// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) Marvell International Ltd. and its affiliates */ #include "ddr3_init.h" #include "mv_ddr_common.h" #include "mv_ddr_training_db.h" #include "mv_ddr_regs.h" #include "mv_ddr_sys_env_lib.h" #define DDR_INTERFACES_NUM 1 #define DDR_INTERFACE_OCTETS_NUM 5 /* * 1. L2 filter should be set at binary header to 0xD000000, * to avoid conflict with internal register IO. * 2. U-Boot modifies internal registers base to 0xf100000, * and than should update L2 filter accordingly to 0xf000000 (3.75 GB) */ #define L2_FILTER_FOR_MAX_MEMORY_SIZE 0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */ #define ADDRESS_FILTERING_END_REGISTER 0x8c04 #define DYNAMIC_CS_SIZE_CONFIG #define DISABLE_L2_FILTERING_DURING_DDR_TRAINING /* Termal Sensor Registers */ #define TSEN_CONTROL_LSB_REG 0xE4070 #define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0 #define TSEN_CONTROL_LSB_TC_TRIM_MASK (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET) #define TSEN_CONTROL_MSB_REG 0xE4074 #define TSEN_CONTROL_MSB_RST_OFFSET 8 #define TSEN_CONTROL_MSB_RST_MASK (0x1 << TSEN_CONTROL_MSB_RST_OFFSET) #define TSEN_STATUS_REG 0xe4078 #define TSEN_STATUS_READOUT_VALID_OFFSET 10 #define TSEN_STATUS_READOUT_VALID_MASK (0x1 << \ TSEN_STATUS_READOUT_VALID_OFFSET) #define TSEN_STATUS_TEMP_OUT_OFFSET 0 #define TSEN_STATUS_TEMP_OUT_MASK (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET) static struct dlb_config ddr3_dlb_config_table[] = { {DLB_CTRL_REG, 0x2000005c}, {DLB_BUS_OPT_WT_REG, 0x00880000}, {DLB_AGING_REG, 0x0f7f007f}, {DLB_EVICTION_CTRL_REG, 0x0000129f}, {DLB_EVICTION_TIMERS_REG, 0x00ff0000}, {DLB_WTS_DIFF_CS_REG, 0x04030802}, {DLB_WTS_DIFF_BG_REG, 0x00000a02}, {DLB_WTS_SAME_BG_REG, 0x09000a01}, {DLB_WTS_CMDS_REG, 0x00020005}, {DLB_WTS_ATTR_PRIO_REG, 0x00060f10}, {DLB_QUEUE_MAP_REG, 0x00000543}, {DLB_SPLIT_REG, 0x00000000}, {DLB_USER_CMD_REG, 0x00000000}, {0x0, 0x0} }; static struct dlb_config *sys_env_dlb_config_ptr_get(void) { return &ddr3_dlb_config_table[0]; } static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = { 0x3, /* MV_DDR_FREQ_100 */ 0x4, /* MV_DDR_FREQ_400 */ 0x4, /* MV_DDR_FREQ_533 */ 0x5, /* MV_DDR_FREQ_667 */ 0x5, /* MV_DDR_FREQ_800 */ 0x5, /* MV_DDR_FREQ_933 */ 0x5, /* MV_DDR_FREQ_1066 */ 0x3, /* MV_DDR_FREQ_311 */ 0x3, /* MV_DDR_FREQ_333 */ 0x4, /* MV_DDR_FREQ_467 */ 0x5, /* MV_DDR_FREQ_850 */ 0x5, /* MV_DDR_FREQ_600 */ 0x3, /* MV_DDR_FREQ_300 */ 0x5, /* MV_DDR_FREQ_900 */ 0x3, /* MV_DDR_FREQ_360 */ 0x5 /* MV_DDR_FREQ_1000 */ }; static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = { 0x1, /* MV_DDR_FREQ_100 */ 0x2, /* MV_DDR_FREQ_400 */ 0x2, /* MV_DDR_FREQ_533 */ 0x2, /* MV_DDR_FREQ_667 */ 0x2, /* MV_DDR_FREQ_800 */ 0x3, /* MV_DDR_FREQ_933 */ 0x3, /* MV_DDR_FREQ_1066 */ 0x1, /* MV_DDR_FREQ_311 */ 0x1, /* MV_DDR_FREQ_333 */ 0x2, /* MV_DDR_FREQ_467 */ 0x2, /* MV_DDR_FREQ_850 */ 0x2, /* MV_DDR_FREQ_600 */ 0x1, /* MV_DDR_FREQ_300 */ 0x2, /* MV_DDR_FREQ_900 */ 0x1, /* MV_DDR_FREQ_360 */ 0x2 /* MV_DDR_FREQ_1000 */ }; static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = { 666, /* 0 */ 1332, 800, 1600, 1066, 2132, 1200, 2400, 1332, 1332, 1500, 1500, 1600, /* 12 */ 1600, 1700, 1700, 1866, 1866, 1800, /* 18 */ 2000, 2000, 4000, 2132, 2132, 2300, 2300, 2400, 2400, 2500, 2500, 800 }; static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = { 666, /* 0 */ 1332, 800, 800, /* 0x3 */ 1066, 1066, /* 0x5 */ 1200, 2400, 1332, 1332, 1500, /* 10 */ 1600, /* 0xB */ 1600, 1600, 1700, 1560, /* 0xF */ 1866, 1866, 1800, 2000, 2000, /* 20 */ 4000, 2132, 2132, 2300, 2300, 2400, 2400, 2500, 2500, 1800 /* 30 - 0x1E */ }; static u32 dq_bit_map_2_phy_pin[] = { 1, 0, 2, 6, 9, 8, 3, 7, /* 0 */ 8, 9, 1, 7, 2, 6, 3, 0, /* 1 */ 3, 9, 7, 8, 1, 0, 2, 6, /* 2 */ 1, 0, 6, 2, 8, 3, 7, 9, /* 3 */ 0, 1, 2, 9, 7, 8, 3, 6, /* 4 */ }; void mv_ddr_mem_scrubbing(void) { ddr3_new_tip_ecc_scrub(); } static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id, enum mv_ddr_freq freq); /* * Read temperature TJ value */ static u32 ddr3_ctrl_get_junc_temp(u8 dev_num) { int reg = 0; /* Initiates TSEN hardware reset once */ if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) { reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK); /* set Tsen Tc Trim to correct default value (errata #132698) */ reg = reg_read(TSEN_CONTROL_LSB_REG); reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK; reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET; reg_write(TSEN_CONTROL_LSB_REG, reg); } mdelay(10); /* Check if the readout field is valid */ if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) { printf("%s: TSEN not ready\n", __func__); return 0; } reg = reg_read(TSEN_STATUS_REG); reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET; return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000; } /* * Name: ddr3_tip_a38x_get_freq_config. * Desc: * Args: * Notes: * Returns: MV_OK if success, other error code if fail. */ static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq, struct hws_tip_freq_config_info *freq_config_info) { if (a38x_bw_per_freq[freq] == 0xff) return MV_NOT_SUPPORTED; if (freq_config_info == NULL) return MV_BAD_PARAM; freq_config_info->bw_per_freq = a38x_bw_per_freq[freq]; freq_config_info->rate_per_freq = a38x_rate_per_freq[freq]; freq_config_info->is_supported = 1; return MV_OK; } static void dunit_read(u32 addr, u32 mask, u32 *data) { *data = reg_read(addr) & mask; } static void dunit_write(u32 addr, u32 mask, u32 data) { u32 reg_val = data; if (mask != MASK_ALL_BITS) { dunit_read(addr, MASK_ALL_BITS, ®_val); reg_val &= (~mask); reg_val |= (data & mask); } reg_write(addr, reg_val); } #define ODPG_ENABLE_REG 0x186d4 #define ODPG_EN_OFFS 0 #define ODPG_EN_MASK 0x1 #define ODPG_EN_ENA 1 #define ODPG_EN_DONE 0 #define ODPG_DIS_OFFS 8 #define ODPG_DIS_MASK 0x1 #define ODPG_DIS_DIS 1 void mv_ddr_odpg_enable(void) { dunit_write(ODPG_ENABLE_REG, ODPG_EN_MASK << ODPG_EN_OFFS, ODPG_EN_ENA << ODPG_EN_OFFS); } void mv_ddr_odpg_disable(void) { dunit_write(ODPG_ENABLE_REG, ODPG_DIS_MASK << ODPG_DIS_OFFS, ODPG_DIS_DIS << ODPG_DIS_OFFS); } void mv_ddr_odpg_done_clr(void) { return; } int mv_ddr_is_odpg_done(u32 count) { u32 i, data; for (i = 0; i < count; i++) { dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data); if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) == ODPG_EN_DONE) break; } if (i >= count) { printf("%s: timeout\n", __func__); return MV_FAIL; } return MV_OK; } void mv_ddr_training_enable(void) { dunit_write(GLOB_CTRL_STATUS_REG, TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS, TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS); } #define DRAM_INIT_CTRL_STATUS_REG 0x18488 #define TRAINING_TRIGGER_OFFS 0 #define TRAINING_TRIGGER_MASK 0x1 #define TRAINING_TRIGGER_ENA 1 #define TRAINING_DONE_OFFS 1 #define TRAINING_DONE_MASK 0x1 #define TRAINING_DONE_DONE 1 #define TRAINING_DONE_NOT_DONE 0 #define TRAINING_RESULT_OFFS 2 #define TRAINING_RESULT_MASK 0x1 #define TRAINING_RESULT_PASS 0 #define TRAINING_RESULT_FAIL 1 int mv_ddr_is_training_done(u32 count, u32 *result) { u32 i, data; if (result == NULL) { printf("%s: NULL result pointer found\n", __func__); return MV_FAIL; } for (i = 0; i < count; i++) { dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data); if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) == TRAINING_DONE_DONE) break; } if (i >= count) { printf("%s: timeout\n", __func__); return MV_FAIL; } *result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK; return MV_OK; } #define DM_PAD 10 u32 mv_ddr_dm_pad_get(void) { return DM_PAD; } /* * Name: ddr3_tip_a38x_select_ddr_controller. * Desc: Enable/Disable access to Marvell's server. * Args: dev_num - device number * enable - whether to enable or disable the server * Notes: * Returns: MV_OK if success, other error code if fail. */ static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable) { u32 reg; reg = reg_read(DUAL_DUNIT_CFG_REG); if (enable) reg |= (1 << 6); else reg &= ~(1 << 6); reg_write(DUAL_DUNIT_CFG_REG, reg); return MV_OK; } static u8 ddr3_tip_clock_mode(u32 frequency) { if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400)) return 1; return 2; } static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq) { u32 reg, ref_clk_satr; /* Read sample at reset setting */ reg = (reg_read(REG_DEVICE_SAR1_ADDR) >> RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) & RST2_CPU_DDR_CLOCK_SELECT_IN_MASK; ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG); if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) == DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) { switch (reg) { case 0x1: DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, ("Warning: Unsupported freq mode for 333Mhz configured(%d)\n", reg)); /* fallthrough */ case 0x0: *freq = MV_DDR_FREQ_333; break; case 0x3: DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, ("Warning: Unsupported freq mode for 400Mhz configured(%d)\n", reg)); /* fallthrough */ case 0x2: *freq = MV_DDR_FREQ_400; break; case 0xd: DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, ("Warning: Unsupported freq mode for 533Mhz configured(%d)\n", reg)); /* fallthrough */ case 0x4: *freq = MV_DDR_FREQ_533; break; case 0x6: *freq = MV_DDR_FREQ_600; break; case 0x11: case 0x14: DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, ("Warning: Unsupported freq mode for 667Mhz configured(%d)\n", reg)); /* fallthrough */ case 0x8: *freq = MV_DDR_FREQ_667; break; case 0x15: case 0x1b: DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, ("Warning: Unsupported freq mode for 800Mhz configured(%d)\n", reg)); /* fallthrough */ case 0xc: *freq = MV_DDR_FREQ_800; break; case 0x10: *freq = MV_DDR_FREQ_933; break; case 0x12: *freq = MV_DDR_FREQ_900; break; case 0x13: *freq = MV_DDR_FREQ_933; break; default: *freq = 0; return MV_NOT_SUPPORTED; } } else { /* REFCLK 40MHz case */ switch (reg) { case 0x3: *freq = MV_DDR_FREQ_400; break; case 0x5: *freq = MV_DDR_FREQ_533; break; case 0xb: *freq = MV_DDR_FREQ_800; break; case 0x1e: *freq = MV_DDR_FREQ_900; break; default: *freq = 0; return MV_NOT_SUPPORTED; } } return MV_OK; } static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq) { u32 reg, ref_clk_satr; /* Read sample at reset setting */ reg = (reg_read(REG_DEVICE_SAR1_ADDR) >> RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) & RST2_CPU_DDR_CLOCK_SELECT_IN_MASK; ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG); if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) == DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) { switch (reg) { case 0x0: case 0x1: /* Medium is same as TF to run PBS in this freq */ *freq = MV_DDR_FREQ_333; break; case 0x2: case 0x3: /* Medium is same as TF to run PBS in this freq */ *freq = MV_DDR_FREQ_400; break; case 0x4: case 0xd: /* Medium is same as TF to run PBS in this freq */ *freq = MV_DDR_FREQ_533; break; case 0x8: case 0x10: case 0x11: case 0x14: *freq = MV_DDR_FREQ_333; break; case 0xc: case 0x15: case 0x1b: *freq = MV_DDR_FREQ_400; break; case 0x6: *freq = MV_DDR_FREQ_300; break; case 0x12: *freq = MV_DDR_FREQ_360; break; case 0x13: *freq = MV_DDR_FREQ_400; break; default: *freq = 0; return MV_NOT_SUPPORTED; } } else { /* REFCLK 40MHz case */ switch (reg) { case 0x3: /* Medium is same as TF to run PBS in this freq */ *freq = MV_DDR_FREQ_400; break; case 0x5: /* Medium is same as TF to run PBS in this freq */ *freq = MV_DDR_FREQ_533; break; case 0xb: *freq = MV_DDR_FREQ_400; break; case 0x1e: *freq = MV_DDR_FREQ_360; break; default: *freq = 0; return MV_NOT_SUPPORTED; } } return MV_OK; } static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr) { info_ptr->device_id = 0x6800; info_ptr->ck_delay = ck_delay; return MV_OK; } /* check indirect access to phy register file completed */ static int is_prfa_done(void) { u32 reg_val; u32 iter = 0; do { if (iter++ > MAX_POLLING_ITERATIONS) { printf("error: %s: polling timeout\n", __func__); return MV_FAIL; } dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val); reg_val >>= PRFA_REQ_OFFS; reg_val &= PRFA_REQ_MASK; } while (reg_val == PRFA_REQ_ENA); /* request pending */ return MV_OK; } /* write to phy register thru indirect access */ static int prfa_write(enum hws_access_type phy_access, u32 phy, enum hws_ddr_phy phy_type, u32 addr, u32 data, enum hws_operation