/* SPDX-License-Identifier: GPL-2.0 */ /* * (C) Copyright 2015 * Texas Instruments Incorporated - https://www.ti.com/ */ #ifndef _RPROC_H_ #define _RPROC_H_ /* * Note: The platform data support is not meant for use with newer * platforms. This is meant only for legacy devices. This mode of * initialization *will* be eventually removed once all necessary * platforms have moved to dm/fdt. */ #include /* For platform data support - non dt world */ #include /** * struct fw_rsc_hdr - firmware resource entry header * @type: resource type * @data: resource data * * Every resource entry begins with a 'struct fw_rsc_hdr' header providing * its @type. The content of the entry itself will immediately follow * this header, and it should be parsed according to the resource type. */ struct fw_rsc_hdr { u32 type; u8 data[0]; }; /** * enum fw_resource_type - types of resource entries * * @RSC_CARVEOUT: request for allocation of a physically contiguous * memory region. * @RSC_DEVMEM: request to iommu_map a memory-based peripheral. * @RSC_TRACE: announces the availability of a trace buffer into which * the remote processor will be writing logs. * @RSC_VDEV: declare support for a virtio device, and serve as its * virtio header. * @RSC_PRELOAD_VENDOR: a vendor resource type that needs to be handled by * remoteproc implementations before loading * @RSC_POSTLOAD_VENDOR: a vendor resource type that needs to be handled by * remoteproc implementations after loading * @RSC_LAST: just keep this one at the end * * For more details regarding a specific resource type, please see its * dedicated structure below. * * Please note that these values are used as indices to the rproc_handle_rsc * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to * check the validity of an index before the lookup table is accessed, so * please update it as needed. */ enum fw_resource_type { RSC_CARVEOUT = 0, RSC_DEVMEM = 1, RSC_TRACE = 2, RSC_VDEV = 3, RSC_PRELOAD_VENDOR = 4, RSC_POSTLOAD_VENDOR = 5, RSC_LAST = 6, }; #define FW_RSC_ADDR_ANY (-1) /** * struct fw_rsc_carveout - physically contiguous memory request * @da: device address * @pa: physical address * @len: length (in bytes) * @flags: iommu protection flags * @reserved: reserved (must be zero) * @name: human-readable name of the requested memory region * * This resource entry requests the host to allocate a physically contiguous * memory region. * * These request entries should precede other firmware resource entries, * as other entries might request placing other data objects inside * these memory regions (e.g. data/code segments, trace resource entries, ...). * * Allocating memory this way helps utilizing the reserved physical memory * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB * pressure is important; it may have a substantial impact on performance. * * If the firmware is compiled with static addresses, then @da should specify * the expected device address of this memory region. If @da is set to * FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then * overwrite @da with the dynamically allocated address. * * We will always use @da to negotiate the device addresses, even if it * isn't using an iommu. In that case, though, it will obviously contain * physical addresses. * * Some remote processors needs to know the allocated physical address * even if they do use an iommu. This is needed, e.g., if they control * hardware accelerators which access the physical memory directly (this * is the case with OMAP4 for instance). In that case, the host will * overwrite @pa with the dynamically allocated physical address. * Generally we don't want to expose physical addresses if we don't have to * (remote processors are generally _not_ trusted), so we might want to * change this to happen _only_ when explicitly required by the hardware. * * @flags is used to provide IOMMU protection flags, and @name should * (optionally) contain a human readable name of this carveout region * (mainly for debugging purposes). */ struct fw_rsc_carveout { u32 da; u32 pa; u32 len; u32 flags; u32 reserved; u8 name[32]; }; /** * struct fw_rsc_devmem - iommu mapping request * @da: device address * @pa: physical address * @len: length (in bytes) * @flags: iommu protection flags * @reserved: reserved (must be zero) * @name: human-readable name of the requested region to be mapped * * This resource entry requests the host to iommu map a physically contiguous * memory region. This is needed in case the remote processor requires * access to certain memory-based peripherals; _never_ use it to access * regular memory. * * This is obviously only needed if the remote processor is accessing memory * via an iommu. * * @da should specify the required device address, @pa should specify * the physical address we want to map, @len