// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018-2020 Marvell International Ltd. */ /* * Simple allocate only memory allocator. Used to allocate memory at * application start time. */ #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /** * This is the physical location of a struct cvmx_bootmem_desc * structure in Octeon's memory. Note that dues to addressing * limits or runtime environment it might not be possible to * create a C pointer to this structure. */ static u64 cvmx_bootmem_desc_addr; /** * This macro returns the size of a member of a structure. * Logically it is the same as "sizeof(s::field)" in C++, but * C lacks the "::" operator. */ #define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field) /** * This macro returns a member of the struct cvmx_bootmem_desc * structure. These members can't be directly addressed as * they might be in memory not directly reachable. In the case * where bootmem is compiled with LINUX_HOST, the structure * itself might be located on a remote Octeon. The argument * "field" is the member name of the struct cvmx_bootmem_desc to read. * Regardless of the type of the field, the return type is always * a u64. */ #define CVMX_BOOTMEM_DESC_GET_FIELD(field) \ __cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \ offsetof(struct cvmx_bootmem_desc, field), \ SIZEOF_FIELD(struct cvmx_bootmem_desc, field)) /** * This macro writes a member of the struct cvmx_bootmem_desc * structure. These members can't be directly addressed as * they might be in memory not directly reachable. In the case * where bootmem is compiled with LINUX_HOST, the structure * itself might be located on a remote Octeon. The argument * "field" is the member name of the struct cvmx_bootmem_desc to write. */ #define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \ __cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \ offsetof(struct cvmx_bootmem_desc, field), \ SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \ value) /** * This macro returns a member of the * struct cvmx_bootmem_named_block_desc structure. These members can't * be directly addressed as they might be in memory not directly * reachable. In the case where bootmem is compiled with * LINUX_HOST, the structure itself might be located on a remote * Octeon. The argument "field" is the member name of the * struct cvmx_bootmem_named_block_desc to read. Regardless of the type * of the field, the return type is always a u64. The "addr" * parameter is the physical address of the structure. */ #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \ __cvmx_bootmem_desc_get(addr, \ offsetof(struct cvmx_bootmem_named_block_desc, field), \ SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field)) /** * This macro writes a member of the struct cvmx_bootmem_named_block_desc * structure. These members can't be directly addressed as * they might be in memory not directly reachable. In the case * where bootmem is compiled with LINUX_HOST, the structure * itself might be located on a remote Octeon. The argument * "field" is the member name of the * struct cvmx_bootmem_named_block_desc to write. The "addr" parameter * is the physical address of the structure. */ #define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \ __cvmx_bootmem_desc_set(addr, \ offsetof(struct cvmx_bootmem_named_block_desc, field), \ SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \ value) /** * This function is the implementation of the get macros defined * for individual structure members. The argument are generated * by the macros inorder to read only the needed memory. * * @param base 64bit physical address of the complete structure * @param offset Offset from the beginning of the structure to the member being * accessed. * @param size Size of the structure member. * * @return Value of the structure member promoted into a u64. */ static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset, int size) { base = (1ull << 63) | (base + offset); switch (size) { case 4: return cvmx_read64_uint32(base); case 8: return cvmx_read64_uint64(base); default: return 0; } } /** * This function is the implementation of the set macros defined * for individual structure members. The argument are generated * by the macros in order to write only the needed memory. * * @param base 64bit physical address of the complete structure * @param offset Offset from the beginning of the structure to the member being * accessed. * @param size Size of the structure member. * @param value Value to write into the structure */ static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size, u64 value) { base = (1ull << 63) | (base + offset); switch (size) { case 4: cvmx_write64_uint32(base, value); break; case 8: cvmx_write64_uint64(base, value); break; default: break; } } /** * This function returns the address of the bootmem descriptor lock. * * @return 64-bit address in KSEG0 of the bootmem descriptor block */ static inline u64 __cvmx_bootmem_get_lock_addr(void) { return (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock)); } /** * This function retrieves the string name of a named block. It is * more complicated than a simple memcpy() since the named block * descriptor may not be directly accessible. * * @param addr Physical address of the named block descriptor * @param str String to receive the named block string name * @param len Length of the