op_type) { u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) | ((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) | ((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) | ((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) | ((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) | (((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) | ((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS); dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val); reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS); dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val); /* polling for prfa request completion */ if (is_prfa_done() != MV_OK) return MV_FAIL; return MV_OK; } /* read from phy register thru indirect access */ static int prfa_read(enum hws_access_type phy_access, u32 phy, enum hws_ddr_phy phy_type, u32 addr, u32 *data) { struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE); u32 i, reg_val; if (phy_access == ACCESS_TYPE_MULTICAST) { for (i = 0; i < max_phy; i++) { VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i); if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK) return MV_FAIL; dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val); data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK; } } else { if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK) return MV_FAIL; dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val); *data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK; } return MV_OK; } static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id) { struct hws_tip_config_func_db config_func; /* new read leveling version */ config_func.mv_ddr_dunit_read = dunit_read; config_func.mv_ddr_dunit_write = dunit_write; config_func.tip_dunit_mux_select_func = ddr3_tip_a38x_select_ddr_controller; config_func.tip_get_freq_config_info_func = ddr3_tip_a38x_get_freq_config; config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider; config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info; config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp; config_func.tip_get_clock_ratio = ddr3_tip_clock_mode; config_func.tip_external_read = ddr3_tip_ext_read; config_func.tip_external_write = ddr3_tip_ext_write; config_func.mv_ddr_phy_read = prfa_read; config_func.mv_ddr_phy_write = prfa_write; ddr3_tip_init_config_func(dev_num, &config_func); ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin); /* set device attributes*/ ddr3_tip_dev_attr_init(dev_num); ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4); ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE); ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM); ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0); ca_delay = 0; delay_enable = 1; dfs_low_freq = DFS_LOW_FREQ_VALUE; calibration_update_control = 1; ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq); return MV_OK; } static int mv_ddr_training_mask_set(void) { struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq; mask_tune_func = (SET_LOW_FREQ_MASK_BIT | LOAD_PATTERN_MASK_BIT | SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT | WRITE_LEVELING_SUPP_MASK_BIT | READ_LEVELING_MASK_BIT | PBS_RX_MASK_BIT | PBS_TX_MASK_BIT | SET_TARGET_FREQ_MASK_BIT | WRITE_LEVELING_TF_MASK_BIT | WRITE_LEVELING_SUPP_TF_MASK_BIT | READ_LEVELING_TF_MASK_BIT | CENTRALIZATION_RX_MASK_BIT | CENTRALIZATION_TX_MASK_BIT); rl_mid_freq_wa = 1; if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) { mask_tune_func = (WRITE_LEVELING_MASK_BIT | LOAD_PATTERN_2_MASK_BIT | WRITE_LEVELING_SUPP_MASK_BIT | READ_LEVELING_MASK_BIT | PBS_RX_MASK_BIT | PBS_TX_MASK_BIT | CENTRALIZATION_RX_MASK_BIT | CENTRALIZATION_TX_MASK_BIT); rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */ } /* Supplementary not supported for ECC modes */ if (mv_ddr_is_ecc_ena()) { mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT; mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT; mask_tune_func &= ~PBS_TX_MASK_BIT; mask_tune_func &= ~PBS_RX_MASK_BIT; } return MV_OK; } /* function: mv_ddr_set_calib_controller * this function sets the controller which will control * the calibration cycle in the end of the training. * 1 - internal controller * 2 - external controller */ void mv_ddr_set_calib_controller(void) { calibration_update_control = CAL_UPDATE_CTRL_INT; } static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id, enum