// SPDX-License-Identifier: GPL-2.0+ /* * Freescale i.MX28 Boot PMIC init * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH */ #include #include #include #include #include #include #include "mxs_init.h" #ifdef CONFIG_SYS_MXS_VDD5V_ONLY #define DCDC4P2_DROPOUT_CONFIG POWER_DCDC4P2_DROPOUT_CTRL_100MV | \ POWER_DCDC4P2_DROPOUT_CTRL_SRC_4P2 #else #define DCDC4P2_DROPOUT_CONFIG POWER_DCDC4P2_DROPOUT_CTRL_100MV | \ POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL #endif /** * mxs_power_clock2xtal() - Switch CPU core clock source to 24MHz XTAL * * This function switches the CPU core clock from PLL to 24MHz XTAL * oscilator. This is necessary if the PLL is being reconfigured to * prevent crash of the CPU core. */ static void mxs_power_clock2xtal(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; debug("SPL: Switching CPU clock to 24MHz XTAL\n"); /* Set XTAL as CPU reference clock */ writel(CLKCTRL_CLKSEQ_BYPASS_CPU, &clkctrl_regs->hw_clkctrl_clkseq_set); } /** * mxs_power_clock2pll() - Switch CPU core clock source to PLL * * This function switches the CPU core clock from 24MHz XTAL oscilator * to PLL. This can only be called once the PLL has re-locked and once * the PLL is stable after reconfiguration. */ static void mxs_power_clock2pll(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; debug("SPL: Switching CPU core clock source to PLL\n"); /* * TODO: Are we really? It looks like we turn on PLL0, but we then * set the CLKCTRL_CLKSEQ_BYPASS_CPU bit of the (which was already * set by mxs_power_clock2xtal()). Clearing this bit here seems to * introduce some instability (causing the CPU core to hang). Maybe * we aren't giving PLL0 enough time to stabilise? */ setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0, CLKCTRL_PLL0CTRL0_POWER); early_delay(100); /* * TODO: Should the PLL0 FORCE_LOCK bit be set here followed be a * wait on the PLL0 LOCK bit? */ setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq, CLKCTRL_CLKSEQ_BYPASS_CPU); } /** * mxs_power_set_auto_restart() - Set the auto-restart bit * * This function ungates the RTC block and sets the AUTO_RESTART * bit to work around a design bug on MX28EVK Rev. A . */ static void mxs_power_set_auto_restart(void) { struct mxs_rtc_regs *rtc_regs = (struct mxs_rtc_regs *)MXS_RTC_BASE; debug("SPL: Setting auto-restart bit\n"); writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr); while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST) ; writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr); while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE) ; /* Do nothing if flag already set */ if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART) return; while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK) ; setbits_le32(&rtc_regs->hw_rtc_persistent0, RTC_PERSISTENT0_AUTO_RESTART); writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set); writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr); while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK) ; while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK) ; } /** * mxs_power_set_linreg() - Set linear regulators 25mV below DC-DC converter * * This function configures the VDDIO, VDDA and VDDD linear regulators output * to be 25mV below the VDDIO, VDDA and VDDD output from the DC-DC switching * converter. This is the recommended setting for the case where we use both * linear regulators and DC-DC converter to power the VDDIO rail. */ static void mxs_power_set_linreg(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Set linear regulator 25mV below switching converter */ debug("SPL: Setting VDDD 25mV below DC-DC converters\n"); clrsetbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_LINREG_OFFSET_MASK, POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW); debug("SPL: Setting VDDA 25mV below DC-DC converters\n"); clrsetbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_LINREG_OFFSET_MASK, POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW); debug("SPL: Setting VDDIO 25mV below DC-DC converters\n"); clrsetbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_LINREG_OFFSET_MASK, POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW); } /** * mxs_get_batt_volt() - Measure battery input voltage * * This function retrieves the battery input voltage and returns it. */ static int mxs_get_batt_volt(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t volt = readl(&power_regs->hw_power_battmonitor); volt &= POWER_BATTMONITOR_BATT_VAL_MASK; volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET; volt *= 8; debug("SPL: Battery Voltage = %dmV\n", volt); return volt; } /** * mxs_is_batt_ready() - Test if the battery provides enough voltage to boot * * This function checks if the battery input voltage is higher than 3.6V and * therefore allows the system