string buffer, which must match the length * stored in the bootmem descriptor. */ static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len) { int l = len; char *ptr = str; addr |= (1ull << 63); addr += offsetof(struct cvmx_bootmem_named_block_desc, name); while (l) { /* * With big-endian in memory byte order, this gives uniform * results for the CPU in either big or Little endian mode. */ u64 blob = cvmx_read64_uint64(addr); int sa = 56; addr += sizeof(u64); while (l && sa >= 0) { *ptr++ = (char)(blob >> sa); l--; sa -= 8; } } str[len] = 0; } /** * This function stores the string name of a named block. It is * more complicated than a simple memcpy() since the named block * descriptor may not be directly accessible. * * @param addr Physical address of the named block descriptor * @param str String to store into the named block string name * @param len Length of the string buffer, which must match the length * stored in the bootmem descriptor. */ void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len) { int l = len; addr |= (1ull << 63); addr += offsetof(struct cvmx_bootmem_named_block_desc, name); while (l) { /* * With big-endian in memory byte order, this gives uniform * results for the CPU in either big or Little endian mode. */ u64 blob = 0; int sa = 56; while (l && sa >= 0) { u64 c = (u8)(*str++); l--; if (l == 0) c = 0; blob |= c << sa; sa -= 8; } cvmx_write64_uint64(addr, blob); addr += sizeof(u64); } } /* See header file for descriptions of functions */ /* * Wrapper functions are provided for reading/writing the size and next block * values as these may not be directly addressible (in 32 bit applications, for * instance.) * * Offsets of data elements in bootmem list, must match * struct cvmx_bootmem_block_header */ #define NEXT_OFFSET 0 #define SIZE_OFFSET 8 static void cvmx_bootmem_phy_set_size(u64 addr, u64 size) { cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size); } static void cvmx_bootmem_phy_set_next(u64 addr, u64 next) { cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next); } static u64 cvmx_bootmem_phy_get_size(u64 addr) { return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)); } static u64 cvmx_bootmem_phy_get_next(u64 addr) { return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)); } /** * Check the version information on the bootmem descriptor * * @param exact_match * Exact major version to check against. A zero means * check that the version supports named blocks. * * @return Zero if the version is correct. Negative if the version is * incorrect. Failures also cause a message to be displayed. */ static int __cvmx_bootmem_check_version(int exact_match) { int major_version; major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version); if (major_version > 3 || (exact_match && major_version) != exact_match) { debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n", major_version, (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version), CAST_ULL(cvmx_bootmem_desc_addr)); return -1; } else { return 0; } } /** * Get the low level bootmem descriptor lock. If no locking * is specified in the flags, then nothing is done. * * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do * nothing. This is used to support nested bootmem calls. */ static inline void __cvmx_bootmem_lock(u32 flags) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) { /* * Unfortunately we can't use the normal cvmx-spinlock code as * the memory for the bootmem descriptor may be not accessible * by a C pointer. We use a 64bit XKPHYS address to access the * memory directly */ u64 lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock)); unsigned int tmp; __asm__ __volatile__(".set noreorder\n" "1: ll %[tmp], 0(%[addr])\n" " bnez %[tmp], 1b\n" " li %[tmp], 1\n" " sc %[tmp], 0(%[addr])\n" " beqz %[tmp], 1b\n" " nop\n" ".set reorder\n" : [tmp] "=&r"(tmp) : [addr] "r"(lock_addr) : "memory"); } } /** * Release the low level bootmem descriptor lock. If no locking * is specified in the flags, then nothing is done. * * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do * nothing. This is used to support nested bootmem calls. */ static inline void __cvmx_bootmem_unlock(u32 flags) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) { /* * Unfortunately we can't use the normal cvmx-spinlock code as * the memory for the bootmem descriptor may be not accessible * by a C pointer. We use a 64bit XKPHYS address to access the * memory directly */ u64 lock_addr = __cvmx_bootmem_get_lock_addr(); CVMX_SYNCW; __asm__ __volatile__("sw $0, 0(%[addr])\n" : : [addr] "r"(lock_addr) : "memory"); CVMX_SYNCW; } } /* * Some of the cvmx-bootmem functions dealing with C pointers are not * supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This * ifndef removes these functions when they aren't needed. * * This functions takes an address range and adjusts it as necessary * to match the ABI that is currently being used. This is required to * ensure that bootmem_alloc* functions only return valid pointers for * 32 bit ABIs */ static int __cvmx_validate_mem_range(u64 *min_addr_ptr, u64 *max_addr_ptr) { u64 max_phys = (1ull << 29) - 0x10; /* KSEG0 */ *min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys); if (!