mv_ddr_freq frequency) { u32 divider = 0; u32 sar_val, ref_clk_satr; u32 async_val; u32 cpu_freq; u32 ddr_freq = mv_ddr_freq_get(frequency); if (if_id != 0) { DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, ("A38x does not support interface 0x%x\n", if_id)); return MV_BAD_PARAM; } /* get VCO freq index */ sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >> RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) & RST2_CPU_DDR_CLOCK_SELECT_IN_MASK; ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG); if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) == DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) cpu_freq = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val]; else cpu_freq = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val]; divider = cpu_freq / ddr_freq; if (((cpu_freq % ddr_freq != 0) || (divider != 2 && divider != 3)) && (ddr_freq > 400)) { /* Set async mode */ dunit_write(0x20220, 0x1000, 0x1000); dunit_write(0xe42f4, 0x200, 0x200); /* Wait for async mode setup */ mdelay(5); /* Set KNL values */ switch (frequency) { case MV_DDR_FREQ_467: async_val = 0x806f012; break; case MV_DDR_FREQ_533: async_val = 0x807f012; break; case MV_DDR_FREQ_600: async_val = 0x805f00a; break; case MV_DDR_FREQ_667: async_val = 0x809f012; break; case MV_DDR_FREQ_800: async_val = 0x807f00a; break; case MV_DDR_FREQ_850: async_val = 0x80cb012; break; case MV_DDR_FREQ_900: async_val = 0x80d7012; break; case MV_DDR_FREQ_933: async_val = 0x80df012; break; case MV_DDR_FREQ_1000: async_val = 0x80ef012; break; case MV_DDR_FREQ_1066: async_val = 0x80ff012; break; default: /* set MV_DDR_FREQ_667 as default */ async_val = 0x809f012; } dunit_write(0xe42f0, 0xffffffff, async_val); } else { /* Set sync mode */ dunit_write(0x20220, 0x1000, 0x0); dunit_write(0xe42f4, 0x200, 0x0); /* cpupll_clkdiv_reset_mask */ dunit_write(0xe4264, 0xff, 0x1f); /* cpupll_clkdiv_reload_smooth */ dunit_write(0xe4260, (0xff << 8), (0x2 << 8)); /* cpupll_clkdiv_relax_en */ dunit_write(0xe4260, (0xff << 24), (0x2 << 24)); /* write the divider */ dunit_write(0xe4268, (0x3f << 8), (divider << 8)); /* set cpupll_clkdiv_reload_ratio */ dunit_write(0xe4264, (1 << 8), (1 << 8)); /* undet cpupll_clkdiv_reload_ratio */ dunit_write(0xe4264, (1 << 8), 0x0); /* clear cpupll_clkdiv_reload_force */ dunit_write(0xe4260, (0xff << 8), 0x0); /* clear cpupll_clkdiv_relax_en */ dunit_write(0xe4260, (0xff << 24), 0x0); /* clear cpupll_clkdiv_reset_mask */ dunit_write(0xe4264, 0xff, 0x0); } /* Dunit training clock + 1:1/2:1 mode */ dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16)); dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15)); return MV_OK; } /* * external read from memory */ int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr, u32 num_of_bursts, u32 *data) { u32 burst_num; for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++) data[burst_num] = readl(reg_addr + 4 * burst_num); return MV_OK; } /* * external write to memory */ int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr, u32 num_of_bursts, u32 *data) { u32 burst_num; for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++) writel(data[burst_num], reg_addr + 4 * burst_num); return MV_OK; } int mv_ddr_early_init(void) { /* FIXME: change this configuration per ddr type * configure a380 and a390 to work with receiver odt timing * the odt_config is defined: * '1' in ddr4 * '0' in ddr3 * here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1') * to configure the odt to work with timing restrictions */ mv_ddr_sw_db_init(0, 0); return MV_OK; } int mv_ddr_early_init2(void) { mv_ddr_training_mask_set(); return MV_OK; } int mv_ddr_pre_training_fixup(void) { return 0; } int mv_ddr_post_training_fixup(void) { return 0; } int ddr3_post_run_alg(void) { return MV_OK; } int ddr3_silicon_post_init(void) { struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); /* Set half bus width */ if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) { CHECK_STATUS(ddr3_tip_if_write (0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE, SDRAM_CFG_REG, 0x0, 0x8000)); } return MV_OK; } u32 mv_ddr_init_freq_get(void) { enum mv_ddr_freq freq; mv_ddr_sar_freq_get(0, &freq); return freq; } static u32 ddr3_get_bus_width(void) { u32 bus_width; bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >> BUS_IN_USE_OFFS; return (bus_width == 0) ? 