// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2007 * Sascha Hauer, Pengutronix * * (C) Copyright 2009 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_FSL_ESDHC_IMX #include #endif static u32 reset_cause = -1; u32 get_imx_reset_cause(void) { struct src *src_regs = (struct src *)SRC_BASE_ADDR; if (reset_cause == -1) { reset_cause = readl(&src_regs->srsr); /* preserve the value for U-Boot proper */ #if !defined(CONFIG_SPL_BUILD) writel(reset_cause, &src_regs->srsr); #endif } return reset_cause; } #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD) static char *get_reset_cause(void) { switch (get_imx_reset_cause()) { case 0x00001: case 0x00011: return "POR"; case 0x00004: return "CSU"; case 0x00008: return "IPP USER"; case 0x00010: #ifdef CONFIG_MX7 return "WDOG1"; #else return "WDOG"; #endif case 0x00020: return "JTAG HIGH-Z"; case 0x00040: return "JTAG SW"; case 0x00080: return "WDOG3"; #ifdef CONFIG_MX7 case 0x00100: return "WDOG4"; case 0x00200: return "TEMPSENSE"; #elif defined(CONFIG_IMX8M) case 0x00100: return "WDOG2"; case 0x00200: return "TEMPSENSE"; #else case 0x00100: return "TEMPSENSE"; case 0x10000: return "WARM BOOT"; #endif default: return "unknown reset"; } } #endif #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD) const char *get_imx_type(u32 imxtype) { switch (imxtype) { case MXC_CPU_IMX8MN: return "8MNano";/* Quad-core version of the imx8mn */ case MXC_CPU_IMX8MM: return "8MMQ"; /* Quad-core version of the imx8mm */ case MXC_CPU_IMX8MML: return "8MMQL"; /* Quad-core Lite version of the imx8mm */ case MXC_CPU_IMX8MMD: return "8MMD"; /* Dual-core version of the imx8mm */ case MXC_CPU_IMX8MMDL: return "8MMDL"; /* Dual-core Lite version of the imx8mm */ case MXC_CPU_IMX8MMS: return "8MMS"; /* Single-core version of the imx8mm */ case MXC_CPU_IMX8MMSL: return "8MMSL"; /* Single-core Lite version of the imx8mm */ case MXC_CPU_IMX8MQ: return "8MQ"; /* Quad-core version of the imx8m */ case MXC_CPU_MX7S: return "7S"; /* Single-core version of the mx7 */ case MXC_CPU_MX7D: return "7D"; /* Dual-core version of the mx7 */ case MXC_CPU_MX6QP: return "6QP"; /* Quad-Plus version of the mx6 */ case MXC_CPU_MX6DP: return "6DP"; /* Dual-Plus version of the mx6 */ case MXC_CPU_MX6Q: return "6Q"; /* Quad-core version of the mx6 */ case MXC_CPU_MX6D: return "6D"; /* Dual-core version of the mx6 */ case MXC_CPU_MX6DL: return "6DL"; /* Dual Lite version of the mx6 */ case MXC_CPU_MX6SOLO: return "6SOLO"; /* Solo version of the mx6 */ case MXC_CPU_MX6SL: return "6SL"; /* Solo-Lite version of the mx6 */ case MXC_CPU_MX6SLL: return "6SLL"; /* SLL version of the mx6 */ case MXC_CPU_MX6SX: return "6SX"; /* SoloX version of the mx6 */ case MXC_CPU_MX6UL: return "6UL"; /* Ultra-Lite version of the mx6 */ case MXC_CPU_MX6ULL: return "6ULL"; /* ULL version of the mx6 */ case MXC_CPU_MX6ULZ: return "6ULZ"; /* ULZ version of the mx6 */ case MXC_CPU_MX51: return "51"; case MXC_CPU_MX53: return "53"; default: return "??"; } } int print_cpuinfo(void) { u32 cpurev; __maybe_unused u32 max_freq; cpurev = get_cpu_rev(); #if defined(CONFIG_IMX_THERMAL) struct udevice *thermal_dev; int cpu_tmp, minc, maxc, ret; printf("CPU: Freescale i.MX%s rev%d.