*max_addr_ptr) { *max_addr_ptr = max_phys; } else { *max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr, max_phys), 0x0); } return 0; } u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment, u64 min_addr, u64 max_addr) { s64 address; __cvmx_validate_mem_range(&min_addr, &max_addr); address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0); if (address > 0) return address; else return 0; } void *cvmx_bootmem_alloc_range(u64 size, u64 alignment, u64 min_addr, u64 max_addr) { s64 address; __cvmx_validate_mem_range(&min_addr, &max_addr); address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0); if (address > 0) return cvmx_phys_to_ptr(address); else return NULL; } void *cvmx_bootmem_alloc_address(u64 size, u64 address, u64 alignment) { return cvmx_bootmem_alloc_range(size, alignment, address, address + size); } void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment) { return cvmx_bootmem_alloc_range(size, alignment, node << CVMX_NODE_MEM_SHIFT, ((node + 1) << CVMX_NODE_MEM_SHIFT) - 1); } void *cvmx_bootmem_alloc(u64 size, u64 alignment) { return cvmx_bootmem_alloc_range(size, alignment, 0, 0); } void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr, u64 max_addr, u64 align, const char *name, void (*init)(void *)) { u64 named_block_desc_addr; void *ptr; s64 addr; __cvmx_bootmem_lock(0); __cvmx_validate_mem_range(&min_addr, &max_addr); named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_desc_addr) { addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr, base_addr); __cvmx_bootmem_unlock(0); return cvmx_phys_to_ptr(addr); } addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, CVMX_BOOTMEM_FLAG_NO_LOCKING); if (addr < 0) { __cvmx_bootmem_unlock(0); return NULL; } ptr = cvmx_phys_to_ptr(addr); if (init) init(ptr); else memset(ptr, 0, size); __cvmx_bootmem_unlock(0); return ptr; } void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr, u64 max_addr, u64 align, const char *name, u32 flags) { s64 addr; __cvmx_validate_mem_range(&min_addr, &max_addr); addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, flags); if (addr >= 0) return cvmx_phys_to_ptr(addr); else return NULL; } void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr, u64 max_addr, u64 align, const char *name) { return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr, align, name, 0); } void *cvmx_bootmem_alloc_named_address(u64 size, u64 address, const char *name) { return cvmx_bootmem_alloc_named_range(size, address, address + size, 0, name); } void *cvmx_bootmem_alloc_named(u64 size, u64 alignment, const char *name) { return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name); } void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment, const char *name, u32 flags) { return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment, name, flags); } int cvmx_bootmem_free_named(const char *name) { return cvmx_bootmem_phy_named_block_free(name, 0); } /** * Find a named block with flags * * @param name is the block name * @param flags indicates the need to use locking during search * @return pointer to named block descriptor * * Note: this function returns a pointer to a static structure, * and is therefore not re-entrant. * Making this function re-entrant will break backward compatibility. */ const struct cvmx_bootmem_named_block_desc * __cvmx_bootmem_find_named_block_flags(const char *name, u32 flags) { static struct cvmx_bootmem_named_block_desc desc; u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags); if (named_addr) { desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, base_addr); desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size); strncpy(desc.name, name, sizeof(desc.name)); desc.name[sizeof(desc.name) - 1] = 0; return &desc; } else { return NULL; } } const struct cvmx_bootmem_named_block_desc * cvmx_bootmem_find_named_block(const char *name) { return __cvmx_bootmem_find_named_block_flags(name, 0); } void cvmx_bootmem_print_named(void) { cvmx_bootmem_phy_named_block_print(); } int cvmx_bootmem_init(u64 mem_desc_addr) { if (!cvmx_bootmem_desc_addr) cvmx_bootmem_desc_addr = mem_desc_addr; return 0; } u64 cvmx_bootmem_available_mem(u64 min_block_size) { return cvmx_bootmem_phy_available_mem(min_block_size); } /* * The cvmx_bootmem_phy* functions below return 64 bit physical * addresses, and expose more features that the cvmx_bootmem_functions * above. These are required for full memory space access in 32 bit * applications, as well as for using some advance features. Most * applications should not need to use these. */ s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min, u64 address_max, u64 alignment, u32 flags) { u64 head_addr, ent_addr, ent_size; u64 target_ent_addr = 0, target_prev_addr = 0; u64 target_size = ~0ull; u64 free_start, free_end; u64 next_addr, prev_addr = 0; u64 new_ent_addr = 0, new_ent_size; u64 desired_min_addr, usable_max; u64 align, align_mask; debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n", __func__, CAST_ULL(req_size), CAST_ULL(address_min), CAST_ULL(address_max), CAST_ULL(alignment)); if (__cvmx_bootmem_check_version(0)) return -1; /* * Do a variety of checks to validate the arguments. The * allocator code will later assume that these checks have * been made. We validate that the requested constraints are * not self-contradictory before we look through the list of * available memory */ /* 0 is not a valid req_size for this allocator */ if (!req_size) return -1; /* Round req_size up to multiple of minimum alignment bytes */ req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); /* Make