16 : 32; } static u32 ddr3_get_device_width(u32 cs) { u32 device_width; device_width = (reg_read(SDRAM_ADDR_CTRL_REG) & (CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >> CS_STRUCT_OFFS(cs); return (device_width == 0) ? 8 : 16; } static u32 ddr3_get_device_size(u32 cs) { u32 device_size_low, device_size_high, device_size; u32 data, cs_low_offset, cs_high_offset; cs_low_offset = CS_SIZE_OFFS(cs); cs_high_offset = CS_SIZE_HIGH_OFFS(cs); data = reg_read(SDRAM_ADDR_CTRL_REG); device_size_low = (data >> cs_low_offset) & 0x3; device_size_high = (data >> cs_high_offset) & 0x1; device_size = device_size_low | (device_size_high << 2); switch (device_size) { case 0: return 2048; case 2: return 512; case 3: return 1024; case 4: return 4096; case 5: return 8192; case 1: default: DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1); /* zeroes mem size in ddr3_calc_mem_cs_size */ return 0; } } int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size) { u32 cs_mem_size; /* Calculate in MiB */ cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) * ddr3_get_device_size(cs)) / 8; /* * Multiple controller bus width, 2x for 64 bit * (SoC controller may be 32 or 64 bit, * so bit 15 in 0x1400, that means if whole bus used or only half, * have a differnt meaning */ cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER; if ((cs_mem_size < 128) || (cs_mem_size > 4096)) { DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1); return MV_BAD_VALUE; } *cs_size = cs_mem_size; return MV_OK; } static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena) { u32 reg, cs; uint64_t mem_total_size = 0; uint64_t cs_mem_size_mb = 0; uint64_t cs_mem_size = 0; uint64_t mem_total_size_c, cs_mem_size_c; #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE u32 physical_mem_size; u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE; struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); #endif /* Open fast path windows */ for (cs = 0; cs < MAX_CS_NUM; cs++) { if (cs_ena & (1 << cs)) { /* get CS size */ if (ddr3_calc_mem_cs_size(cs, &cs_mem_size_mb) != MV_OK) return MV_FAIL; cs_mem_size = cs_mem_size_mb * _1M; #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE /* * if number of address pins doesn't allow to use max * mem size that is defined in topology * mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE */ physical_mem_size = mem_size [tm->interface_params[0].memory_size]; if (ddr3_get_device_width(cs) == 16) { /* * 16bit mem device can be twice more - no need * in less significant pin */ max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2; } if (physical_mem_size > max_mem_size) { cs_mem_size = max_mem_size * (ddr3_get_bus_width() / ddr3_get_device_width(cs)); printf("Updated Physical Mem size is from 0x%x to %x\n", physical_mem_size, DEVICE_MAX_DRAM_ADDRESS_SIZE); } #endif /* set fast path window control for the cs */ reg = 0xffffe1; reg |= (cs << 2); reg |= (cs_mem_size - 1) & 0xffff0000; /*Open fast path Window */ reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg); /* Set fast path window base address for the cs */ reg = ((cs_mem_size) * cs) & 0xffff0000; /* Set base address */ reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg); /* * Since memory size may be bigger than 4G the summ may * be more than 32 bit word, * so to estimate the result divide mem_total_size and * cs_mem_size by 0x10000 (it is equal to >> 16) */ mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff; cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff; /* if the sum less than 2 G - calculate the value */ if (mem_total_size_c + cs_mem_size_c < 0x10000) mem_total_size += cs_mem_size; else /* put max possible size */ mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE; } } /* Set L2 filtering to Max Memory size */ reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size); return MV_OK; } static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type) { u32 