to successfully boot using this power source. */ static int mxs_is_batt_ready(void) { return (mxs_get_batt_volt() >= 3600); } /** * mxs_is_batt_good() - Test if battery is operational at all * * This function starts recharging the battery and tests if the input current * provided by the 5V input recharging the battery is also sufficient to power * the DC-DC converter. */ static int mxs_is_batt_good(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t volt = mxs_get_batt_volt(); if ((volt >= 2400) && (volt <= 4300)) { debug("SPL: Battery is good\n"); return 1; } clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, 0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_clr); clrsetbits_le32(&power_regs->hw_power_charge, POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK, POWER_CHARGE_STOP_ILIMIT_10MA | 0x3); writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_clr); early_delay(500000); volt = mxs_get_batt_volt(); if (volt >= 3500) { debug("SPL: Battery Voltage too high\n"); return 0; } if (volt >= 2400) { debug("SPL: Battery is good\n"); return 1; } writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK, &power_regs->hw_power_charge_clr); writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set); debug("SPL: Battery Voltage too low\n"); return 0; } /** * mxs_power_setup_5v_detect() - Start the 5V input detection comparator * * This function enables the 5V detection comparator and sets the 5V valid * threshold to 4.4V . We use 4.4V threshold here to make sure that even * under high load, the voltage drop on the 5V input won't be so critical * to cause undervolt on the 4P2 linear regulator supplying the DC-DC * converter and thus making the system crash. */ static void mxs_power_setup_5v_detect(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Start 5V detection */ debug("SPL: Starting 5V input detection comparator\n"); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_VBUSVALID_TRSH_MASK, POWER_5VCTRL_VBUSVALID_TRSH_4V4 | POWER_5VCTRL_PWRUP_VBUS_CMPS); } /** * mxs_power_switch_dcdc_clocksource() - Switch PLL clock for DC-DC converters * @freqsel: One of the POWER_MISC_FREQSEL_xxx defines to select the clock * * This function configures and then enables an alternative PLL clock source * for the DC-DC converters. */ void mxs_power_switch_dcdc_clocksource(uint32_t freqsel) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Select clocksource for DC-DC converters */ clrsetbits_le32(&power_regs->hw_power_misc, POWER_MISC_FREQSEL_MASK, freqsel); setbits_le32(&power_regs->hw_power_misc, POWER_MISC_SEL_PLLCLK); } /** * mxs_power_setup_dcdc_clocksource() - Setup PLL clock source for DC-DC converters * * Normally, there is no need to switch DC-DC clocksource. This is the reason, * why this function is a stub and does nothing. However, boards can implement * this function when required and call mxs_power_switch_dcdc_clocksource() to * switch to an alternative clock source. */ __weak void mxs_power_setup_dcdc_clocksource(void) { debug("SPL: Using default DC-DC clocksource\n"); } /** * mxs_src_power_init() - Preconfigure the power block * * This function configures reasonable values for the DC-DC control loop * and battery monitor. */ static void mxs_src_power_init(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Pre-Configuring power block\n"); /* Improve efficieny and reduce transient ripple */ writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST | POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set); clrsetbits_le32(&power_regs->hw_power_dclimits, POWER_DCLIMITS_POSLIMIT_BUCK_MASK, 0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET); setbits_le32(&power_regs->hw_power_battmonitor, POWER_BATTMONITOR_EN_BATADJ); /* Increase the RCSCALE level for quick DCDC response to dynamic load */ clrsetbits_le32(&power_regs->hw_power_loopctrl, POWER_LOOPCTRL_EN_RCSCALE_MASK, POWER_LOOPCTRL_RCSCALE_THRESH | POWER_LOOPCTRL_EN_RCSCALE_8X); clrsetbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS); /* 5V to battery handoff ... FIXME */ setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); early_delay(30); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); } /** * mxs_power_init_4p2_params() - Configure the parameters of the 4P2 regulator * * This function configures the necessary parameters for the 4P2 linear * regulator to supply the DC-DC converter from 5V input. */ static void mxs_power_init_4p2_params(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Configuring common 4P2 regulator params\n"); /* Setup 4P2 parameters */ clrsetbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK, POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET)); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_HEADROOM_ADJ_MASK, 