sure alignment is power of 2, and at least the minimum */ for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE; align < (1ull << 48); align <<= 1) { if (align >= alignment) break; } align_mask = ~(align - 1); /* * Adjust address minimum based on requested alignment (round * up to meet alignment). Do this here so we can reject * impossible requests up front. (NOP for address_min == 0) */ address_min = (address_min + (align - 1)) & align_mask; /* * Convert !0 address_min and 0 address_max to special case of * range that specifies an exact memory block to allocate. Do * this before other checks and adjustments so that this * tranformation will be validated */ if (address_min && !address_max) address_max = address_min + req_size; else if (!address_min && !address_max) address_max = ~0ull; /* If no limits given, use max */ /* * Reject inconsistent args. We have adjusted these, so this * may fail due to our internal changes even if this check * would pass for the values the user supplied. */ if (req_size > address_max - address_min) return -1; __cvmx_bootmem_lock(flags); /* Walk through the list entries to find the right fit */ head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); for (ent_addr = head_addr; ent_addr != 0ULL && ent_addr < address_max; prev_addr = ent_addr, ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) { /* Raw free block size */ ent_size = cvmx_bootmem_phy_get_size(ent_addr); next_addr = cvmx_bootmem_phy_get_next(ent_addr); /* Validate the free list ascending order */ if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE || (next_addr && ent_addr > next_addr)) { debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n", __func__, CAST_ULL(ent_addr), CAST_ULL(next_addr)); goto error_out; } /* adjust free block edges for alignment */ free_start = (ent_addr + align - 1) & align_mask; free_end = (ent_addr + ent_size) & align_mask; /* check that free block is large enough */ if ((free_start + req_size) > free_end) continue; /* check that desired start is within the free block */ if (free_end < address_min || free_start > address_max) continue; if ((free_end - address_min) < req_size) continue; if ((address_max - free_start) < req_size) continue; /* Found usebale free block */ target_ent_addr = ent_addr; target_prev_addr = prev_addr; target_size = ent_size; /* Continue looking for highest/best block that fits */ } /* Bail if the search has resulted in no eligible free blocks */ if (target_ent_addr == 0) { debug("%s: eligible free block not found\n", __func__); goto error_out; } /* Found the free block to allocate from */ ent_addr = target_ent_addr; prev_addr = target_prev_addr; ent_size = target_size; debug("%s: using free block at %#010llx size %#llx\n", __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size)); /* Always allocate from the end of a free block */ usable_max = min_t(u64, address_max, ent_addr + ent_size); desired_min_addr = usable_max - req_size; desired_min_addr &= align_mask; /* Split current free block into up to 3 free blocks */ /* Check for head room */ if (desired_min_addr > ent_addr) { /* Create a new free block at the allocation address */ new_ent_addr = desired_min_addr; new_ent_size = ent_size - (desired_min_addr - ent_addr); cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size); /* Split out head room into a new free block */ ent_size -= new_ent_size; cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); cvmx_bootmem_phy_set_size(ent_addr, ent_size); debug("%s: splitting head, addr %#llx size %#llx\n", __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size)); /* Make the allocation target the current free block */ prev_addr = ent_addr; ent_addr = new_ent_addr; ent_size = new_ent_size; } /* Check for tail room */ if ((desired_min_addr + req_size) < (ent_addr + ent_size)) { new_ent_addr = ent_addr + req_size; new_ent_size = ent_size - req_size; /* Create a new free block from tail room */ cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size); debug("%s: splitting tail, addr %#llx size %#llx\n", __func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size)); /* Adjust the current block to exclude tail room */ ent_size = ent_size - new_ent_size; cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); cvmx_bootmem_phy_set_size(ent_addr, ent_size); } /* The current free block IS the allocation target */ if (desired_min_addr != ent_addr || ent_size != req_size) debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n", __func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr), CAST_ULL(ent_size), CAST_ULL(req_size)); /* Remove the current free block from list */ if (prev_addr) { cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr)); } else { /* head of list being returned, so update head ptr */ CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, cvmx_bootmem_phy_get_next(ent_addr)); } __cvmx_bootmem_unlock(flags); debug("%s: allocated size: %#llx, at addr: %#010llx\n", __func__, CAST_ULL(req_size), CAST_ULL(desired_min_addr)); return desired_min_addr; error_out: /* Requested memory not found or argument error */ __cvmx_bootmem_unlock(flags); return -1; } int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags) { u64 cur_addr; u64 prev_addr = 0; /* zero is invalid */ int retval = 0; debug("%s addr: %#llx, size: %#llx\n", __func__, CAST_ULL(phy_addr), CAST_ULL(size)); if (__cvmx_bootmem_check_version(0)) return 0; /* 0 is not a valid size for this allocator */ if (!size || !phy_addr) return 0; /* Round size up to mult of minimum alignment bytes */ size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); __cvmx_bootmem_lock(flags); cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); if (cur_addr == 0 || phy_addr < cur_addr) { /* add at front of list - special case with changing head ptr */ if (cur_addr && phy_addr + size > cur_addr) goto bootmem_free_done; /* error, overlapping section */ else if (phy_addr + size == cur_addr) { /* Add to front of existing first block */ cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr)); cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size); CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr); } else { /* New block before first block */ /* OK if cur_addr is 0 */ cvmx_bootmem_phy_set_next(phy_addr, cur_addr); cvmx_bootmem_phy_set_size(phy_addr, size); CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr); } retval = 1; goto bootmem_free_done; } /* Find place in list to add block */ while (cur_addr && phy_addr > cur_addr) { prev_addr = cur_addr; cur_addr = cvmx_bootmem_phy_get_next(cur_addr); } if (!cur_addr) { /* * We have reached the end of the list, add on to end, checking * to see if we need to combine with last block */ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size); } else { cvmx_bootmem_phy_set_next(prev_addr, phy_addr); cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, 0); } retval = 1; goto bootmem_free_done; } else { /* * insert between prev and cur nodes, checking for merge with * either/both */ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { /* Merge with previous */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size); if (phy_addr + size == cur_addr) { /* Also merge with current */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr)); cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr)); } retval = 1; goto bootmem_free_done; } else if (phy_addr + size == cur_addr) { /* Merge with current */ cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size); cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr)); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); retval = 1; goto bootmem_free_done; } /* It is a standalone block, add in between prev and cur */ cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, cur_addr); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); } retval = 1; bootmem_free_done: __cvmx_bootmem_unlock(flags); return retval; } void cvmx_bootmem_phy_list_print(void) { u64 addr; addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n", CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr)); printf("Descriptor version: %d.%d\n", (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version), (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version)); if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3) debug("Warning: Bootmem descriptor version is newer than expected\n"); if (!addr) printf("mem list is empty!\n"); while (addr) { printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr), CAST_ULL(cvmx_bootmem_phy_get_size(addr)), CAST_ULL(cvmx_bootmem_phy_get_next(addr))); addr = cvmx_bootmem_phy_get_next(addr); } printf("\n\n"); } u64 cvmx_bootmem_phy_available_mem(u64 min_block_size) { u64 addr; u64 available_mem = 0; __cvmx_bootmem_lock(0); addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); while (addr) { if (cvmx_bootmem_phy_get_size(addr) >= min_block_size) available_mem += cvmx_bootmem_phy_get_size(addr); addr = cvmx_bootmem_phy_get_next(addr); } __cvmx_bootmem_unlock(0); return available_mem; } u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags) { u64 result = 0; debug("%s: %s\n", __func__, name); __cvmx_bootmem_lock(flags); if (!__cvmx_bootmem_check_version(3)) { int i; u64 named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr); int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks); int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len); u64 named_addr = named_block_array_addr; for (i = 0; i < num_blocks; i++) { u64 named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size); if (name && named_size) { char name_tmp[name_length + 1]; CVMX_BOOTMEM_NAMED_GET_NAME(named_addr, name_tmp, name_length); if (!strncmp(name, name_tmp, name_length)) { result = named_addr; break; } } else if (!name && !named_size) { result = named_addr; break; } named_addr += sizeof(struct cvmx_bootmem_named_block_desc); } } __cvmx_bootmem_unlock(flags); return result; } int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags) { u64 named_block_addr; if (__cvmx_bootmem_check_version(3)) return 0; debug("%s: %s\n", __func__, name); /* * Take lock here, as name lookup/block free/name free need to be * atomic */ __cvmx_bootmem_lock(flags); named_block_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_addr) { u64 named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr); u64 named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size); debug("%s: %s, base: 0x%llx, size: 0x%llx\n", __func__, name, CAST_ULL(named_addr), CAST_ULL(named_size)); __cvmx_bootmem_phy_free(named_addr, named_size, CVMX_BOOTMEM_FLAG_NO_LOCKING); /* Set size to zero to indicate block not used. */ CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0); } __cvmx_bootmem_unlock(flags); return !!named_block_addr; /* 0 on failure, 