%d", get_imx_type((cpurev & 0xFF000) >> 12), (cpurev & 0x000F0) >> 4, (cpurev & 0x0000F) >> 0); max_freq = get_cpu_speed_grade_hz(); if (!max_freq || max_freq == mxc_get_clock(MXC_ARM_CLK)) { printf(" at %dMHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000); } else { printf(" %d MHz (running at %d MHz)\n", max_freq / 1000000, mxc_get_clock(MXC_ARM_CLK) / 1000000); } #else printf("CPU: Freescale i.MX%s rev%d.%d at %d MHz\n", get_imx_type((cpurev & 0xFF000) >> 12), (cpurev & 0x000F0) >> 4, (cpurev & 0x0000F) >> 0, mxc_get_clock(MXC_ARM_CLK) / 1000000); #endif #if defined(CONFIG_IMX_THERMAL) puts("CPU: "); switch (get_cpu_temp_grade(&minc, &maxc)) { case TEMP_AUTOMOTIVE: puts("Automotive temperature grade "); break; case TEMP_INDUSTRIAL: puts("Industrial temperature grade "); break; case TEMP_EXTCOMMERCIAL: puts("Extended Commercial temperature grade "); break; default: puts("Commercial temperature grade "); break; } printf("(%dC to %dC)", minc, maxc); ret = uclass_get_device(UCLASS_THERMAL, 0, &thermal_dev); if (!ret) { ret = thermal_get_temp(thermal_dev, &cpu_tmp); if (!ret) printf(" at %dC\n", cpu_tmp); else debug(" - invalid sensor data\n"); } else { debug(" - invalid sensor device\n"); } #endif printf("Reset cause: %s\n", get_reset_cause()); return 0; } #endif int cpu_eth_init(bd_t *bis) { int rc = -ENODEV; #if defined(CONFIG_FEC_MXC) rc = fecmxc_initialize(bis); #endif return rc; } #ifdef CONFIG_FSL_ESDHC_IMX /* * Initializes on-chip MMC controllers. * to override, implement board_mmc_init() */ int cpu_mmc_init(bd_t *bis) { return fsl_esdhc_mmc_init(bis); } #endif #if !(defined(CONFIG_MX7) || defined(CONFIG_IMX8M)) u32 get_ahb_clk(void) { struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; u32 reg, ahb_podf; reg = __raw_readl(&imx_ccm->cbcdr); reg &= MXC_CCM_CBCDR_AHB_PODF_MASK; ahb_podf = reg >> MXC_CCM_CBCDR_AHB_PODF_OFFSET; return get_periph_clk() / (ahb_podf + 1); } #endif void arch_preboot_os(void) { #if defined(CONFIG_PCIE_IMX) && !CONFIG_IS_ENABLED(DM_PCI) imx_pcie_remove(); #endif #if defined(CONFIG_SATA) if (!is_mx6sdl()) { sata_remove(0); #if defined(CONFIG_MX6) disable_sata_clock(); #endif } #endif #if defined(CONFIG_VIDEO_IPUV3) /* disable video before launching O/S */ ipuv3_fb_shutdown(); #endif #if defined(CONFIG_VIDEO_MXS) && !defined(CONFIG_DM_VIDEO) lcdif_power_down(); #endif } #ifndef CONFIG_IMX8M void set_chipselect_size(int const cs_size) { unsigned int reg; struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; reg = readl(&iomuxc_regs->gpr[1]); switch (cs_size) { case CS0_128: reg &= ~0x7; /* CS0=128MB, CS1=0, CS2=0, CS3=0 */ reg |= 0x5; break; case CS0_64M_CS1_64M: reg &= ~0x3F; /* CS0=64MB, CS1=64MB, CS2=0, CS3=0 */ reg |= 0x1B; break; case CS0_64M_CS1_32M_CS2_32M: reg &= ~0x1FF; /* CS0=64MB, CS1=32MB, CS2=32MB, CS3=0 */ reg |= 0x4B; break; case CS0_32M_CS1_32M_CS2_32M_CS3_32M: reg &= ~0xFFF; /* CS0=32MB, CS1=32MB, CS2=32MB, CS3=32MB */ reg |= 0x249; break; default: printf("Unknown chip select size: %d\n", cs_size); break; } writel(reg, &iomuxc_regs->gpr[1]); } #endif #if defined(CONFIG_MX7) || defined(CONFIG_IMX8M) /* * OCOTP_TESTER3[9:8] (see Fusemap Description Table offset 0x440) * defines a 2-bit SPEED_GRADING */ #define OCOTP_TESTER3_SPEED_SHIFT 8 enum cpu_speed { OCOTP_TESTER3_SPEED_GRADE0, OCOTP_TESTER3_SPEED_GRADE1, OCOTP_TESTER3_SPEED_GRADE2, OCOTP_TESTER3_SPEED_GRADE3, }; u32 get_cpu_speed_grade_hz(void) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; uint32_t val; val = readl(&fuse->tester3); val >>= OCOTP_TESTER3_SPEED_SHIFT; val &= 0x3; switch(val) { case OCOTP_TESTER3_SPEED_GRADE0: return 800000000; case OCOTP_TESTER3_SPEED_GRADE1: return is_mx7() ? 500000000 : 1000000000; case OCOTP_TESTER3_SPEED_GRADE2: return is_mx7() ? 1000000000 : 1300000000; case OCOTP_TESTER3_SPEED_GRADE3: return is_mx7() ? 1200000000 : 1500000000; } return 0; } /* * OCOTP_TESTER3[7:6] (see Fusemap Description Table offset 0x440) * defines a 2-bit SPEED_GRADING */ #define OCOTP_TESTER3_TEMP_SHIFT 6 u32 get_cpu_temp_grade(int *minc, int *maxc) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; uint32_t val; val = readl(&fuse->tester3); val >>= OCOTP_TESTER3_TEMP_SHIFT; val &= 0x3; if (minc && maxc) { if (val == TEMP_AUTOMOTIVE) { *minc = -40; *maxc = 125; } else if (val == TEMP_INDUSTRIAL) { *minc = -40; *maxc = 105; } else if (val == TEMP_EXTCOMMERCIAL) { *minc = -20; *maxc = 105; } else { *minc = 0; *maxc = 95; } } return val; } #endif #if defined(CONFIG_MX7) || defined(CONFIG_IMX8M) enum boot_device get_boot_device(void) { struct bootrom_sw_info **p = (struct bootrom_sw_info **)(ulong)ROM_SW_INFO_ADDR; enum boot_device boot_dev = SD1_BOOT; u8 boot_type = (*p)->boot_dev_type; u8 boot_instance = (*p)->boot_dev_instance; switch (boot_type) { case BOOT_TYPE_SD: boot_dev = boot_instance + SD1_BOOT; break; case BOOT_TYPE_MMC: boot_dev = boot_instance + MMC1_BOOT; break; case BOOT_TYPE_NAND: boot_dev = NAND_BOOT; break; case BOOT_TYPE_QSPI: boot_dev = QSPI_BOOT; break; case BOOT_TYPE_WEIM: boot_dev = WEIM_NOR_BOOT; break; case BOOT_TYPE_SPINOR: boot_dev = SPI_NOR_BOOT; break; #ifdef CONFIG_IMX8M case BOOT_TYPE_USB: boot_dev = USB_BOOT; break; #endif default: break; } return boot_dev; } #endif #ifdef CONFIG_NXP_BOARD_REVISION int nxp_board_rev(void) { /* * Get Board ID information from OCOTP_GP1[15:8] * RevA: 0x1 * RevB: 0x2 * RevC: 0x3 */ struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[4]; struct fuse_bank4_regs *fuse = (struct fuse_bank4_regs *)bank->fuse_regs; return (readl(&fuse->gp1) >> 8 & 0x0F); } char nxp_board_rev_string(void) { const char *rev = "A"; return (*rev + nxp_board_rev() - 1); } #endif