0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET); clrsetbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_DROPOUT_CTRL_MASK, DCDC4P2_DROPOUT_CONFIG); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); } /** * mxs_enable_4p2_dcdc_input() - Enable or disable the DCDC input from 4P2 * @xfer: Select if the input shall be enabled or disabled * * This function enables or disables the 4P2 input into the DC-DC converter. */ static void mxs_enable_4p2_dcdc_input(int xfer) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo; uint32_t prev_5v_brnout, prev_5v_droop; debug("SPL: %s 4P2 DC-DC Input\n", xfer ? "Enabling" : "Disabling"); if (xfer && (readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_ENABLE_DCDC)) { return; } prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_PWDN_5VBRNOUT; prev_5v_droop = readl(&power_regs->hw_power_ctrl) & POWER_CTRL_ENIRQ_VDD5V_DROOP; clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT); writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, &power_regs->hw_power_reset); clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP); /* * Recording orignal values that will be modified temporarlily * to handle a chip bug. See chip errata for CQ ENGR00115837 */ tmp = readl(&power_regs->hw_power_5vctrl); vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK; vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT; pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO; /* * Disable mechanisms that get erroneously tripped by when setting * the DCDC4P2 EN_DCDC */ clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_VBUSVALID_5VDETECT | POWER_5VCTRL_VBUSVALID_TRSH_MASK); writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set); if (xfer) { setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); early_delay(20); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC); } else { setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC); } early_delay(25); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh); if (vbus_5vdetect) writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set); if (!pwd_bo) clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO); while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) writel(POWER_CTRL_VBUS_VALID_IRQ, &power_regs->hw_power_ctrl_clr); if (prev_5v_brnout) { writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set); writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset); } else { writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_clr); writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, &power_regs->hw_power_reset); } while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ) writel(POWER_CTRL_VDD5V_DROOP_IRQ, &power_regs->hw_power_ctrl_clr); if (prev_5v_droop) clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP); else setbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP); } /** * mxs_power_init_4p2_regulator() - Start the 4P2 regulator * * This function enables the 4P2 regulator and switches the DC-DC converter * to use the 4P2 input. */ static void mxs_power_init_4p2_regulator(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp, tmp2; debug("SPL: Enabling 4P2 regulator\n"); setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2); writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set); writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, &power_regs->hw_power_5vctrl_clr); clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK); /* Power up the 4p2 rail and logic/control */ writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_clr); /* * Start charging up the 4p2 capacitor. We ramp of this charge * gradually to avoid large inrush current from the 5V cable which can * cause transients/problems */ debug("SPL: Charging 4P2 capacitor\n"); mxs_enable_4p2_dcdc_input(0); if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) { /* * If we arrived here, we were unable to recover from mx23 chip * errata 5837. 4P2 is disabled and sufficient battery power is * not present. Exiting to not enable DCDC power during 5V * connected state. */ clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_set); debug("SPL: Unable to recover from mx23 errata 5837\n"); hang(); } /* * Here we set the 4p2 brownout level to something very close to 4.2V. * We then check the brownout status. If the brownout status is false, * the voltage is already close to the target voltage of 4.2V so we * can go ahead and set the 4P2 current limit to our max target limit. * If the brownout status is true, we need to ramp us the current limit * so that we don't cause large inrush current issues. We step up the * current limit until the brownout status is false or until we've * reached our maximum defined 4p2 current limit. */ debug("SPL: Setting 4P2 brownout level\n"); clrsetbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK, 22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */ if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) { setbits_le32(&power_regs->hw_power_5vctrl, 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); } else { tmp = (readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >> POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET; while (tmp < 0x3f) { if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) { tmp = readl(&power_regs->hw_power_5vctrl); tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK; early_delay(100); writel(tmp, &power_regs->hw_power_5vctrl); break; } else { tmp++; tmp2 = readl(&power_regs->hw_power_5vctrl); tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK; tmp2 |= tmp << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET; writel(tmp2, &power_regs->hw_power_5vctrl); early_delay(100); } } } clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK); writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); } /** * mxs_power_init_dcdc_4p2_source() - Switch DC-DC converter to 4P2 source * * This function configures the DC-DC converter to be supplied from the 4P2 * linear regulator. */ static void mxs_power_init_dcdc_4p2_source(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Switching DC-DC converters to 4P2\n"); if (!(readl(&power_regs->hw_power_dcdc4p2) & POWER_DCDC4P2_ENABLE_DCDC)) { debug("SPL: Already switched - aborting\n"); hang(); } mxs_enable_4p2_dcdc_input(1); if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) { clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC); writel(POWER_5VCTRL_ENABLE_DCDC, &power_regs->hw_power_5vctrl_clr); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_set); } } /** * mxs_power_enable_4p2() - Power up the 4P2 regulator * * This function drives the process of powering up the 4P2 linear regulator * and switching the DC-DC converter input over to the 4P2 linear regulator. */ static void mxs_power_enable_4p2(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t vdddctrl, vddactrl, vddioctrl; uint32_t tmp; debug("SPL: Powering up 4P2 regulator\n"); vdddctrl = readl(&power_regs->hw_power_vdddctrl); vddactrl = readl(&power_regs->hw_power_vddactrl); vddioctrl = readl(&power_regs->hw_power_vddioctrl); setbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG | POWER_VDDDCTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG | POWER_VDDACTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT); mxs_power_init_4p2_params(); mxs_power_init_4p2_regulator(); /* Shutdown battery (none present) */ if (!mxs_is_batt_ready()) { clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK); writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr); } mxs_power_init_dcdc_4p2_source(); writel(vddioctrl, &power_regs->hw_power_vddioctrl); early_delay(20); writel(vddactrl, &power_regs->hw_power_vddactrl); early_delay(20); writel(vdddctrl, &power_regs->hw_power_vdddctrl); /* * Check if FET is enabled on either powerout and if so, * disable load. */ tmp = 0; tmp |= !(readl(&power_regs->hw_power_vdddctrl) & POWER_VDDDCTRL_DISABLE_FET); tmp |= !(readl(&power_regs->hw_power_vddactrl) & POWER_VDDACTRL_DISABLE_FET); tmp |= !(readl(&power_regs->hw_power_vddioctrl) & POWER_VDDIOCTRL_DISABLE_FET); if (tmp) writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr); debug("SPL: 4P2 regulator powered-up\n"); } /** * mxs_boot_valid_5v() - Boot from 5V supply * * This function configures the power block to boot from valid 5V input. * This is called only if the 5V is reliable and can properly supply the * CPU. This function proceeds to configure the 4P2 converter to be supplied * from the 5V input. */ static void mxs_boot_valid_5v(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Booting from 5V supply\n"); /* * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V * disconnect event. FIXME */ writel(POWER_5VCTRL_VBUSVALID_5VDETECT, &power_regs->hw_power_5vctrl_set); /* Configure polarity to check for 5V disconnection. */ writel(POWER_CTRL_POLARITY_VBUSVALID | POWER_CTRL_POLARITY_VDD5V_GT_VDDIO, &power_regs->hw_power_ctrl_clr); writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ, &power_regs->hw_power_ctrl_clr); mxs_power_enable_4p2(); } /** * mxs_powerdown() - Shut down the system * * This function powers down the CPU completely. */ static void mxs_powerdown(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("Powering Down\n"); writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset); writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, &power_regs->hw_power_reset); } /** * mxs_batt_boot() - Configure the power block to boot from battery input * * This function configures the power block to boot from the battery voltage * supply. */ static void mxs_batt_boot(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Configuring power block to boot from