1 on success */ } s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr, u64 max_addr, u64 alignment, const char *name, u32 flags) { s64 addr_allocated; u64 named_block_desc_addr; debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n", __func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr), CAST_ULL(alignment), name); if (__cvmx_bootmem_check_version(3)) return -1; /* * Take lock here, as name lookup/block alloc/name add need to be * atomic */ __cvmx_bootmem_lock(flags); named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_desc_addr) { __cvmx_bootmem_unlock(flags); return -1; } /* Get pointer to first available named block descriptor */ named_block_desc_addr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (!named_block_desc_addr) { __cvmx_bootmem_unlock(flags); return -1; } /* * Round size up to mult of minimum alignment bytes * We need the actual size allocated to allow for blocks to be * coallesced when they are freed. The alloc routine does the * same rounding up on all allocations. */ size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (addr_allocated >= 0) { CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr, addr_allocated); CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size); CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name, CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len)); } __cvmx_bootmem_unlock(flags); return addr_allocated; } void cvmx_bootmem_phy_named_block_print(void) { int i; int printed = 0; u64 named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr); int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks); int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len); u64 named_block_addr = named_block_array_addr; debug("%s: desc addr: 0x%llx\n", __func__, CAST_ULL(cvmx_bootmem_desc_addr)); if (__cvmx_bootmem_check_version(3)) return; printf("List of currently allocated named bootmem blocks:\n"); for (i = 0; i < num_blocks; i++) { u64 named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size); if (named_size) { char name_tmp[name_length + 1]; u64 named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr); CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp, name_length); printed++; printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp, CAST_ULL(named_addr), CAST_ULL(named_size), i); } named_block_addr += sizeof(struct cvmx_bootmem_named_block_desc); } if (!printed) printf("No named bootmem blocks exist.\n"); } s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size, u32 low_reserved_bytes, struct cvmx_bootmem_desc *desc_buffer) { u64 cur_block_addr; s64 addr; int i; debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n", __func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr)); /* * Descriptor buffer needs to be in 32 bit addressable space to be * compatible with 32 bit applications */ if (!desc_buffer) { debug("ERROR: no memory for cvmx_bootmem descriptor provided\n"); return 0; } if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { mem_size = OCTEON_MAX_PHY_MEM_SIZE; debug("ERROR: requested memory size too large, truncating to maximum size\n"); } if (cvmx_bootmem_desc_addr) return 1; /* Initialize cvmx pointer to descriptor */ cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer)); /* Fill the bootmem descriptor */ CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0); CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0); CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0); CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER); CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER); CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0); CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0); /* * Set up global pointer to start of list, exclude low 64k for exception * vectors, space for global descriptor */ cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes); if (mem_size <= OCTEON_DDR0_SIZE) { __cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0); goto frees_done; } __cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0); mem_size -= OCTEON_DDR0_SIZE; /* Add DDR2 block next if present */ if (mem_size > OCTEON_DDR1_SIZE) { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0); } else { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); } frees_done: /* Initialize the named block structure */ CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN); CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, CVMX_BOOTMEM_NUM_NAMED_BLOCKS); CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0); /* Allocate this near the top of the low 256 MBytes of memory */ addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(struct cvmx_bootmem_named_block_desc), 0, 0x10000000, 0, CVMX_BOOTMEM_FLAG_END_ALLOC); if (addr >= 0) CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr); debug("%s: named_block_array_addr: 0x%llx)\n", __func__, CAST_ULL(addr)); if (addr < 0) { debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n"); return 0; } for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) { CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0); CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0); addr += sizeof(struct cvmx_bootmem_named_block_desc); } return 1; } s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask, u32 mem_sizes[], u32 low_reserved_bytes, struct cvmx_bootmem_desc *desc_buffer) { u64 cur_block_addr; u64 