should specify the size of * the mapping and @flags is the IOMMU protection flags. As always, @name may * (optionally) contain a human readable name of this mapping (mainly for * debugging purposes). * * Note: at this point we just "trust" those devmem entries to contain valid * physical addresses, but this isn't safe and will be changed: eventually we * want remoteproc implementations to provide us ranges of physical addresses * the firmware is allowed to request, and not allow firmwares to request * access to physical addresses that are outside those ranges. */ struct fw_rsc_devmem { u32 da; u32 pa; u32 len; u32 flags; u32 reserved; u8 name[32]; }; /** * struct fw_rsc_trace - trace buffer declaration * @da: device address * @len: length (in bytes) * @reserved: reserved (must be zero) * @name: human-readable name of the trace buffer * * This resource entry provides the host information about a trace buffer * into which the remote processor will write log messages. * * @da specifies the device address of the buffer, @len specifies * its size, and @name may contain a human readable name of the trace buffer. * * After booting the remote processor, the trace buffers are exposed to the * user via debugfs entries (called trace0, trace1, etc..). */ struct fw_rsc_trace { u32 da; u32 len; u32 reserved; u8 name[32]; }; /** * struct fw_rsc_vdev_vring - vring descriptor entry * @da: device address * @align: the alignment between the consumer and producer parts of the vring * @num: num of buffers supported by this vring (must be power of two) * @notifyid is a unique rproc-wide notify index for this vring. This notify * index is used when kicking a remote processor, to let it know that this * vring is triggered. * @pa: physical address * * This descriptor is not a resource entry by itself; it is part of the * vdev resource type (see below). * * Note that @da should either contain the device address where * the remote processor is expecting the vring, or indicate that * dynamically allocation of the vring's device address is supported. */ struct fw_rsc_vdev_vring { u32 da; u32 align; u32 num; u32 notifyid; u32 pa; }; /** * struct fw_rsc_vdev - virtio device header * @id: virtio device id (as in virtio_ids.h) * @notifyid is a unique rproc-wide notify index for this vdev. This notify * index is used when kicking a remote processor, to let it know that the * status/features of this vdev have changes. * @dfeatures specifies the virtio device features supported by the firmware * @gfeatures is a place holder used by the host to write back the * negotiated features that are supported by both sides. * @config_len is the size of the virtio config space of this vdev. The config * space lies in the resource table immediate after this vdev header. * @status is a place holder where the host will indicate its virtio progress. * @num_of_vrings indicates how many vrings are described in this vdev header * @reserved: reserved (must be zero) * @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'. * * This resource is a virtio device header: it provides information about * the vdev, and is then used by the host and its peer remote processors * to negotiate and share certain virtio properties. * * By providing this resource entry, the firmware essentially asks remoteproc * to statically allocate a vdev upon registration of the rproc (dynamic vdev * allocation is not yet supported). * * Note: unlike virtualization systems, the term 'host' here means * the Linux side which is running remoteproc to control the remote * processors. We use the name 'gfeatures' to comply with virtio's terms, * though there isn't really any virtualized guest OS here: it's the host * which is responsible for negotiating the final features. * Yeah, it's a bit confusing. * * Note: immediately following this structure is the virtio config space for * this vdev (which is specific to the vdev; for more info, read the virtio * spec). the size of the config space is specified by @config_len. */ struct fw_rsc_vdev { u32 id; u32 notifyid; u32 dfeatures; u32 gfeatures; u32 config_len; u8 status; u8 num_of_vrings; u8 reserved[2]; struct fw_rsc_vdev_vring vring[0]; }; /** * struct rproc_mem_entry - memory entry descriptor * @va: virtual address * @dma: dma address * @len: length, in bytes * @da: device address * @priv: associated data * @name: associated memory region name (optional) * @node: list node */ struct rproc_mem_entry { void *va; dma_addr_t dma; int len; u32 da; void *priv; char name[32]; struct list_head node; }; struct rproc; typedef u32(*init_func_proto) (u32 core_id, struct rproc *cfg); struct l3_map { u32 priv_addr; u32 l3_addr; u32 len; }; struct rproc_intmem_to_l3_mapping { u32 num_entries; struct l3_map mappings[16]; }; /** * enum rproc_crash_type - remote