battery\n"); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC); clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2); writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr); /* 5V to battery handoff. */ setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); early_delay(30); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr); clrsetbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS); mxs_power_set_linreg(); clrbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG); clrbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG); clrbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_DISABLE_FET); setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWD_CHARGE_4P2_MASK); setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, 0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); if (CONFIG_IS_ENABLED(MXS_PMU_MINIMAL_VDD5V_CURRENT)) setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ILIMIT_EQ_ZERO); mxs_power_enable_4p2(); } /** * mxs_handle_5v_conflict() - Test if the 5V input is reliable * * This function tests if the 5V input can reliably supply the system. If it * can, then proceed to configuring the system to boot from 5V source, otherwise * try booting from battery supply. If we can not boot from battery supply * either, shut down the system. */ static void mxs_handle_5v_conflict(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp; debug("SPL: Resolving 5V conflict\n"); setbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_BO_OFFSET_MASK); for (;;) { tmp = readl(&power_regs->hw_power_sts); if (tmp & POWER_STS_VDDIO_BO) { /* * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes * unreliable */ debug("SPL: VDDIO has a brownout\n"); mxs_powerdown(); break; } if (tmp & POWER_STS_VDD5V_GT_VDDIO) { debug("SPL: POWER_STS_VDD5V_GT_VDDIO is set\n"); mxs_boot_valid_5v(); break; } else { debug("SPL: POWER_STS_VDD5V_GT_VDDIO is not set\n"); mxs_powerdown(); break; } /* * TODO: I can't see this being reached. We'll either * powerdown or boot from a stable 5V supply. */ if (tmp & POWER_STS_PSWITCH_MASK) { debug("SPL: POWER_STS_PSWITCH_MASK is set\n"); mxs_batt_boot(); break; } } } /** * mxs_5v_boot() - Configure the power block to boot from 5V input * * This function handles configuration of the power block when supplied by * a 5V input. */ static void mxs_5v_boot(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Configuring power block to boot from 5V input\n"); /* * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID, * but their implementation always returns 1 so we omit it here. */ if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { debug("SPL: 5V VDD good\n"); mxs_boot_valid_5v(); return; } early_delay(1000); if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { debug("SPL: 5V VDD good (after delay)\n"); mxs_boot_valid_5v(); return; } debug("SPL: 5V VDD not good\n"); mxs_handle_5v_conflict(); } /** * mxs_init_batt_bo() - Configure battery brownout threshold * * This function configures the battery input brownout threshold. The value * at which the battery brownout happens is configured to 3.0V in the code. */ static void mxs_init_batt_bo(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Initialising battery brown-out level to 3.0V\n"); /* Brownout at 3V */ clrsetbits_le32(&power_regs->hw_power_battmonitor, POWER_BATTMONITOR_BRWNOUT_LVL_MASK, 15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET); writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr); writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr); } /** * mxs_switch_vddd_to_dcdc_source() - Switch VDDD rail to DC-DC converter * * This function turns off the VDDD linear regulator and therefore makes * the VDDD rail be supplied only by the DC-DC converter. */ static void mxs_switch_vddd_to_dcdc_source(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Switching VDDD to DC-DC converters\n"); clrsetbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_LINREG_OFFSET_MASK, POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW); clrbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG | POWER_VDDDCTRL_DISABLE_STEPPING); } /** * mxs_power_configure_power_source() - Configure power block source * * This function is the core of the power configuration logic. The function * selects the power block input source and configures the whole power block * accordingly. After the configuration is complete and the system is stable * again, the function switches the CPU clock source back to PLL. Finally, * the function switches the voltage rails to DC-DC converter. */ static void mxs_power_configure_power_source(void) { int batt_ready, batt_good; struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; struct mxs_lradc_regs *lradc_regs = (struct mxs_lradc_regs *)MXS_LRADC_BASE; debug("SPL: Configuring power