mem_size; s64 addr; int i; int node; u64 node_base; /* Make u64 to reduce type casting */ mem_sizes[0] = gd->ram_size / (1024 * 1024); debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n", desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr)); /* * Descriptor buffer needs to be in 32 bit addressable space to be * compatible with 32 bit applications */ if (!desc_buffer) { debug("ERROR: no memory for cvmx_bootmem descriptor provided\n"); return 0; } cvmx_coremask_for_each_node(node, node_mask) { if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) { mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE / (1024 * 1024); debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n", CAST_ULL(node)); } } if (cvmx_bootmem_desc_addr) return 1; /* Initialize cvmx pointer to descriptor */ cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer)); /* Fill the bootmem descriptor */ CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0); CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0); CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0); CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER); CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER); CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0); CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0); cvmx_coremask_for_each_node(node, node_mask) { if (node != 0) /* do not reserve memory on remote nodes */ low_reserved_bytes = 0; mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */ /* * Set up global pointer to start of list, exclude low 64k * for exception vectors, space for global descriptor */ node_base = (u64)node << CVMX_NODE_MEM_SHIFT; cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) | node_base; if (mem_size <= OCTEON_DDR0_SIZE) { __cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0); continue; } __cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0); mem_size -= OCTEON_DDR0_SIZE; /* Add DDR2 block next if present */ if (mem_size > OCTEON_DDR1_SIZE) { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE | node_base, OCTEON_DDR1_SIZE, 0); __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE | node_base, mem_size - OCTEON_DDR1_SIZE, 0); } else { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE | node_base, mem_size, 0); } } debug("%s: Initialize the named block\n", __func__); /* Initialize the named block structure */ CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN); CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, CVMX_BOOTMEM_NUM_NAMED_BLOCKS); CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0); /* Allocate this near the top of the low 256 MBytes of memory */ addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(struct cvmx_bootmem_named_block_desc), 0, 0x10000000, 0, CVMX_BOOTMEM_FLAG_END_ALLOC); if (addr >= 0) CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr); debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n", CAST_ULL(addr)); if (addr < 0) { debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n"); return 0; } for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) { CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0); CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0); addr += sizeof(struct cvmx_bootmem_named_block_desc); } // test-only: DEBUG ifdef??? cvmx_bootmem_phy_list_print(); return 1; } int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size, const char *name, u32 flags) { u64 addr; int rc = 1; static unsigned int block_num; char block_name[CVMX_BOOTMEM_NAME_LEN]; debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n", __func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags); if (__cvmx_bootmem_check_version(3)) return 0; addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); if (!addr) return 0; if (!name) name = "__cvmx_bootmem_reserved"; while (addr && rc) { u64 block_size = cvmx_bootmem_phy_get_size(addr); u64 reserve_size = 0; if (addr >= start_addr && addr < start_addr + size) { reserve_size = size - (addr - start_addr); if (block_size < reserve_size) reserve_size = block_size; } else if (start_addr > addr && start_addr < (addr + block_size)) { reserve_size = block_size - (start_addr - addr); } if (reserve_size) { snprintf(block_name, sizeof(block_name), "%.32s_%012llx_%u", name, (unsigned long long)start_addr, (unsigned int)block_num); debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n", __func__, CAST_ULL(reserve_size), CAST_ULL(addr), block_name); if (cvmx_bootmem_phy_named_block_alloc(reserve_size, addr, 0, 0, block_name, flags) == -1) { debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n", __func__, CAST_ULL(reserve_size), (unsigned long long)addr); rc = 0; break; } debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n", __func__, CAST_ULL(reserve_size), CAST_ULL(addr), block_name); } addr = cvmx_bootmem_phy_get_next(addr); block_num++; } return rc; } void cvmx_bootmem_lock(void) { __cvmx_bootmem_lock(0); } void cvmx_bootmem_unlock(void) { __cvmx_bootmem_unlock(0); } void *__cvmx_phys_addr_to_ptr(u64 phys, int size) { void *tmp; if (sizeof(void *) == 8) { tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys)); } else { u32 phy32 = (u32)(phys & 0x7fffffffULL); tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, phy32)); } return tmp; } void *__cvmx_bootmem_internal_get_desc_ptr(void) { return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr); }