win_ctrl_reg, num_of_win_regs; u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg(); u32 ui; win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR; num_of_win_regs = 16; /* Return XBAR windows 4-7 or 16-19 init configuration */ for (ui = 0; ui < num_of_win_regs; ui++) reg_write((win_ctrl_reg + 0x4 * ui), win[ui]); printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n", ddr_type); #if defined DYNAMIC_CS_SIZE_CONFIG if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK) printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n"); #else u32 reg, cs; reg = 0x1fffffe1; for (cs = 0; cs < MAX_CS_NUM; cs++) { if (cs_ena & (1 << cs)) { reg |= (cs << 2); break; } } /* Open fast path Window to - 0.5G */ reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg); #endif return MV_OK; } static int ddr3_save_and_set_training_windows(u32 *win) { u32 cs_ena; u32 reg, tmp_count, cs, ui; u32 win_ctrl_reg, win_base_reg, win_remap_reg; u32 num_of_win_regs, win_jump_index; win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR; win_base_reg = REG_XBAR_WIN_4_BASE_ADDR; win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR; win_jump_index = 0x10; num_of_win_regs = 16; struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); #ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING /* * Disable L2 filtering during DDR training * (when Cross Bar window is open) */ reg_write(ADDRESS_FILTERING_END_REGISTER, 0); #endif cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask; /* Close XBAR Window 19 - Not needed */ /* {0x000200e8} - Open Mbus Window - 2G */ reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0); /* Save XBAR Windows 4-19 init configurations */ for (ui = 0; ui < num_of_win_regs; ui++) win[ui] = reg_read(win_ctrl_reg + 0x4 * ui); /* Open XBAR Windows 4-7 or 16-19 for other CS */ reg = 0; tmp_count = 0; for (cs = 0; cs < MAX_CS_NUM; cs++) { if (cs_ena & (1 << cs)) { switch (cs) { case 0: reg = 0x0e00; break; case 1: reg = 0x0d00; break; case 2: reg = 0x0b00; break; case 3: reg = 0x0700; break; } reg |= (1 << 0); reg |= (SDRAM_CS_SIZE & 0xffff0000); reg_write(win_ctrl_reg + win_jump_index * tmp_count, reg); reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) & 0xffff0000); reg_write(win_base_reg + win_jump_index * tmp_count, reg); if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR) reg_write(win_remap_reg + win_jump_index * tmp_count, 0); tmp_count++; } } return MV_OK; } static u32 win[16]; int mv_ddr_pre_training_soc_config(const char *ddr_type) { u32 soc_num; u32 reg_val; /* Switching CPU to MRVL ID */ soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >> SAR1_CPU_CORE_OFFSET; switch (soc_num) { case 0x3: reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET); reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET); /* fallthrough */ case 0x1: reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET); /* fallthrough */ case 0x0: reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET); /* fallthrough */ default: break; } /* * Set DRAM Reset Mask in case detected GPIO indication of wakeup from * suspend i.e the DRAM values will not be overwritten / reset when * waking from suspend */ if (mv_ddr_sys_env_suspend_wakeup_check() == SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) { reg_bit_set(SDRAM_INIT_CTRL_REG, DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS); } /* Check if DRAM is already initialized */ if (reg_read(REG_BOOTROM_ROUTINE_ADDR) & (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) { printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type); return MV_OK; } /* Fix read ready phases for all SOC in reg 0x15c8 */ reg_val = reg_read(TRAINING_DBG_3_REG); reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); /* phase 0 */ reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); /* phase 1 */ reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); /* phase 3 */ reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); /* phase 4 */ reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); /* phase 5 */ reg_write(TRAINING_DBG_3_REG, reg_val); /* * Axi_bresp_mode[8] = Compliant, * Axi_addr_decode_cntrl[11] = Internal, * Axi_data_bus_width[0] = 