processor crash types * @RPROC_MMUFAULT: iommu fault * @RPROC_WATCHDOG: watchdog bite * @RPROC_FATAL_ERROR fatal error * * Each element of the enum is used as an array index. So that, the value of * the elements should be always something sane. * * Feel free to add more types when needed. */ enum rproc_crash_type { RPROC_MMUFAULT, RPROC_WATCHDOG, RPROC_FATAL_ERROR, }; /* we currently support only two vrings per rvdev */ #define RVDEV_NUM_VRINGS 2 #define RPMSG_NUM_BUFS (512) #define RPMSG_BUF_SIZE (512) #define RPMSG_TOTAL_BUF_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE) /** * struct rproc_vring - remoteproc vring state * @va: virtual address * @dma: dma address * @len: length, in bytes * @da: device address * @align: vring alignment * @notifyid: rproc-specific unique vring index * @rvdev: remote vdev * @vq: the virtqueue of this vring */ struct rproc_vring { void *va; dma_addr_t dma; int len; u32 da; u32 align; int notifyid; struct rproc_vdev *rvdev; struct virtqueue *vq; }; /** struct rproc - structure with all processor specific information for * loading remotecore from boot loader. * * @num_iommus: Number of IOMMUs for this remote core. Zero indicates that the * processor does not have an IOMMU. * * @cma_base: Base address of the carveout for this remotecore. * * @cma_size: Length of the carveout in bytes. * * @page_table_addr: array with the physical address of the page table. We are * using the same page table for both IOMMU's. There is currently no strong * usecase for maintaining different page tables for different MMU's servicing * the same CPU. * * @mmu_base_addr: base address of the MMU * * @entry_point: address that is the entry point for the remote core. This * address is in the memory view of the remotecore. * * @load_addr: Address to which the bootloader loads the firmware from * persistent storage before invoking the ELF loader. Keeping this address * configurable allows future optimizations such as loading the firmware from * storage for remotecore2 via EDMA while the CPU is processing the ELF image * of remotecore1. This address is in the memory view of the A15. * * @firmware_name: Name of the file that is expected to contain the ELF image. * * @has_rsc_table: Flag populated after parsing the ELF binary on target. */ struct rproc { u32 num_iommus; unsigned long cma_base; u32 cma_size; unsigned long page_table_addr; unsigned long mmu_base_addr[2]; unsigned long load_addr; unsigned long entry_point; char *core_name; char *firmware_name; char *ptn; init_func_proto start_clocks; init_func_proto config_mmu; init_func_proto config_peripherals; init_func_proto start_core; u32 has_rsc_table; struct rproc_intmem_to_l3_mapping *intmem_to_l3_mapping; u32 trace_pa; u32 trace_len; }; extern struct rproc *rproc_cfg_arr[2]; /** * enum rproc_mem_type - What type of memory model does the rproc use * @RPROC_INTERNAL_MEMORY_MAPPED: Remote processor uses own memory and is memory * mapped to the host processor over an address range. * * Please note that this is an enumeration of memory model of different types * of remote processors. Few of the remote processors do have own internal * memories, while others use external memory for instruction and data. */ enum rproc_mem_type { RPROC_INTERNAL_MEMORY_MAPPED = 0, }; /** * struct dm_rproc_uclass_pdata - platform data for a CPU * @name: Platform-specific way of naming the Remote proc * @mem_type: one of 'enum rproc_mem_type' * @driver_plat_data: driver specific platform data that may be needed. * * This can be accessed with dev_get_uclass_plat() for any UCLASS_REMOTEPROC * device. * */ struct dm_rproc_uclass_pdata { const char *name; enum rproc_mem_type mem_type; void *driver_plat_data; }; /** * struct dm_rproc_ops - Driver model remote proc operations. * * This defines the operations provided by remote proc driver. */ struct dm_rproc_ops { /** * init() - Initialize the remoteproc device (optional) * * This is called after the probe is completed allowing the remote * processor drivers to split up the initializations between probe and * init if needed. * * @dev: Remote proc device * @return 0 if all ok, else appropriate error value. */ int (*init)(struct udevice *dev); /** * load() - Load the remoteproc device using data provided (mandatory) * * Load the remoteproc device with an image, do not start the device. * * @dev: Remote proc device * @addr: Address of the image to be loaded * @size: Size of the image to be loaded * @return 0 if all ok, else appropriate error value. */ int (*load)(struct udevice *dev, ulong addr, ulong size); /** * start() - Start the remoteproc device (mandatory) * * @dev: Remote proc device * @return 0 if all ok, else appropriate error value. */ int (*start)(struct udevice *dev); /** * stop() - Stop the remoteproc device (optional) * * @dev: Remote proc device * @return 0 if all ok, else appropriate error value. */ int (*stop)(struct udevice *dev); /** * reset() - Reset the remoteproc device (optional) * * @dev: Remote proc device * @return 0 if all ok, else appropriate error value. */ int (*reset)(struct udevice *dev); /** * is_running() - Check if the remote processor is running (optional) * * @dev: Remote proc device * @return 0 if running, 1 if not running, -ve on error. */ int (*is_running)(struct udevice *dev); /** * ping() - Ping the remote device for basic communication (optional) * * @dev: Remote proc device * @return 0 on success, 1 if not responding, -ve on other errors. */ int (*ping)(struct udevice *dev); /** * device_to_virt() - Return translated virtual address (optional) * * Translate a device address (remote processor view) to virtual * address (main processor view). * * @dev: Remote proc device * @da: Device address * @size: Size of the memory region @da is pointing to * @return virtual address. */ void * (*device_to_virt)(struct udevice *dev, ulong da, ulong size); int (*add_res)(struct udevice *dev, struct rproc_mem_entry *mapping); void * (*alloc_mem)(struct udevice *dev, unsigned long len, unsigned long align); unsigned int (*config_pagetable)(struct udevice *dev, unsigned int virt, unsigned int phys, unsigned int len); }; /* Accessor */ #define rproc_get_ops(dev) ((struct dm_rproc_ops *)(dev)->driver->ops) #if CONFIG_IS_ENABLED(REMOTEPROC) /** * rproc_init() - Initialize all bound remote proc devices * Return: 0 if all ok, else appropriate error value. */ int rproc_init(void); /** * rproc_dev_init() - Initialize a remote proc device based on id * @id: id of the remote processor * Return: 0 if all ok, else appropriate error value. */ int rproc_dev_init(int id); /** * rproc_is_initialized() - check to see if remoteproc devices are initialized * Return: true if all devices are initialized, false otherwise. */ bool rproc_is_initialized(void); /** * rproc_load() - load binary or elf to a remote processor * @id: id of the remote processor * @addr: address in memory where the image is located * @size: size of the image * Return: 0 if all ok, else appropriate error value. */ int rproc_load(int id, ulong addr, ulong size); /** * rproc_start() - Start a remote processor * @id: id of the remote processor * Return: 0 if all ok, else appropriate error value. */ int rproc_start(int id); /** * rproc_stop() - Stop a remote processor * @id: id of the remote processor * Return: 0 if all ok, else appropriate error value. */ int rproc_stop(int id); /** * rproc_reset() - reset a remote processor * @id: id of the remote processor * Return: 0 if all ok, else appropriate error value. */ int rproc_reset(int id); /** * rproc_ping() - ping a remote processor to check if it can communicate * @id: id of the remote processor * Return: 0 if all ok, else appropriate error value. * * NOTE: this might need communication path available, which is not implemented * as part of remoteproc framework - hook on to appropriate bus architecture to * do the same */ int rproc_ping(int id); /** * rproc_is_running() - check to see if remote processor is running * @id: id of the remote processor * Return: 0 if running, 1 if not running, -ve on error. * * NOTE: this may not involve actual communication capability of the remote * processor, but just ensures that it is out of reset and executing code. */ int rproc_is_running(int id); /** * rproc_elf32_sanity_check() - Verify if an image is a valid ELF32 one * * Check if a valid ELF32 image exists at the given memory location. Verify * basic ELF32 format requirements like magic number and sections size. * * @addr: address of the image to verify * @size: size of the image * Return: 0 if the image looks good, else appropriate error value. */ int rproc_elf32_sanity_check(ulong addr, ulong size); /** * rproc_elf64_sanity_check() - Verify if an image is a valid ELF32 one * * Check if a valid ELF64 image exists at the given memory location. Verify * basic ELF64 format requirements like magic number and sections size. * * @addr: address of the image to verify * @size: size of the image * Return: 0 if the image looks good, else appropriate error value. */ int rproc_elf64_sanity_check(ulong addr, ulong size); /** * rproc_elf32_load_image() - load an ELF32 image * @dev: device loading the ELF32 image * @addr: valid ELF32 image address * @size: size of the image * Return: 0 if the image is successfully loaded, else appropriate error value. */ int rproc_elf32_load_image(struct udevice *dev, unsigned long addr, ulong size); /** * rproc_elf64_load_image() - load an ELF64 image * @dev: device loading the ELF64 image * @addr: valid ELF64 image address * @size: size of the image * Return: 0 if the image is successfully loaded, else