switch (size) { case SB_SIZE_8: *(u8 *)addr = val; break; case SB_SIZE_16: *(u16 *)addr = val; break; case SB_SIZE_32: *(u32 *)addr = val; break; case SB_SIZE_64: *(u64 *)addr = val; break; } } void sandbox_set_enable_memio(bool enable) { struct sandbox_state *state = state_get_current(); state->allow_memio = enable; } void sandbox_set_enable_pci_map(int enable) { enable_pci_map = enable; } void flush_dcache_range(unsigned long start, unsigned long stop) { } void invalidate_dcache_range(unsigned long start, unsigned long stop) { } /** * setup_auto_tree() - Set up a basic device tree to allow sandbox to work * * This is used when no device tree is provided. It creates a simple tree with * just a /binman node. * * @blob: Place to put the created device tree * Returns: 0 on success, -ve FDT error code on failure */ static int setup_auto_tree(void *blob) { int err; err = fdt_create_empty_tree(blob, 256); if (err) return err; /* Create a /binman node in case CONFIG_BINMAN is enabled */ err = fdt_add_subnode(blob, 0, "binman"); if (err < 0) return err; return 0; } void *board_fdt_blob_setup(int *ret) { struct sandbox_state *state = state_get_current(); const char *fname = state->fdt_fname; void *blob = NULL; loff_t size; int err; int fd; blob = map_sysmem(CONFIG_SYS_FDT_LOAD_ADDR, 0); *ret = 0; if (!state->fdt_fname) { err = setup_auto_tree(blob); if (!err) goto done; os_printf("Unable to create empty FDT: %s\n", fdt_strerror(err)); *ret = -EINVAL; goto fail; } err = os_get_filesize(fname, &size); if (err < 0) { os_printf("Failed to find FDT file '%s'\n", fname); *ret = err; goto fail; } fd = os_open(fname, OS_O_RDONLY); if (fd < 0) { os_printf("Failed to open FDT file '%s'\n", fname); *ret = -EACCES; goto fail; } if (os_read(fd, blob, size) != size) { os_close(fd); os_printf("Failed to read FDT file '%s'\n", fname); *ret = -EIO; goto fail; } os_close(fd); done: return blob; fail: return NULL; } ulong timer_get_boot_us(void) { static uint64_t base_count; uint64_t count = os_get_nsec(); if (!base_count) base_count = count; return (count - base_count) / 1000; } int sandbox_load_other_fdt(void **fdtp, int *sizep) { const char *orig; int ret, size; void *fdt = *fdtp; ret = state_load_other_fdt(&orig, &size); if (ret) { log_err("Cannot read other FDT\n"); return log_msg_ret("ld", ret); } if (!*fdtp) { fdt = os_malloc(size); if (!fdt) return log_msg_ret("mem", -ENOMEM); *sizep = size; } memcpy(fdt, orig, *sizep); *fdtp = fdt; return 0; }