128bit * */ /* 0x14a8 - AXI Control Register */ reg_write(AXI_CTRL_REG, 0); /* * Stage 2 - Training Values Setup */ /* Set X-BAR windows for the training sequence */ ddr3_save_and_set_training_windows(win); return MV_OK; } static int ddr3_new_tip_dlb_config(void) { u32 reg, i = 0; struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get(); /* Write the configuration */ while (config_table_ptr[i].reg_addr != 0) { reg_write(config_table_ptr[i].reg_addr, config_table_ptr[i].reg_data); i++; } /* Enable DLB */ reg = reg_read(DLB_CTRL_REG); reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) & ~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) & ~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) & ~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) & ~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS); reg |= (DLB_EN_ENA << DLB_EN_OFFS) | (WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) | (AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) | (MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) | (PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS); reg_write(DLB_CTRL_REG, reg); return MV_OK; } int mv_ddr_post_training_soc_config(const char *ddr_type) { u32 reg_val; /* Restore and set windows */ ddr3_restore_and_set_final_windows(win, ddr_type); /* Update DRAM init indication in bootROM register */ reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR); reg_write(REG_BOOTROM_ROUTINE_ADDR, reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)); /* DLB config */ ddr3_new_tip_dlb_config(); return MV_OK; } void mv_ddr_mc_config(void) { /* Memory controller initializations */ struct init_cntr_param init_param; int status; init_param.do_mrs_phy = 1; init_param.is_ctrl64_bit = 0; init_param.init_phy = 1; init_param.msys_init = 1; status = hws_ddr3_tip_init_controller(0, &init_param); if (status != MV_OK) printf("DDR3 init controller - FAILED 0x%x\n", status); status = mv_ddr_mc_init(); if (status != MV_OK) printf("DDR3 init_sequence - FAILED 0x%x\n", status); } /* function: mv_ddr_mc_init * this function enables the dunit after init controller configuration */ int mv_ddr_mc_init(void) { CHECK_STATUS(ddr3_tip_enable_init_sequence(0)); return MV_OK; } /* function: ddr3_tip_configure_phy * configures phy and electrical parameters */ int ddr3_tip_configure_phy(u32 dev_num) { u32 if_id, phy_id; u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE); struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, PAD_ZRI_CAL_PHY_REG, ((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data)))); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL, PAD_ZRI_CAL_PHY_REG, ((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl)))); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, PAD_ODT_CAL_PHY_REG, ((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data)))); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL, PAD_ODT_CAL_PHY_REG, ((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl)))); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, PAD_PRE_DISABLE_PHY_REG, 0)); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, CMOS_CONFIG_PHY_REG, 0)); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL, CMOS_CONFIG_PHY_REG, 0)); for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { /* check if the interface is enabled */ VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id); for (phy_id = 0; phy_id < octets_per_if_num; phy_id++) { VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id); /* Vref & clamp */ CHECK_STATUS(ddr3_tip_bus_read_modify_write (dev_num, ACCESS_TYPE_UNICAST, if_id, phy_id, DDR_PHY_DATA, PAD_CFG_PHY_REG, ((clamp_tbl[if_id] << 4) | vref_init_val), ((0x7 << 4) | 0x7))); /* clamp not relevant for control */ CHECK_STATUS(ddr3_tip_bus_read_modify_write (dev_num, ACCESS_TYPE_UNICAST, if_id, phy_id, DDR_PHY_CONTROL, PAD_CFG_PHY_REG, 0x4, 0x7)); } } if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) == MV_DDR_PHY_EDGE_POSITIVE) CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, 0x90, 0x6002)); return MV_OK; } int mv_ddr_manual_cal_do(void) { return 0; }