source\n"); mxs_power_setup_dcdc_clocksource(); mxs_src_power_init(); if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { batt_ready = mxs_is_batt_ready(); if (batt_ready) { /* 5V source detected, good battery detected. */ mxs_batt_boot(); } else { batt_good = mxs_is_batt_good(); if (!batt_good) { /* 5V source detected, bad battery detected. */ writel(LRADC_CONVERSION_AUTOMATIC, &lradc_regs->hw_lradc_conversion_clr); clrbits_le32(&power_regs->hw_power_battmonitor, POWER_BATTMONITOR_BATT_VAL_MASK); } mxs_5v_boot(); } } else { /* 5V not detected, booting from battery. */ mxs_batt_boot(); } /* * TODO: Do not switch CPU clock to PLL if we are VDD5V is sourced * from USB VBUS */ mxs_power_clock2pll(); mxs_init_batt_bo(); mxs_switch_vddd_to_dcdc_source(); #ifdef CONFIG_MX23 /* Fire up the VDDMEM LinReg now that we're all set. */ debug("SPL: Enabling mx23 VDDMEM linear regulator\n"); writel(POWER_VDDMEMCTRL_ENABLE_LINREG | POWER_VDDMEMCTRL_ENABLE_ILIMIT, &power_regs->hw_power_vddmemctrl); #endif } /** * mxs_enable_output_rail_protection() - Enable power rail protection * * This function enables overload protection on the power rails. This is * triggered if the power rails' voltage drops rapidly due to overload and * in such case, the supply to the powerrail is cut-off, protecting the * CPU from damage. Note that under such condition, the system will likely * crash or misbehave. */ static void mxs_enable_output_rail_protection(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Enabling output rail protection\n"); writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ | POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr); setbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_PWDN_BRNOUT); } /** * mxs_get_vddio_power_source_off() - Get VDDIO rail power source * * This function tests if the VDDIO rail is supplied by linear regulator * or by the DC-DC converter. Returns 1 if powered by linear regulator, * returns 0 if powered by the DC-DC converter. */ static int mxs_get_vddio_power_source_off(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp; if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { tmp = readl(&power_regs->hw_power_vddioctrl); if (tmp & POWER_VDDIOCTRL_DISABLE_FET) { if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) == POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) { return 1; } } if (!(readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_ENABLE_DCDC)) { if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) == POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) { return 1; } } } return 0; } /** * mxs_get_vddd_power_source_off() - Get VDDD rail power source * * This function tests if the VDDD rail is supplied by linear regulator * or by the DC-DC converter. Returns 1 if powered by linear regulator, * returns 0 if powered by the DC-DC converter. */ static int mxs_get_vddd_power_source_off(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp; tmp = readl(&power_regs->hw_power_vdddctrl); if (tmp & POWER_VDDDCTRL_DISABLE_FET) { if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) == POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) { return 1; } } if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { if (!(readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_ENABLE_DCDC)) { return 1; } } if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) { if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) == POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) { return 1; } } return 0; } struct mxs_vddx_cfg { uint32_t *reg; uint8_t step_mV; uint16_t lowest_mV; int (*powered_by_linreg)(void); uint32_t trg_mask; uint32_t bo_irq; uint32_t bo_enirq; uint32_t bo_offset_mask; uint32_t bo_offset_offset; }; static const struct mxs_vddx_cfg mxs_vddio_cfg = { .reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)-> hw_power_vddioctrl), #if defined(CONFIG_MX23) .step_mV = 25, #else .step_mV = 50, #endif .lowest_mV = 2800, .powered_by_linreg = mxs_get_vddio_power_source_off, .trg_mask = POWER_VDDIOCTRL_TRG_MASK, .bo_irq = POWER_CTRL_VDDIO_BO_IRQ, .bo_enirq = POWER_CTRL_ENIRQ_VDDIO_BO, .bo_offset_mask = POWER_VDDIOCTRL_BO_OFFSET_MASK, .bo_offset_offset = POWER_VDDIOCTRL_BO_OFFSET_OFFSET, }; static const struct mxs_vddx_cfg mxs_vddd_cfg = { .reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)-> hw_power_vdddctrl), .step_mV = 25, .lowest_mV = 800, .powered_by_linreg = mxs_get_vddd_power_source_off, .trg_mask = POWER_VDDDCTRL_TRG_MASK, .bo_irq = POWER_CTRL_VDDD_BO_IRQ, .bo_enirq = POWER_CTRL_ENIRQ_VDDD_BO, .bo_offset_mask = POWER_VDDDCTRL_BO_OFFSET_MASK, .bo_offset_offset = POWER_VDDDCTRL_BO_OFFSET_OFFSET, }; #ifdef CONFIG_MX23 static const struct mxs_vddx_cfg mxs_vddmem_cfg = { .reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)-> hw_power_vddmemctrl), .step_mV = 50, .lowest_mV = 1700, .powered_by_linreg = NULL, .trg_mask = POWER_VDDMEMCTRL_TRG_MASK, .bo_irq = 0, .bo_enirq = 0, .bo_offset_mask = 0, .bo_offset_offset = 0, }; #endif /** * mxs_power_set_vddx() - Configure voltage on DC-DC converter rail * @cfg: Configuration data of the DC-DC converter rail * @new_target: New target voltage of the DC-DC converter rail * @new_brownout: New brownout trigger voltage * * This function configures the output voltage on the DC-DC converter rail. * The rail is selected by the @cfg argument. The new voltage target is * selected by the @new_target and the voltage is specified in mV. The * new brownout value is selected by the @new_brownout argument and the * value is also in mV. */ static void mxs_power_set_vddx(const struct mxs_vddx_cfg *cfg, uint32_t new_target, uint32_t new_brownout) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t cur_target, diff, bo_int = 0; uint32_t powered_by_linreg = 0; int adjust_up, tmp; new_brownout = DIV_ROUND_CLOSEST(new_target - new_brownout, cfg->step_mV); cur_target = readl(cfg->reg); cur_target &= cfg->trg_mask; cur_target *= cfg->step_mV; cur_target += cfg->lowest_mV; adjust_up = new_target > cur_target; if (cfg->powered_by_linreg) powered_by_linreg = cfg->powered_by_linreg(); if (adjust_up && cfg->bo_irq) { if (powered_by_linreg) { bo_int = readl(cfg->reg); clrbits_le32(cfg->reg, cfg->bo_enirq); } setbits_le32(cfg->reg, cfg->bo_offset_mask); } do { if (abs(new_target - cur_target) > 100) { if (adjust_up) diff = cur_target + 100; else diff = cur_target - 100; } else { diff = new_target; } diff -= cfg->lowest_mV; diff /= cfg->step_mV; clrsetbits_le32(cfg->reg, cfg->trg_mask, diff); if (powered_by_linreg || (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO)) early_delay(500); else { for (;;) { tmp = readl(&power_regs->hw_power_sts); if (tmp & POWER_STS_DC_OK) break; } } cur_target = readl(cfg->reg); cur_target &= cfg->trg_mask; cur_target *= cfg->step_mV; cur_target += cfg->lowest_mV; } while (new_target > cur_target); if (cfg->bo_irq) { if (adjust_up && powered_by_linreg) { writel(cfg->bo_irq, &power_regs->hw_power_ctrl_clr); if (bo_int & cfg->bo_enirq) setbits_le32(cfg->reg, cfg->bo_enirq); } clrsetbits_le32(cfg->reg, cfg->bo_offset_mask, new_brownout << cfg->bo_offset_offset); } } /** * mxs_setup_batt_detect() - Start the battery voltage measurement logic * * This function starts and configures the LRADC block. This allows the * power initialization code to measure battery voltage and based on this * knowledge, decide whether to boot at all, boot from battery or boot * from 5V input. */ static void mxs_setup_batt_detect(void) { debug("SPL: Starting battery voltage measurement logic\n"); mxs_lradc_init(); mxs_lradc_enable_batt_measurement(); early_delay(10); } /** * mxs_ungate_power() - Ungate the POWER block * * This function ungates clock to the power block. In case the power block * was still gated at this point, it will not be possible to configure the * block and therefore the power initialization would fail. This function * is only needed on i.MX233, on i.MX28 the power block is always ungated. */ static void mxs_ungate_power(void) { #ifdef CONFIG_MX23 struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; writel(POWER_CTRL_CLKGATE, &power_regs->hw_power_ctrl_clr); #endif } /** * mxs_power_init() - The power block init main function * * This function calls all the power block initialization functions in * proper sequence to start the power block. */ void mxs_power_init(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Initialising Power Block\n"); mxs_ungate_power(); mxs_power_clock2xtal(); mxs_power_set_auto_restart(); mxs_power_set_linreg(); mxs_power_setup_5v_detect(); mxs_setup_batt_detect(); mxs_power_configure_power_source(); mxs_enable_output_rail_protection(); debug("SPL: Setting VDDIO to 3V3 (brownout @ 3v15)\n"); mxs_power_set_vddx(&mxs_vddio_cfg, 3300, 3150); debug("SPL: Setting VDDD to 1V55 (brownout @ 1v400)\n"); mxs_power_set_vddx(&mxs_vddd_cfg, 1550, 1400); #ifdef CONFIG_MX23 debug("SPL: Setting mx23 VDDMEM to 2V5 (brownout @ 1v7)\n"); mxs_power_set_vddx(&mxs_vddmem_cfg, 2500, 1700); #endif writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ | POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ | POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ | POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set); early_delay(1000); } #ifdef CONFIG_SPL_MXS_PSWITCH_WAIT /** * mxs_power_wait_pswitch() - Wait for power switch to be pressed * * This function waits until the power-switch was pressed to start booting * the board. */ void mxs_power_wait_pswitch(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; debug("SPL: Waiting for power switch input\n"); while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK)) ; } #endif