appropriate error value. */ int rproc_elf64_load_image(struct udevice *dev, ulong addr, ulong size); /** * rproc_elf_load_image() - load an ELF image * @dev: device loading the ELF image * @addr: valid ELF image address * @size: size of the image * * Auto detects if the image is ELF32 or ELF64 image and load accordingly. * Return: 0 if the image is successfully loaded, else appropriate error value. */ int rproc_elf_load_image(struct udevice *dev, unsigned long addr, ulong size); /** * rproc_elf_get_boot_addr() - Get rproc's boot address. * @dev: device loading the ELF image * @addr: valid ELF image address * * This function returns the entry point address of the ELF * image. */ ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr); /** * rproc_elf32_load_rsc_table() - load the resource table from an ELF32 image * * Search for the resource table in an ELF32 image, and if found, copy it to * device memory. * * @dev: device loading the resource table * @fw_addr: ELF image address * @fw_size: size of the ELF image * @rsc_addr: pointer to the found resource table address. Updated on * operation success * @rsc_size: pointer to the found resource table size. Updated on operation * success * * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there * is no resource table (which is optional), or another appropriate error value. */ int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr, ulong fw_size, ulong *rsc_addr, ulong *rsc_size); /** * rproc_elf64_load_rsc_table() - load the resource table from an ELF64 image * * Search for the resource table in an ELF64 image, and if found, copy it to * device memory. * * @dev: device loading the resource table * @fw_addr: ELF image address * @fw_size: size of the ELF image * @rsc_addr: pointer to the found resource table address. Updated on * operation success * @rsc_size: pointer to the found resource table size. Updated on operation * success * * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there * is no resource table (which is optional), or another appropriate error value. */ int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr, ulong fw_size, ulong *rsc_addr, ulong *rsc_size); /** * rproc_elf_load_rsc_table() - load the resource table from an ELF image * * Auto detects if the image is ELF32 or ELF64 image and search accordingly for * the resource table, and if found, copy it to device memory. * * @dev: device loading the resource table * @fw_addr: ELF image address * @fw_size: size of the ELF image * @rsc_addr: pointer to the found resource table address. Updated on * operation success * @rsc_size: pointer to the found resource table size. Updated on operation * success * * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there * is no resource table (which is optional), or another appropriate error value. */ int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr, ulong fw_size, ulong *rsc_addr, ulong *rsc_size); unsigned long rproc_parse_resource_table(struct udevice *dev, struct rproc *cfg); struct resource_table *rproc_find_resource_table(struct udevice *dev, unsigned int addr, int *tablesz); #else static inline int rproc_init(void) { return -ENOSYS; } static inline int rproc_dev_init(int id) { return -ENOSYS; } static inline bool rproc_is_initialized(void) { return false; } static inline int rproc_load(int id, ulong addr, ulong size) { return -ENOSYS; } static inline int rproc_start(int id) { return -ENOSYS; } static inline int rproc_stop(int id) { return -ENOSYS; } static inline int rproc_reset(int id) { return -ENOSYS; } static inline int rproc_ping(int id) { return -ENOSYS; } static inline int rproc_is_running(int id) { return -ENOSYS; } static inline int rproc_elf32_sanity_check(ulong addr, ulong size) { return -ENOSYS; } static inline int rproc_elf64_sanity_check(ulong addr, ulong size) { return -ENOSYS; } static inline int rproc_elf_sanity_check(ulong addr, ulong size) { return -ENOSYS; } static inline int rproc_elf32_load_image(struct udevice *dev, unsigned long addr, ulong size) { return -ENOSYS; } static inline int rproc_elf64_load_image(struct udevice *dev, ulong addr, ulong size) { return -ENOSYS; } static inline int rproc_elf_load_image(struct udevice *dev, ulong addr, ulong size) { return -ENOSYS; } static inline ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr) { return 0; } static inline int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr, ulong fw_size, ulong *rsc_addr, ulong *rsc_size) { return -ENOSYS; } static inline int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr, ulong fw_size, ulong *rsc_addr, ulong *rsc_size) { return -ENOSYS; } static inline int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr, ulong fw_size, ulong *rsc_addr, ulong *rsc_size) { return -ENOSYS; } #endif #endif /* _RPROC_H_ */